跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/22 18:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李懿欣
研究生(外文):Lee, Yi-Hsin
論文名稱:早期視覺經驗對虎斑烏賊行為及神經可塑性的影響
論文名稱(外文):The effects of early visual experience on behavioral and neural plasticity in cuttlefish Sepia pharaonis
指導教授:焦傳金焦傳金引用關係
指導教授(外文):Chiao, Chun-Chin
學位類別:博士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:112
中文關鍵詞:發育偽裝環境豐富度背景對比度肤胺酸受器NR2A受器AGB
外文關鍵詞:developmentcamouflageenvironmental enrichmentbackground contrastN-methyl-D-aspartate recptorNR2AAGB
相關次數:
  • 被引用被引用:0
  • 點閱點閱:348
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:1
早期經驗能影響行為發展與神經系統發育,此現象稱為行為及神經可塑
性,是近代神經科學研究的基石。例如豐富飼養環境能促進動物的學習及相關
腦區的發育,而視覺經驗對視覺相關行為的發展及視覺系統發育影響尤其顯著。
烏賊為底棲頭足類動物,牠們有絕佳的視覺與發達的視覺系統,且多數行為與
視覺相關,是否視覺經驗能影響其行為及視覺系統發展目前所知甚少。烏賊在
孵化後無浮游期即行底棲生活與成體相似,因此其幼生能在實驗室的環境中培
育繁殖,為研究早期視覺經驗對行為與神經可塑性之影響的極佳動物。前人的
研究顯示豐富的飼養環境會促進烏賊偽裝花紋以及視覺學習的發展,然而視覺
經驗所扮演的角色以及對於視覺系統發育的影響仍尚未知。本研究使用虎斑烏
賊為研究對象來檢視從胚胎至孵化後12周的發育期間,貧乏以及豐富的視覺環
境對於烏賊的 (1) 偽裝花紋,(2) 背景偏好,(3) 視葉中麩胺酸受器表現的影響,並比較短期以及長期暴露於兩種貧乏的視覺環境(高對比度及低對比度)的影
差異。結果顯示豐富的視覺環境能增進虎斑烏賊對高對比度背景的偏好,且此
偏好的發展在視覺貧乏的環境中會延遲或是相反。另外長期飼養於高對比度及
低對比度環境中,也會造成虎斑烏賊的偽裝花紋發育及視葉中類肤胺酸受器表
現差異。且將動物短期暴露於高對比度背景中,即能增進對虎斑烏賊對高對比
度背景的偏好。綜合以上發現,本研究顯示胚胎以及孵化後的早期視覺環境經
驗能影響烏賊的行為發展及視覺系統發育,其中環境的豐富度及背景的對比度
為重要的影響因子,且推測類似印痕的學習機制參與其中。本研究因此提供了
頭足類動物在發育過程中行為及神經可塑性的重要證據。
Behavioral and neural plasticity is fundamental in modern neuroscience. It is well known that environmental enrichment can affect behavioral and neural development in many animals. Particularly, visual experience plays an important role in the activity-dependent modification of visually driven behaviors and visual systems. Cuttlefish are benthic cephalopods with a complex nervous system, and most of their behaviors are visually driven. Since their embryonic and postnatal developments are continuous without metamorphosis and hatchlings are relative easy to breed in the laboratory, this group of animals provides a unique opportunity to examine the effects of early visual experience on behavioral and neural plasticity. Previous studies have shown that enriched environment is crucial for proper behavioral development in cuttlefish. However, whether visual experience alone during embryonic and postnatal developments can modify specific behaviors and neural systems remains unclear. Using cuttlefish Sepia pharaonis, the present study investigated the effects of visually impoverished and/or enriched environments on (1) camouflage body pattern maturation, (2) background preference, and (3) expression of glutamate receptors in the optic lobe, from 7 days pre-hatching to 12 weeks post-hatching. Specifically, two distinct impoverished rearing backgrounds, checkerboard (high contrast) and uniform-gray (low contrast), were used to compare the effects of different visual contrasts on behavioral and neural plasticity in long- and/or short-term exposures. The results showed that environmental enrichment in embryonic and postnatal stages is critical for the development of high contrast background preference in S. pharaonis, whereas the impoverished environment can delay or reverse their background preference. Furthermore, cuttlefish long-term reared in high and low contrast environments showed different camouflage body patterns and NMDA-like receptor expressions, whereas cuttlefish short-term exposed to checkerboard can increase their tendency of high contrast background preference. Taken together, these findings indicate that both embryonic and postnatal visual experiences can influence behavioral and neural developments in cuttlefish. It also highlights the importance of the environmental enrichment and visual contrast in affecting early cuttlefish development. The present study thus provides a good correlation between the plasticity of visual system development and the plasticity of visual behavior maturation in cephalopods.
Abstract -------------------------------------------------------------------------------------------------------- i
中文摘要 ------------------------------------------------------------------------------------------------------ iii
Abbreviations ------------------------------------------------------------------------------------------------ iv
Chapter 1:Introduction ------------------------------------------------------------------------------- 1
1.1 History of research in behavioral and neural plasticity
1.1.1 Behavioral plasticity ------------------------------------------------------------------------------ 1
1.1.2 Neural plasticity ----------------------------------------------------------------------------------- 2
1.2 Experience-dependent plasticity in the development of behaviors
1.2.1 The environmental effects ------------------------------------------------------------------------ 2
1.2.2 The effects of visual experience ----------------------------------------------------------------- 4
1.3 Experience-dependent plasticity in the development of nervous systems
1.3.1 The environmental effects ------------------------------------------------------------------------ 5
1.3.2 The effects of visual experience ----------------------------------------------------------------- 6
1.4 Glutamate receptor and experience-dependent plasticity
1.4.1 Glutamate receptors and excitatory neurotransmission -------------------------------------- 7
1.4.2 NMDA receptors and neural plasticity in the visual system --------------------------------- 8
1.5 The effects of early experience on behavioral and neural developments in cephalopods
1.5.1 Environmental influences in cephalopod behaviors ------------------------------------------ 9
1.5.2 Development of camouflage body pattern and background preference in cephalopods 11
1.5.3 Optic lobe and NMDA receptors in cephalopods --------------------------------------------- 13
1.6 Specific aims --------------------------------------------------------------------------------------------- 14
Chapter 2:Materials and Methods ---------------------------------------------------------------- 16
2.1 Subjects and experimental setup
2.1.1 Animal source and species identification ------------------------------------------------------ 16
2.1.2 Aquarium system ---------------------------------------------------------------------------------- 17
2.1.3 Experimental setup -------------------------------------------------------------------------------- 17
2.2 Visual environments for rearing cuttlefish--------------------------------------------------------- 18
2.3 Experimental designs

2.3.1 Experiment 1: The effects of visual experience on camouflage body pattern maturation 19
2.3.2 Experiment 2: The effects of visual experience on background preference --------------- 22
2.3.3 Experiment 3: The effects of visual experience on glutamate receptor expression in the optic lobe ------------------------------------------------------------------------------------------- 26
Chapter 3:Results --------------------------------------------------------------------------------------- 31
3.1 Experiment 1A: The effects of postnatal long-term exposure of high and low contrast backgrounds on camouflage body pattern maturation
3.1.1 Cuttlefish display different camouflage body pattern in the C and U tests ---------------- 31
3.1.2 High contrast reared cuttlefish display more disruptive pattern in the C test ------------- 31
3.1.3 The U test is less affected by the visual experience of background contrast -------------- 32
3.1.4 Background contrast differentially regulates the expression of camouflage body pattern components in developing cuttlefish --------------------------------------------------- 33
3.2 Experiment 1B: Short-term exposure to high contrast background alters body patterning of cuttlefish ---------------------------------------------------------------------------------
