(3.235.11.178) 您好!臺灣時間:2021/03/05 16:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:艾拉夫
研究生(外文):Aravind Kotcherlakota
論文名稱:氮化銦與矽的一維奈米結構的電子傳輸物理特性之研究
論文名稱(外文):Physics of electron transport in Indium Nitride and Silicon one dimensional nanostructures
指導教授:張廖貴術陳啟東陳啟東引用關係
指導教授(外文):Chang-Liao, Kuei-ShuChen, Chii-Dong
口試委員:郭華丞陳正中張廖貴術吳憲昌陳啟東
口試日期:2012-1-11
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:66
中文關鍵詞:氮化銦電子傳輸物理
外文關鍵詞:Indium NitrideSiliconelectron transport physics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
ii
Abstract

One-dimensional (1D) nano-structures comprising of a wide spectrum of
materials ranging from Carbon nanotubes to molecular and lithographically patterned
wires are potential candidates for the next generation electronic devices. In such
structures, confinement of electron motion results in very fascinating transport
phenomena which cannot be explained by the classical conduction theory. The
purpose of this thesis is to present the interesting findings in the quantum transport
phenomena in silicon and Indium nitride based single electron transistors.

The first introductory chapter gives few rudimentary ideas in general quantum
transport theories. The experimental methods for fabricating quantum transport
devices are then discussed. The key transport phenomena manifesting as
experimentally measured Magneto Resistance Fluctuations, Electron localization,
ballistic conductance and strong (coulomb) localized electron systems with tunnel
barriers as Single Electron Transistors are briefly described.

In the second chapter, the basic experiments on the measurements of
Magnetoresistance fluctuations in a weak disorder indium nitride nanowire are
presented. These fluctuations are reproducible, aperiodic and symmetric in magnetic
field reversal but are asymmetric upon reversal of bias direction of the current flow.
The fluctuations are analyzed for both perpendicular and parallel external magnetic
field configurations in the light of tunnel Magnetoresistance at low field and impurity
scattering at higher field. The asymmetry in bias reversal has been attributed to the
breakdown of time reversal symmetry.

The third chapter deals with fabrication and tunneling transport characteristics
of Silicon based single electron transistor with lateral succession of a big island and
small quantum dots. The big island gives rise to a small period Coulomb oscillation
riding on the large irregular oscillation arising from the small quantum dots. The
peaks of the latter shift in the presence of magnetic field which is analyzed in the
context of field-induced Landau level shift with a soft-wall confinement potential.
Furthermore, the current peak was suppressed for fields beyond a threshold value. An
explanation based on cyclotron localization at non-interacting Landau levels is
iii
presented and consistently described with numerical estimates.

In the fourth chapter, as new aspect of electron transport phenomena in a single
electron transistor based on an individual indium nitride nanowire is presented.
Meticulous Coulomb oscillations are observed at low temperatures. While the device
shows single period Coulomb oscillation at high temperatures or at high bias voltages,
additional satellite peaks along with the main Coulomb peak appear at low
temperatures and low bias voltages. The quasi-periodic structure is attributed to the
mixing of dissimilar Coulomb oscillations arising from two serially coupled islands
embedded inadvertently in the surface metallic states of the nanowire. The proposed
model is numerically simulated with good agreement with the experimental data.

In the fifth chapter, the physics of single electron transistor fabricated in Double
Quantum dot geometry are presented and discussed in detail. At around 2K, these
devices showed clear Coulomb blockade structures. An external perpendicular
magnetic field was found to enhance the resonant tunneling peak and was used to
predict the presence of two laterally coupled quantum dots in the narrow constriction
between the source-drain electrodes. The proposed model and measured experimental
data were consistently explained using numerical simulations.

Chapter 6 presents ongoing work on InN nanobelt device showing signatures of
superconductivity in tunnel junction geometry. It was found that superconducting
transition takes place at temperature of 1.2K and the critical magnetic field is
measured to be about 5500Gs. The energy gap extrapolated to absolute temperature is
about 110μeV. The measured temperature and magnetic field dependences of the
superconducting gap agree well with the reported dependences for conventional
metallic superconductors. As the magnetic field is decreased to cross the critical
magnetic field, the device shows a huge zero-bias magnetoresistance ratio of about
400%. This is attributed to the suppression of subgap tunneling in the presence of
superconductivity.

The overall summary and conclusions are presented in the last chapter 7.
Contents

I. Acknowledgement -------------------------------------------- i
II. Abstract ----------------------------------------------------- ii
III. Abstract in Mandarin ---------------------------------------- iv

1. Introduction, Background and Motivation
1.1. Device fabrication overview and contact issue -------------- 2
1.2. Devices with low contact resistance -------------------------- 4
1.2.1. Magnetoresistance fluctuations ------------------------- 5
1.2.2. Electron localization in diffusive wires ------------------ 6
1.2.3. Nanowires in ballistic regime ------------------------- 7
1.3. Devices with high contact resistance tunneling barriers ----- 8

2. Magnetoresistance Fluctuations in a Weak Disorder Indium
Nitride Nanowire
2.1. Introduction ------------------------------------------------------- 12
2.2. Experimental Details ------------------------------------------- 13
2.3. Results and Discussion ------------------------------------------ 15
2.4. Summary and Conclusions -------------------------------------- 21

3. Cyclotron Localization in a sub-10nm Silicon Quantum Dot
Single Electron Transistor
3.1. Introduction ----------------------------------------------------- 23
3.2. Experimental Details ------------------------------------------ 24
3.3. Results and Discussions ----------------------------------- 27
3.4. Comparison with Theoretical Calculations ----------------- 28
3.5. Summary and Conclusions ---------------------------------- 31

4. Coulomb Blockade Behavior in an Indium Nitride Nanowire
with Disordered Surface States

4.1. Introduction ------------------------------------------------- 33
4.2. Experimental Details ------------------------------------ 34
4.3. Results and Discussion ------------------------------------ 35
4.4. Comparison with Numerical Simulations -------------------- 39
4.5. Summary and Conclusions ----------------------------------- 41

5. Magnetic Field Enhanced Resonant Tunneling in a Silicon
nanowire Single-Electron-Transistor
5.1. Introduction ---------------------------------------------------- 43
5.2. Experimental Details ---------------------------------------- 44
5.3. Results and Discussion ---------------------------------------- 45
5.4. Comparison with Numerical Calculations ------------------ 48
5.5. Discussion --------------------------------------------------- 49
5.6. Summary and Conclusions ----------------------------------- 51

6. Superconductivity of InN nanobelt with tunneling junctions
6.1. Introduction -------------------------------------------------- 52
6.2. Experimental Details --------------------------------------- 53
6.3. Results and Discussion