33
3.3 Experiment 2A: Cuttlefish with prenatal exposure of an enriched environment show contrast and size preferences on Day 1 -------------------------------------------------------------
34
3.4 Experiment 2B: Cuttlefish with postnatal exposure of an enriched environment show contrast and size preferences at Weeks 4, 8, and 12 ---------------------------------------------
35
3.5 Experiment 2C: Postnatal long-term exposure of high and low contrast backgrounds affects cuttlefish background preference -----------------------------------------------------------
36
3.6 Experiment 2D: Postnatal short-term exposure to checkerboard enhances high contrast background preference ---------------------------------------------------------------------
36
3.7 Experiment 3A: The distribution of functional glutamate receptors in the optic lobe --- 37
3.8 Experiment 3B: The effects of postnatal long-term exposure of high and low contrast backgrounds on the distribution of NMDA-like receptors in the optic lobe
3.8.1 NR2A immunoreactivity is present in the cortex and medulla of the optic lobe ---------- 38
3.8.2 Contrast of rearing environment does not alter the distribution of immunoreactivity of NR2A in the optic lobe --------------------------------------------------------------------------- 38
3.9 Experiment 3C: The effects of postnatal long-term exposure of high and low contrast backgrounds on the expression of NMDA-like receptors in the optic lobe
3.9.1 Developmental shift of molecular weight of the NMDA-like receptor -------------------- 39
3.9.2 High and low contrast reared cuttlefish express NR2A differently in the optic lobes during development ------------------------------------------------------------------------------- 40
Chapter 4:Discussion ----------------------------------------------------------------------------------- 41
4.1 Embryonic visual experience is important in the behavioral development of cephalopods ----------------------------------------------------------------------------------------------
41
4.2 Environmental enrichment enhances behavioral development and body growth in cuttlefish
4.2.1 Enriched environment facilitates the maturation of camouflage body patterns ----------- 42
4.2.2 Enriched environment induces the preference of background contrast and size ---------- 44
4.2.3 Social interaction and environmental complexity are essential for normal growth ------ 45
4.3 Background contrast is one of the visual features in affecting behavioral and neural development in cuttlefish
4.3.1 Background contrast affects the maturation of camouflage body patterns ---------------- 46
4.3.2 Background contrast affects the substrate feature preference ------------------------------ 47
4.3.3 Background contrast affects the expression of NMDA-like receptor NR2A subunits in the optic lobe --------------------------------------------------------------------------------------- 48
4.3.4 Background contrast and other environmental features may jointly influence behavioral and neural system developments --------------------------------------------------- 49
4.4 The experience-dependent behavioral development involves learning and memory in cephalopods ----------------------------------------------------------------------------------------------
50
4.5 Primary defense in cuttlefish includes background choice and camouflage body pattern expression --------------------------------------------------------------------------------------
51
4.6 The presence of NMDA-like receptors in cuttlefish and its implication in neural plasticity
4.6.1 Distinct NR2A immunoreactivity patterns in the cortex and medulla of the optic lobe 52
4.6.2 Differential molecular weights of NR2A protein in the optic lobes of juvenile and sub-adult cuttlefish ------------------------------------------------------------------------------------- 54
4.7 Behavioral plasticity is a norm in developing cuttlefish ----------------------------------------- 56
4.8 Conclusion ------------------------------------------------------------------------------------------------ 57
References ----------------------------------------------------------------------------------------------------- 59
Tables ----------------------------------------------------------------------------------------------------------- 77
Figures ---------------------------------------------------------------------------------------------------------- 87

Adams, R. J. and Courage, M. L. (2002). Using a single test to measure human contrast sensitivity from early childhood to maturity. Vision Research 42, 1205-1210.
Agin, V., Dickel, L., Chichery, R. and Chichery, M. P. (1998). Evidence for a specific short-term memory in the cuttlefish, Sepia. Behavioural Processes 43, 329-334.
Akerman, C. J., Smyth, D. and Thompson, I. D. (2002). Visual experience before eye-opening and the development of the retinogeniculate pathway. Neuron 36, 869-79.
Alcock, J. (2009). The development of behavior. In Animal Behavior: An Evolutionary Approach, pp. 550-598. Sunderland: Sinauer Associates, Inc.
Allen, J. J., Mathger, L. M., Barbosa, A., Buresch, K. C., Sogin, E., Schwartz, J., Chubb, C. and Hanlon, R. T. (2010). Cuttlefish dynamic camouflage: responses to substrate choice and integration of multiple visual cues. Proceedings of the Royal Society of London. Series B. Biological Sciences 277, 1030-1039.
Almli, L. M. and Burghardt, G. M. (2006). Environmental enrichment alters the behavioral profile of ratsnakes (Elaphe). Journal of Applied Animal Welfare Science 9, 85-109.
Alves, C., Boal, J. and Dickel, L. (2008). Short-distance navigation in cephalopods: a review and synthesis. Cognitive Processing 9, 239-247.
Anderson, R. C. (2003). Octopus enrichment at the Seattle Aquarium. The Shape of Enrichment 12, 7-8.
Anderson, R. C. and Blustein, D. (2006). Smart octopus? The Festivus 38, 7-9.
Anderson, R. C. and Wood, J. B. (2001). Enrichment for giant pacific octopuses: Happy as a clam? Journal of Applied Animal Welfare Science 4, 157-168.
Barbosa, A., Allen, J. J., Mäthger, L. M. and Hanlon, R. T. (2012). Cuttlefish use visual cues to determine arm postures for camouflage. Proceedings of the Royal Society of London. Series B. Biological Sciences 279, 84-90.
Barbosa, A., Mäthger, L. M., Buresch, K. C., Kelly, J., Chubb, C., Chiao, C. C. and Hanlon, R. T. (2008). Cuttlefish camouflage: the effects of substrat contrast and size in evoking uniform, mottle or disruptive body patterns. Vision Research 10, 1242-1253.
Barbosa, A., Mäthger, L. M., Chubb, C., Florio, C., Chiao, C. C. and Hanlon, R. T. (2007). Disruptive coloration in cuttlefish: a visual perception mechanism that regulates ontogenetic adjustment of skin patterning. Journal of Experimental Biology 210, 1139-1147.
Barth, M., Hirsch, H. V. B. and Heisenberg, M. (1997a). Rearing in different light regimes affects courtship behaviour in Drosophila melanogaster. Animal Behaviour 53, 25-38.
Barth, M., Hirsch, H. V. B., Meinertzhagen, I. A. and Heisenberg, M. (1997b). Experience-dependent developmental plasticity in the optic lobe of Drosophila melanogaster. Journal of Neuroscience 17, 1493-1504.
Bello, G. (2001). Dimorphic growth in male and female cuttlefish Sepia orbignyana (Cephalopoda: Sepiidae) from the Adriatic Sea. Helgoland Marine Research 55, 124-127.
Berejikian, B. A., Tezak, E. P., Riley, S. C. and LaRae, A. L. (2005). Competitive ability and social bhaviour of juvenile steelhead reared in enriched and conventional hatchery tanks and a stream environment. Journal of Fish Biology 59, 1600-1613.
Berlucchi, G. and Buchtel, H. (2009). Neuronal plasticity: historical roots and evolution of meaning. Experimental Brain Research 192, 307-319.
Biben, M. (1998). Squirrel monkey play fighting: Making the case for a cognitive training function for play. In Animal Play: Evolutionary, Comparative, and Ecological Perspectives, eds. M. Bekoff and J. A. Byers, pp. 161-182. Cambridge: Cambridge University Press.
Boal, J. G. (1991). Complex learning in Octopus bimaculoides. American Malacological Bulletin 9, 75-80.
Boal, J. G. (1996). A review of simultaneous visual discriminaiton as a method of training octopuses. Biological Review 71, 157-190.
Boletzky, S. v. (1983). Sepia officinalis. In Cephalopod life cycles, vol. 1, ed. P. R. Boyle, pp. 31-52. London: Academic Press.
Bolhuis, J. J. (2005). Development of behavior. In The Behavior of Animals: Mechanisms, Funciton, and Evolution, eds. J. J. Bolhuis and L.-A. Giraldeau, pp. 119-145. Oxford, UK: Blackwell Bublishing.
Boycott, B. B. (1961). The functional organization of the brain of the cuttlefish Sepia officinalis. Proceedings of the Royal Society of London. Series B. Biological Sciences 153, 503-534.
Brown, K. J. and Grunberg, N. E. (1995). Effects of housing on male and female rats: Crowding stresses males but calms females. Physiology &; Behavior 58, 1085-1089.
Buresch, K. C., Mäthger, L. M., Allen, J. J., Bennice, C., Smith, N., Schram, J., Chiao, C.-C., Chubb, C. and Hanlon, R. T. (2011). The use of background matching vs. masquerade for camouflage in cuttlefish Sepia officinalis. Vision Research 51, 2362-2368.
Cancedda, L., Putignano, E., Sale, A., Viegi, A., Berardi, N. and Maffei, L. (2004). Acceleration of visual system development by environmental enrichment. Journal of Neuroscience 24, 4840-4848.
Carducci, J. P. and Jakob, E. M. (2000). Rearing environment affects behaviour of jumping spiders. Animal Behaviour 59, 39-46.
Carmignoto, G. and Vicini, S. (1992). Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science 258, 1007-1011.
Caro, T. M. (1995). Short-term costs and correlates of play in cheetahs. Animal Behaviour 49, 333-345.
Chang, Y. C., Chen, C. Y. and Chiao, C. C. (2010). Visual experience-independent functional expression of NMDA receptors in the developing rabbit retina. Investigative Ophthalmology &; Visual Science 51, 2744-2754.
Chang, Y. C. and Chiao, C. C. (2008). Localization and functional mapping of AMPA receptor subunits in the developing rabbit retina. Investigative Ophthalmology &; Visual Science 49, 5619-5628.
Chembian, A. J. and Saleena, M. (2011). Migration and spawning behaviour of the pharaoh cuttlefish Sepia pharaonis Ehrenberg, 1831 along the south-west coast of India. Indian Journal of Fisheries 58, 1-8.
Chiao, C. C., Chubb, C. and Hanlon, R. T. (2007). Interactive effects of size, contrast, intensity and configuration of background objects in evoking disruptive camouflage in cuttlefish. Vision Research 47, 2223-2235.
Chiao, C. C. and Hanlon, R. T. (2001a). Cuttlefish camouflage: visual perception of size, contrast and number of white squares on artificial checkerboard substrata initiates disruptive coloration. Journal of Experimental Biology 204, 2119-2125.
Chiao, C. C. and Hanlon, R. T. (2001b). Cuttlefish cue visually on area - not shape or aspect ration - of light obects in the substrate to produce disruptive body patterns for camouflage. Biological Bulletin 201, 269-270.
Chiao, C. C., Kelman, E. J. and Hanlon, R. T. (2005). Disruptive body patterning of cuttlefish (Sepia officinalis) requires visual information regarding edges and contrast of objects in natural substrate backgrounds. Biological Bulletin 208, 7-11.
Chichery, R. and Chanelet, J. (1976). Motor and behavioral responses obtained by stimulation with chronic electrodes of the optic lobe of Sepia officinalis. Brain Research 105, 525-532.
Chiu, J., DeSalle, R., Lam, H. M., Meisel, L. and Coruzzi, G. (1999). Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Molecular Biology and Evolution 16, 826-838.
Chrachri, A. and Williamson, R. (2004). Cholinergic and glutamatergic spontaneous and evoked excitatory postsynaptic currents in optic lobe neurons of cuttlefish, Sepia officinalis. Brain Research 1020, 178-87.
Cloarec, A. and Rivault, C. (1991). Age-related changes in foraging in the German cockroach (Dictyoptera: Blattellidae). Journal of Insect Behavior 4, 661-673.
Constantine-Paton, M., Cline, H. T. and Debski, E. (1990). Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annual Review of Neuroscience 13, 129-54.
Correia, M., Domingues, P. M., Sykes, A. and Andrade, J. P. (2005). Effects of culture density on growth and broodstock management of the cuttlefish, Sepia officinalis (Linnaeus, 1758). Aquaculture 245, 163-173.
Coyle, J. T., Leski, M. L. and Morrison, J. (2002). The diverse roles of L-glutamic acid in brain signal transduciton. In Neuropsychopharmacology: The Fifth Generation of Progress: An Official Publication of the American College of Neuropsychopharmacology, eds. K. Davis D. Charney J. T. Coyle and C. Nemeroff, pp. 71-90: Lippincott Williams &; Wilkins.
Crew, D. and Groothuis, T. G. G. (2005). Tinbergen's fourth question, ontogeny: sexual and individual differentiation. Animal Biology 55, 343-370.
Cull-Candy, S., Brickley, S. and Farrant, M. (2001). NMDA receptor subunits: diversity, development and disease. Current Opinion in Neurobiology 11, 327-35.
Cutuli, D., Rossi, S., Burello, L., Laricchiuta, D., De Chiara, V., Foti, F., De Bartolo, P., Musella, A., Gelfo, F., Centonze, D. et al. (2011). Before or after does it matter? Different protocols of environmental enrichment differently influence motor, synaptic and structural deficits of cerebellar origin. Neurobiology of Disease 42, 9-20.
D'Aniello, S., Spinelli, P., Ferrandino, G., Peterson, K., Tsesarskia, M., Fisher, G. and D'Aniello, A. (2005). Cephalopod vision involves dicarboxylic amino acids: D-aspartete, L-aspartate and L-glutamate. Biochemical Journal 386, 331-340.
Dahlqvist, P., Rönnbäck, A., Bergström, S.-A., Söderström, I. and Olsson, T. (2004). Environmental enrichment reverses learning impairment in the Morris water maze after focal cerebral ischemia in rats. European Journal of Neuroscience 19, 2288-2298.
Darmaillacq, A., Chichery, R. and Dickel, L. (2006). Food imprinting, new evidence from the cuttlefish Sepia officinalis. Biology Letters 2, 345-7.
Darmaillacq, A., Chichery, R., Poirier, R. and Dickel, L. (2004). Effect of early feeding experience on subsequent prey preference by cuttlefish, Sepia officinalis. Developmental Psychobiology 45, 239-44.
Darmaillacq, A.-S., Lesimple, C. and Dickel, L. (2008). Embryonic visual learning in the cuttlefish, Sepia officinalis. Animal Behaviour 76, 131-134.
Davis, J. M. and Stamps, J. A. (2004). The effect of natal experience on habitat preferences. Trends in Ecology and Evolution 19, 411-416.
Daw, N. W. (2005). Visual Development (Perspectives in Vision Research). New York: Springer.
Della Vedova, F., Bonecchi, L., Bianchetti, A., G., F. R. and Speciale, C. (1994). Age-related changes in the relative abundance of NMDAR1 mRNA spliced variants in the rat brain. Neuroreport 5, 581-584.
Di Cosmo, A., Di Cristo, C. and Messenger, J. B. (2006). L-glutamate and its ionotropic receptors in the nervous system of cephalopods. Current Neuropharmacology 4, 305-312.
Di Cosmo, A., Paolucci, M. and Di Cristo, C. (2004). N-methyl-D-aspartate receptor-like immunoreactivity in the brain of Sepia and Octopus. The Journal of Comparative Neurology 477, 202-219.
Di Cristo, C., De Lisa, E. and Di Cosmo, A. (2009). Control of GnRH expression in the olfactory lobe of Octopus vulgaris. Peptides 30, 538-544.
Díaz-Fleischer, F., Arredondo, J. and Aluja, M. (2009). Enriching early adult environment affects the copulation behaviour of a tephritid fly. Journal of Experimental Biology 212, 2120-2127.
Dickel, L., Boal, J. G. and Budelmann, B. U. (2000). The effect of early experience on learning and memory in cuttlefish. Developmental Psychobiology 36, 101-10.
Dickel, L., Chichery, M. P. and Chichery, R. (1997). Postembryonic maturation of the vertical lobe complex and early development of predatory behavior in the cuttlefish (Sepia officinalis). Neurobiology of Learning and Memory 67, 150-160.
Dickel, L., Chichery, M. P. and Chichery, R. (1998). Time differences in the emergence of short- and long-term memory during post-empryonic development in the cuttlefish, Sepia. Behavioural Processes 44, 81-86.
Dickel, L., Chichery, M. P. and Chichery, R. (2001). Increase of learning abilities and maturation of the vertical lobe complex during postembryonic development in the cuttlefish, Sepia. Developmental Psychobiology 40, 82-98.
Dickson, B. J. (2008). Wired for sex: The neurobiology of Drosophila mating decisions. Science 322, 904-909.
Dimond, S. J. and Adam, J. H. (1972). Approach behaviour and embryonic visual experience in chicks: Studies of the effect of rate of visual flicker. Animal Behaviour 20, 413-420.
Dukas, R. and Mooers, A. O. (2003). Environmental enrichment improves mating success in fruit flies. Animal Behaviour 66, 741-749.
Dulcis, D. and Spitzer, N. C. (2008). Illumination controls differentiation of dopamine neurons regulating behaviour. Nature 456, 195-201.
Dunfield, D. and Haas, K. (2009). Metaplasticity governs natural experience-driven plasticity of nascent embryonic brain circuits. Neuron 64, 240-250.
Dunn, M. R. (1999). Aspects of the stock dynamics and exploitation of cuttlefish, Sepia officinalis (Linnaeus, 1758), in the English Channel. Fisheries Research 40, 277-293.
Edwards, F. A., Konnerth, A., Sakmann, B. and Takahashi, T. (1989). A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflügers Archiv European Journal of Physiology 414, 600-612.
Erreger, K., Chen, P. E., Wyllie, D. J. A. and Traynelis, S. F. (2004). Glutamate receptor gating. Critical Reviews in neurobiology 16, 187-224.
Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J. A. and Traynelis, S. F. (2005). Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. Journal of Physiology 563, 345-358.
Evans, P., Reale, V., Merzon, R. and Villegas, J. (1991). N-methyl-D-aspartate (NMDA) and non-NMDA type glutamate receptors are present on squid giant axon Schwann cells. Journal of Experimental Biology 157, 593-600.
Farris, S. M., Robinson, G. E. and Fahrbach, S. E. (2001). Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. Journal of Neuroscience 21, 6395-6404.
Finn, J., Tregenza, T. and Norman, M. (2009). Defensive tool use in a coconut-carry octopus. Current Biology 19, R1069-R1070.
Fiorito, G. and Chichery, R. (1995). Lesions of the vertical lobe impair visual discrimination learning by observation in Octopus vulgaris. Neuroscience Letters 192, 117-120.
Fleming, A. S., O’Day, D. H. and Kraemer, G. W. (1999). Neurobiology of mother–infant interactions: experience and central nervous system plasticity across development and generations. Neuroscience &; Biobehavioral Reviews 23, 673-685.
Follesa, P. and Ticku, M. K. (1996). Chronic ethanol-mediated up-regulation of the N-Methyl-D-aspartate receptor polypeptide subunits in mouse cortical neurons in culture. Journal of Biological Chemistry 271, 13297-13299.
Forsythe, J., Lee, P., Walsh, L. and Clark, T. (2002). The effects of crowding on growth of the European cuttlefish, Sepia officinalis Linnaeus, 1758 reared at two temperatures. Journal of Experimental Marine Biology and Ecology 269, 173-185.
Freedman, R. D. and Thibos, L. N. (1975). Contrast sensitivity in humans with abnomal visual experience. Journal of Physiology 247, 687-710.
Frenkel, M. Y. and Bear, M. F. (2004). How monocular deprivation shifts ocular dominance in visual cortex of young mice. Neuron 44, 917-923.
Frick, K. M., Stearns, N. A., Pan, J.-Y. and Berger-Sweeney, J. (2003). Effects of environmental enrichment on spatial memory and neurochemistry in middle-aged mice. Learning &; Memory 10, 187-198.
Gabr, H. R., Hanlon, R. T., Hanafy, M. H. and El-Etreby, S. G. (1998). Maturation, fecundity and seasonality of reproduction of two commercially valuable cuttlefish, Sepia pharaonis and S. dollfusi, in the Suez Canal. Fisheries Research 36, 99-115.
Giannakopoulos, M., Kouvelas, E. D. and Mitsacos, A. (2010). Experience-dependent regulation of NMDA receptor subunit composition and phosphorylation in the retina and visual cortex. Investigative Ophthalmology &; Visual Science 51, 1817-1822.
Gielen, M., Retchless, B. S., Mony, L., Johnson, J. W. and Paoletti, P. (2009). Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature 459, 703-707.
Giovannelli, A., Di Marco, S., Maccarone, R. and Bisti, S. (2008). Long-term dark rearing induces permanent reorganization in retinal circuitry. Biochemical and Biophysical Research Communications 365, 349-354.
Goodenough, J., McGuire, B. and Jakob, E. (2010). The development of behavior. In Perspectives on Animal Behavior: John Wiley &; Sons, Inc.
Graindorge, N., Alves, C., Darmaillacq, A. S., Chichery, R., Ludovic, D. and Bellanger, C. (2007). Effects of dorsal and ventral vertical lobe electrolytic lesions on spatial learning and locomotor activity in Sepia officinalis. Behavioral Neuroscience 120, 1151-1158.
Grasso, F. W. and Basil, J. A. (2009). The evolution of flexible behavioral repertoires in cephalopod molluscs. Brain Behavior and Evolution 74, 231-245.
Groeger, G., Chrachri, A. and Williamson, R. (2006). Changes in cuttlefish retinal sensitivity during growth Vie et Milieu- Life and Environment 56, 167-173.
Groothuis, T. G. G., Müller, W., von Engelhardt, N., Carere, C. and Eising, C. (2005). Maternal hormones as a tool to adjust offspring phenotype in avian species. Neuroscience &; Biobehavioral Reviews 29, 329-352.
Guibé, M., Boal, J. G. and Dickel, L. (2010). Early exposure to odors changes later visual prey preferences in cuttlefish. Developmental Psychobiology 52, 833-837.
Ha, T. J., Kohn, A. B., Bobkova, Y. V. and Moroz, L. L. (2006). Molecular characterization of NMDA-like receptors in Aplysia and Lymnaea: Relevance to memory mechanisms. Biological Bulletin 210, 255-270.
Hacker, S. D. and Madin, L. P. (1991). Why habitat architecture and color are important to shrimps living in pelagic Sargassum: use of camouflage and plant-part mimicry. Marine Ecology Progress Series 70, 143-155.
Hanlon, R. T. (2007). Cephalopod dynamic camouflage. Current Biology 17, R400-R404.
Hanlon, R. T., Chiao, C. C., Mathger, L. M., Barbosa, A., Buresch, K. C. and Chubb, C. (2009). Cephalopod dynamic camouflage: Bridging the continuum between background matching and disruptive coloration. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 364, 429-37.
Hanlon, R. T. and Messenger, J. B. (1988). Adaptive coloration in young cuttlefish (Sepia officinalis L.): The morphology and development of body patterns and their relation to behaviour. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 320, 437-505.
Hanlon, R. T. and Messenger, J. B. (1996). Cephalopod Behaviour. Cambridge: Cambridge University Press.
Hanlon, R. T., Naud, M.-J., Shaw, P. W. and Havenhand, J. N. (2005). Behavioural ecology: Transient sexual mimicry leads to fertilization. Nature 433, 212-212.
Hardy, P. A., Chen, W. and Wilce, P. A. (1999). Chronic ethanol exposure and withdrawal influence NMDA receptor subunit and splice variant mRNA expression in the rat cerebral cortex. Brain Research 819, 33-39.
Hawken, M. J., Blakemore, C. and Morley, J. W. (1997). Development of contrast sensitivity and temporal-frequency selectivity in primate lateral geniculate nucleus. Experimental Brain Research 114, 86-98.
Hebb, D. O. (1947). The effects of early experience on problem-solving at maturity. American Psychologist 2, 306-307.
Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory. New York: Wiley.
Heinroth, O. and Heinroth, M. (1924-1933). Die Vögel Mitteleuropas. Berlin.
Hinde, R. A. (1977). Mother-infant separation and the nature of inter-individual relationships: Experiments with rhesus monkeys. Proceedings of the Royal Society of London. Series B. Biological Sciences 196, 29-50.
Hirsch, H. V. B., Potter, D., Zawierucha, D., Choudhri, T., Glasser, A., Murphey, R. K. and Byers, D. (1990). Rearing in darkness changes visuall-guided choice behavior in Drosophila. Visual Neuroscience 5, 281-289.
Hirsch, H. V. B. and Tompkins, L. (1994). The flexible fly: Experience-dependent development of complex behaviors in Drosophila melanogaster. Journal of Experimental Biology 195, 1-18.
Hochner, B., Shomrat, T. and Fiorito, G. (2006). The octopus: A model for a comparative analysis of the evolution of learning and memory mechanisms. Biological Bulletin 210, 308-317.
Hogan, J. A. (1965). An experimental study of conflict and fear: an analysis of behavior of young chicks toward a mealworm. Part I. The behavior of chicks which do not eat the mealworm. Behaviour 25, 45-97.
Hollmann, M., Boulter, J., Maron, C., Beasley, L., Sullivan, J., Pecht, G. and Heinemann, S. (1993). Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10, 943-54.
Hollmann, M. and Heinemann, S. (1994). Cloned glutamate receptors. Annual Review of Neuroscience 17, 31-108.
Huang, Z. Y. and Robinson, G. E. (1992). Honeybee colony integration: worker-worker interactions mediate hormonally regulated plasticity in division of labor. Proceedings of the National Academy of Sciences USA 89, 11726-11729.
Huble, D. H. and Wiesel, T. N. (1963). Receptive fileds of cells in striate cortex of very young, visually inexperienced kittens. Journal of Neurophysiology 26, 994-1002.
Huble, D. H., Wiesel, T. N. and LeVay, S. (1977). Plasticity of ocular dominance columns in the monkey stiate cortex. Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences 278, 377-409.
Hutchinson, E., Avery, A. and Vandewoude, S. (2005). Environmental enrichment for laboratory rodents. ILAR Journal 46, 148-161.
Huxley, J. (1963). Lorenzian Ethology. Zeitschrift fur Tierpsychologie 20, 402-409.
Hvoreceny, L. M., Grudowski, J. L., Blakeslee, C. J., Simmons, T. L., Roy, P. R., Brooks, J. A., Hanner, R. M., Beigel, M. E., Karson, M. A., Nichols, R., H. et al. (2007). Octopus (Octopus bimaculoides) and cuttlefishes (Sepia pharaonis, S. officinalis) can conditionally discriminate. Animal Cognition 10, 449-460.
James, W. (1890). Principles of Psychology. London: MacMillan.
Jereb, P. and Roper, C. F. E. (2005). Cephalopods of the World: Food and Agriculture Organization of the United nations.
Johnston, T. D. and Pietrewicz, A. T. (1984). Historical background and methodological issues. In Issues in the Ecology of Learning, eds. T. D. Johnston and A. T. Pietrewicz. Hillsdale, NJ: Erlbaum.
Joseph, R. (1979). Effects of rearing and sex on maze learning and competitive exploration in rats. Journal of Psychology 101, 37-43.
Katz, L. C. and Shatz, C. J. (1996). Synaptic activity and the construction of cortical circuits. Science 274, 1133-1138.
Kelley, J. L., Magurran, A. E. and Macı́as-Garcia, C. (2005). The influence of rearing experience on the behaviour of an endangered Mexican fish, Skiffia multipunctata. Biological Conservation 122, 223-230.
Kelman, E. J., Tiptus, P. and Osorio, D. (2006). Juvenile plaice (Pleuronectes platessa) produce camouflage by flexibly combining two separate patterns. Journal of Experimental Biology 209, 3288-3292.
Kihslinger, R. L. and Nevitt, G. A. (2006). Early rearing environment impacts cerebellar growth in juvenile salmon. Journal of Experimental Biology 209, 504-509.
Kirkwood, A., Rioult, M. C. and Bear, M. F. (1996). Experience-dependent modification of synaptic plasticity in visual cortex. Nature 381, 526-528.
Koueta, N. and Boucaud-Camou, E. (1999). Food intake and growth in reared early juvenile cuttlefish Sepia officinalis L. (Mollusca Cephalopoda). Journal of Experimental Marine Biology and Ecology 240, 93-109.
Landi, S., Sale, A., Berardi, N., Viegi, A., Maffei, L. and Cenni, M. C. (2007). Retinal functional development is sensitive to environmental enrichment: a role for BDNF. The FASEB Journal 21, 130-139.
Laube, B., Kuhse, J. and Betz, H. (1998). Evidence for a tetrameric structure of recombinant NMDA receptors. Journal of Neuroscience 18, 2954-2961.
Lecchini, D. (2011). Visual and chemical cues in habitat selection of sepioid larvae. Comptes Rendus Biologies 334, 911-915.
Lehrman, D. S. (1953). A critique of Konrad Lorenz's theory of instinctive behavior. Quarterly Review of Biology 28, 337-363.
Lenroot, R. K. and Giedd, J. N. (2011). Annual research review: developmental considerations of gene by environment interactions. Journal of Child Psychology and Psychiatry 52, 429-441.
Lickliter, R. and Gottlieb, G. (1986). Visually imprinted maternal preference in ducklings is redirected by social interaction with siblings. Developmental Psychobiology 19, 265-277.
Lima, P. A., Nardi, G. and Brown, E. R. (2003). AMPA/kainate and NMDA-like glutamate receptors at the chromatophore neuromuscular junction of the squid: Role in synaptic transmission and skin patterning. European Journal of Neuroscience 17, 507-516.
Liu, N., He, S. and Yu, X. (2012). Early natural stimulation through environmental enrichment accelerates neuronal development in the mouse dentate gyrus. PLoS ONE 7, e30803.
Loftis, J. M. and Janowsky, A. (2003). The N-methyl-d-aspartate receptor subunit NR2B: Localization, functional properties, regulation, and clinical implications. Pharmacology &; Therapeutics 97, 55-85.
Long, T. M., Hanlon, R. T., Ter Matt, A. and Pinsker, H. M. (1989). Non-associative learning in the squid Lolliguncula brevis (Mollusca, Cephalopoda). Marine Behaviour and Physiology 16, 1-9.
Longone, P., Impagnatiello, F., Mienville, J.-M., Costa, E. and Guidotti, A. (1998). Changes in AMPA receptor-spliced variant expression and shift in AMPA receptor spontaneous desensitization pharmacology during cerebellar granule cell maturation in vitro. Journal of Molecular Neuroscience 11, 23-41.
Lorenz, K. Z. (1937). The companion in the bird's world. The Auk 54, 245-273.
Lorenz, K. Z. (1952). King Solomon's Ring. Crowell: New York.
Lugaro, E. (1906). I Problemi Odierni della Psichiatria. Milan: Sandron.
Lugaro, E. (1909). Modern Problems in Psychiatry. Manchester: The university Press.
Lutz, C. K. and Novak, M. A. (2005). Environmental enrichment for nonhuman primates: Theory and application. ILAR Journal 46, 178-191.
Mabry, K. E. and Stamps, J. A. (2008). Dispersing brush mice prefer habitat like home. Proceedings of the Royal Society of London. Series B. Biological Sciences 275, 543-548.
Maekawa, F., Komine, O., Kanamatsu, T., Uchimura, M., Tanaka, K. and Ohki-Hamazaki, H. (2006). Imprinting modulates processing of visual information in the visual wulst of chicks. BMC Neuroscience 7, 75.
Maleszka, J., Barron, A., Helliwell, P. and Maleszka, R. (2009). Effect of age, behaviour and social environment on honey bee brain plasticity. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 195, 733-740.
Marc, R. E. (1999). Mapping glutamatergic drive in the vertebrate retina with a channel-permeant organic cation. The Journal of Comparative Neurology 407, 47-64.
Marler, P. (2004). Innateness and the instinct to learn. Anais da Academia Brasileira de Ciências 76, 189-200.
Massicotte, G. and Baudry, M. (2004). Brain plasticity and remodeling of AMPA receptor properties by calcium-dependent enzymes. Genetic Engineering 2004, 239-254.
Mather, J. A. (1986). A female‐dominated feeding hierarchy in juvenile Sepia officinalis in the laboratory. Marine Behaviour and Physiology 12, 233-244.
Mather, J. A. (1994). ‘Home’ choice and modification by juvenile Octopus vulgaris (Mollusca: Cephalopoda): Specialized intelligence and tool use? Journal of Zoology 233, 359-368.
Mather, J. A. (2008). To boldly go where no mollusc has gone before: Personality, play, thinking, and consciousness in cephalopods. American Malacological Bulletin 24, 51-58.
Mather, J. A. and Anderson, R. C. (1993). Personalities of Octopuses (Octopus rubescens). Journal of Comparative Psychology 107, 336-340.
Mather, J. A. and Anderson, R. C. (1999). Exploration, play and habituation in octopuses (Octopus dofleini). Journal of Comparative Psychology 107, 336-340.
Mather, J. A. and Anderson, R. C. (2007). Ethics and invertebrates: A cephalopod prospective. Disease of Aquatic Organism 75, 119-129.
Mäthger, L. M., Barbosa, A., Miner, S. and Hanlon, R. T. (2006). Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay. Vision Research 46, 1746-1753.
Mathis, A., Ferrari, M. C. O., Windel, N., Messier, F. and Chivers, D. P. (2008). Learning by embryos and the ghost of predation future. Proceedings of the Royal Society of London. Series B. Biological Sciences 275, 2603-2607.
McLaren, A. and Michie, D. (1960). Control of prenatal growth in mammals. Nature 187, 363-365.
Meille, O., Campan, R. and Lambin, M. (1994). Effects of light deprivation on visually guided behavior early in the life of Gryllus bimaculatus (Orthoptera: Gryllidae). Annals of the Entomological Society of America 87, 133-142.
Merilaita, S. (2003). Visual background complexity faciliates the evolution of camouflage. Evolution 57, 1248-1254.
Messenger, J. B. (1973). Learning in the cutlefish, Sepia. Animal Behaviour 21, 801-826.
Messenger, J. B. (1996). Neurotransmitters of cephalopods. Invertebrate Neuroscience 2, 95-114.
Messenger, J. B. (2001). Cephalopod chromatophores: neurobiology and natural history. Biological Reviews of the Cambridge Philosophical Society 76, 472-528.
Messenger, J. B., Nixon, M. and Ryan, K. P. (1985). Magnesium chloride as an anaesthetic for cephalopods. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 82, 203-205.
Meyer-Rochow, V. B. (2001). The crustacean eye: Dark/ light adaptation, polarization sensitivity, flicker fusion frequency, and photoreceptor damage. Zoological Science 18, 1175-1197.
Michel, W. C., Steullet, P., Cate, H. S., Burns, C. J., Zhainazarov, A. B. and Derby, C. D. (1999). High-resolution functional labeling of vertebrate and invertebrate olfactory receptor neurons using agmatine, a channel-permeant cation. Journal of Neuroscience Methods 90, 143-156.
Mlynarik, M., Johansson, B. B. and Jezova, D. (2004). Enriched environment influences adrenocortical response to immune challenge and glutamate receptor gene expression in rat hippocampus. Annals of the New York Academy of Sciences 1018, 273-280.
Mobley, A. S., Michel, W. C. and Lucero, M. T. (2008). Odorant responsiveness of squid olfactory receptor neurons. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology 291, 763-774.
Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B. and Seeburg, P. H. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217-1221.
Mooney, T. A., Lee, W. J. and Hanlon, R. T. (2010). Long-duration anesthetization of squid (Doryteuthis pealeii). Marine and Freshwater Behaviour and Physiology 43, 297-303.
Mora, F., Segovia, G. and del Arco, A. (2007). Aging, plasticity and environmental enrichment: Structural changes and neurotransmitter dynamics in several areas of the brain. Brain Research Reviews 55, 78-88.
Moriya, T., Kit, K., Miyashit, Y. and Asam, K. (1996). Preference for background color of the Xenopus laevis tadpole. Journal of Experimental Zoology 276, 335-344.
Nabhitabhata, J. (1995). The culture of cephalopods: Commercial scale attempts in Thailand. In Aquaculture Towards the 21st Century, pp. 138-146: Infofish.
Naka, F., Narita, N., Okado, N. and Narita, M. (2005). Modification of AMPA receptor properties following environmental enrichment. Brain and Development 27, 275-278.
Nase, G., Weishaupt, J., Stern, P., Singer, W. and Monyer, H. (1999). Genetic and epigenetic regulation of NMDA receptor expression in the rat visual cortex. European Journal of Neuroscience 11, 4320-4326.
Nithianantharajah, J. and Hannan, A. J. (2006). Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nature Reviews Neuroscience 7, 697-709.
Nixon, M. and Young, J. Z. (2003). The Brains and Lives of Cephalopods: Oxford University Press.
Paillard, J. (1976). Réflexions sur l’usage du concept de plasticité en neurobiologie. Journal of Psychology 1, 33-47.
Patrick, B. (2011). Imprinting. Scholarpedia 6, 6838.
Pierce, G. J., Valavanis, V. D., Guerra, A., Jereb, P., Orsi-Relini, L., Bellido, J. M., Katara, I., Piatkowski, U., Pereira, J., Balguerias, E. et al. (2008). A review of cephalopod—environment interactions in European seas. Hydrobiologia 612, 49-70.
Piscopo, S., Moccia, F., Di Cristo, C., Caputi, L., Di Cosmo, A. and Brown, E. R. (2007). Pre- and postsynaptic excitation and inhibition at octopus optic lobe photoreceptor terminals; implications for the function of the 'presynaptic bags'. European Journal of Neuroscience 26, 2196-203.
Poirier, R., Chichery, R. and Dickel, L. (2004). Effects of rearing conditions on sand digging efficiency in juvenile cuttlefish. Behavioural Processes 67, 273-279.
Poirier, R., Chichery, R. and Dickel, L. (2005). Early experience and postembryonic maturation of body patterns in cuttlefish (Sepia officinalis). Journal of Comparative Psychology 119, 230-237.
Polat, U., Ma-Naim, T., Belkin, M. and Sagi, D. (2004). Improving vision in adult amblyopia by perceptual learning. Proceedings of the National Academy of Sciences USA 101, 6692-6697.
Pronk, R. and Wilson, D. R. (2010). Video playback demonstrates episodic personality in the gloomy octopus. Journal of Experimental Biology 213, 1035-1041.
Punzo, F. and Alvarez, J. (2002). Effects of early contact with maternal parent on locomotor activity and exploratory behavior in spiderlings of Hogna carolinensis (Araneae: Lycosidae). Journal of Insect Behavior 15, 455-465.
Quinlan, E. M., Philpot, B. D., Huganir, R. L. and Bear, M. F. (1999). Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nature Neuroscience 2, 352-357.
Rasin, M. R., Darmopil, S., Petanjek, Z., Tomić-Mahecić, T., Mohammed, A. H. and Bogdanović, N. (2011). Effect of environmental enrichment on morphology of deep layer III and layer V pyramidal cells of occipital cortex in oldest-old rat - A quantitative golgi cox study. Collegium Antropologicum 35, 253-258.
Reynolds, T. (1977). Embryonic auditory experience and maternal call recognition. Learning &; Behavior 5, 169-173.
Rosenzweig, M. R. (2003). Effects of differential experience on the brain and behavior. Developmental Neuropsychology 24, 523-540.
Rosenzweig, M. R. and Bennett, E. L. (1996). Psychobiology of plasticity: effects of training and experience on brain and behavior. Behavioural Brain Research 78, 57-65.
Rutter, M. (2002). Nature, nurture, and development: from evagelism through science toward policy and practice. Child Development 73, 1-21.
Ruxton, G. D., Sherratt, T. N. and Speed, M. P. (2004). Avoiding Attack: The evolutionary ecology of crypsis, warning signals, and mimicry: Oxford University Press.
Ryan, T., Emes, R., Grant, S. and Komiyama, N. (2008). Evolution of NMDA receptor cytoplasmic interaction domains: implications for organisation of synaptic signalling complexes. BMC Neuroscience 9, 6.
Saglio, P. and Mandrillon, A.-L. (2006). Embryonic experience to predation risk affects tadpoles of the common frog (Rana temporaria). Archiv für Hydrobiologie 166, 505-523.
Sale, A., Putignano, E., Cancedda, L., Landi, S., Cirulli, F., Berardi, N. and Maffei, L. (2004). Enriched environment and acceleration of visual system development. Neuropharmacology 47, 649-660.
Sandeman, R. and Sandeman, D. (2000). “Impoverished” and “enriched” living conditions influence the proliferation and survival of neurons in crayfish brain. Journal of Neurobiology 45, 215-226.
Sargent, T. D. (1966). Background selections of geometrid and noctuid moths. Science 154, 1674-1675.
Scotto Lomassese, S., Strambi, C., Strambi, A., Charpin, P., Augier, R., Aouane, A. and Cayre, M. (2000). Influence of environmental stimulation on neurogenesis in the adult insect brain. Journal of Neurobiology 45, 162-171.
Shigeno, S., Kidokoro, H., Tsuchiya, K., Segawa, S. and Yamamoto, M. (2001a). Development of the brain in the oegopsid squid, Todarodes pacificus: An atlas up to the hatching stage. Zoological Science 18, 527-541.
Shigeno, S., Tsuchiya, K. and Segawa, S. (2001b). Embryonic and paralarval development of the central nervous system of the loliginid squid Sepioteuthis lessoniana. The Journal of Comparative Neurology 437, 449-475.
Shohet, A. J., Baddeley, R. J., Anderson, J. C., Kelman, E. J. and Osorio, D. (2006). Cuttlefish responses to visual orientation of substrates, water flow and a model of motion camouflage. Journal of Experimental Biology 209, 4717-4723.
Shohet, A., Baddeley, R., Anderson, J. and Osorio, D. (2007). Cuttlefish camouflag: a quantitative study of patterning. Biological Journal of the Linnean Society 92, 335-345.
Shomrat, T., Feinstein, N., Klein, M. and Hochner, B. (2010). Serotonin is a facilitatory neuromodulator of synaptic transmission and “reinforces” long-term potentiation induction in the vertical lobe of Octopus vulgaris. Neuroscience 169, 52-64.
Shomrat, T., Zarrella, I., Fiorito, G. and Hochner, B. (2008). The octopus vertical lobe modulates short-term learning rate and uses LTP to acquire long-term memory. Current Biology 18, 337-42.
Sivinski, J. (1989). Mushroom body development in nymphalid butterflies: A correlate of learning? Journal of Insect Behavior 2, 277-283.
Smith, G. B., Heynen, A. J. and Bear, M. F. (2009). Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex. Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences 364, 357-367.
Snell, L. D., Nunley, K. R., Lickteig, R. L., Browning, M. D., Tabakoff, B. and Hoffman, P. L. (1996). Regional and subunit specific changes in NMDA receptor mRNA and immunoreactivity in mouse brain following chronic ethanol ingestion. Molecular Brain Research 40, 71-78.
Snowden, R. J. and Hammett, S. T. (1998). The effects of surround contrast on contrast thresholds, perceived contrast and contrast discrimination. Vision Research 38, 1935-1945.
Stamps, J. A., Krishnan, V. V. and Willits, N. H. (2009). How different types of natal experience affect habitat preference. The American Naturalist 174, 623-630.
Stamps, J. A. and Swaisgood, R. R. (2007). Someplace like home: Experience, habitat selection and conservation biology. Applied Animal Behaviour Science 102, 392-409.
Stevens, M. and Merilaita, S. (2009). Animal camouflage: current issues and new perspectives. Philosophical Transcactions of the Royal Society of London. Series B, Biological Sciences 364, 423-427.
Sue Carter, C. (1998). Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology 23, 779-818.
Tang, A.-H., Chai, Z. and Wang, S.-Q. (2007). Dark rearing alters the short-term synaptic plasticity in visual cortex. Neuroscience Letters 422, 49-53.
Taube, J. S. and Schwartzkroin, P. A. (1988). Mechanisms of long-term potentiation: EPSP/spike dissociation, intradendritic recordings, and glutamate sensitivity. Journal of Neuroscience 8, 1632-1644.
Teal, P. E. A., Gomez-Simuta, Y. and Proveaux, A. T. (2000). Mating experience and juvenile hormone enhance sexual signaling and mating in male Caribbean fruit flies. Proceedings of the National Academy of Sciences USA 97, 3708-3712.
Tees, R. C. (1999). The influences of sex, rearing environment, and neonatal choline dietary supplementation on spatial and nonspatial learning and memory in adult rats. Developmental Psychobiology 35, 328-342.
Tehranifard, A. and Dastan, K. (2011). General morphological characteristics of the Sepia pharaonis (cephalopoda) from Persian gulf, Gushehr gegion. In 2011 International Conference on Biomedical Engineering and Technology, vol. 11, pp. 120-126: IACSIT Press.
Tian, N. and Copenhagen, D. R. (2003). Visual stimulation is required for refinement of ON and OFF pathways in postnatal retina. Neuron 39, 85-96.
Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift für Tierpsychologie 20, 410-433.

Town, S. (2011). The effects of social rearing on preferences formed during filial imprinting and their neural correlates. Experimental Brain Research 212, 575-581.
Turman, J. E., Lee, O. K. and Chandler, S. H. (2002). Differential NR2A and NR2B expression between trigeminal neurons during early postnatal development. Synapse 44, 76-85.
Turner, T. (2010). Enrichment for carneaux pigeons used in behavioral learning research. Lab Animal 39, 40-41.
Ugolini, A., Talluri, P. and Vannini, M. (1989). Astronomical orientation and learning in the shrimp Palaemonetes antennarius. Marine Biology 103, 489-493.
van Praag, H., Kempermann, G. and Gage, F. H. (2000). Neural consequences of enviromental enrichment. Nature Reviews Neuroscience 1, 191-198.
van Zundert, B., Yoshii, A. and Constantine-Paton, M. (2004). Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends in Neurosciences 27, 428-437.
Vetter, R. S. and Brodie, E. D. (1977). Background color selection and antipredator behavior of the flying gecko, Ptychozoon kuhli. Herpetologica 4, 464-467.
Walker, R. J., Brooks, H. L. and Holden-Dye, L. (1996). Evolution and overview of classical transmitter molecules and their receptors. Parasitology 113, S3-S33.
Wang, J., Pierce, G. J., Boyle, P. R., Denis, V., Robin, J.-P. and Bellido, J. M. (2003). Spatial and temporal patterns of cuttlefish (Sepia officinalis) abundance and environmental influences - a case study using trawl fishery data in French Atlantic coastal, English Channel, and adjacent waters. ICES Journal of Marine Science 60, 1149-1158.
Watanabe, M., Inoue, Y., Sakimura, K. and Mishina, M. (1992). Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 3, 1138 - 1140.
Watanuki, N., Kawamura, G., Kaneuchi, S. and Iwashita, T. (2000). Role of vision in behavior, visual field, and visual acuity of cuttlefish Sepia esculenta. Fisheries Science 66, 417-423.
Wells, M. J. (1958). Factors affecting reactions to Mysis by newly hatched Sepia. Behaviour 13, 96-111.
Wells, M. J. (1967). Sensitization and the evolution of associative learning. In Symposium on neurobiology of Invertebrates, pp. 391-411: Hungarian Academy of Sciences.
Wells, M. J. (1978). Octopus: Physiology and Behaviour of an Advanced Invertebrate. London: Chapman and Hall.
Wiesel, T. N. (1982). Postnatal development of the visual cortex and the influence of environment. Nature 299, 583-591.
Will, B., Dalrymple-Alford, J., Wolff, M. and Cassel, J.-C. (2008). The concept of brain plasticity—Paillard's systemic analysis and emphasis on structure and function (followed by the translation of a seminal paper by Paillard on plasticity). Behavioural Brain Research 192, 2-7.
Wong, R. O. and Ghosh, A. (2002). Activity-dependent regulation of dendritic growth and patterning. Nature Reviews Neuroscience 3, 803-12.
Woodcock, E. A. and Richardson, R. (2000). Effects of environmental enrichment on rate of contextual processing and discriminative ability in adult rats. Neurobiology of Learning and Memory 73, 1-10.
Wu, M. L. and Chiao, C. C. (2007). Light deprivation delays morphological differentiation of bipolar cells in the rabbit retina. Brain Research 1170, 13-9.
Xia, S., Miyashita, T., Fu, T., Lin, W., Wu, C., Pyzocha, L., Lin, I., Saitoe, M., Tully, T. and Chiang, A. (2005). NMDA receptors mediate olfactory learning and memory in Drosophila. Current Biology 15, 603 - 615.
Xu, H.-P. and Tian, N. (2007). Retinal ganglion cell dendrites undergo a visual activity-dependent redistribution after eye opening. The Journal of Comparative Neurology 503, 244-259.
Xue, J. and Cooper, G. F. (2001). The modification of NMDA receptors by visual experience in the rat retina is age dependent. Molecular Brain Research 91, 196-203.
Yamamoto, M., Shimazaki, Y. and Shigeno, S. (2003). Atlas of the embryonic brain in the pygmy squid, Idiosepius paradoxus. Zoological Science 20, 163-179.
Yamamoto, M., Takasu, N. and Uragami, I. (1985). Ontogeny of the visual system in the cuttlefish, Sepiella japonica. II. Intramembrane particles, histofluorescence, and electrical response in the developing retina. The Jurnal of Comparative Neurology 232, 362-371.
Yoshimura, Y., Ohmura, T. and Komatsu, Y. (2003). Two forms of synaptic plasticity with distinct dependence on age, experience, and NMDA receptor subtype in rat visual cortex. Journal of Neuroscience 23, 6557-6566.
Young, J. Z. (1958). Effect of removal of various amounts of the vertical lobes on visual discrimination by Octopus. Proceedings of the Royal Society of London. Series B. Biological Sciences 149, 441-462.
Young, J. Z. (1962). The optic lobes of Octpus vulgaris. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 24, 19-58.
Zaias, J., Oueeney, T. J., Kelley, J. B., Zakharova, E. S. and Izenwasser, S. (2008). Social and physiocal environmental enrichment differentially affect growth and activity of preadolescent and adolescent male rats. Journal of American Association for Laboratory Animal Science 47, 30-34.
Zele, A. J., Pokorny, J., Lee, D. Y. and Ireland, D. (2007). Anisometropic amblyopia: Spatial contrast sensitivity deficits in inferred magnocellular and parvocellular vision. Investigative Ophthalmology &; Visual Science 48, 3622-3631.
Zhou, Y., Huang, C., Xu, P., Tao, L., Qiu, Z., Li, X. and Lu, Z.-L. (2006). Perceptual learning improves contrast sensitivity and visual acuity in adults with anisometropic amblyopia. Vision Research 46, 739-750.
Zukin, R. S. and Bennett, M. V. (1995). Alternatively spliced isoforms of the NMDARI receptor subunit. Trends in Neurosciences. 18, 306-13.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top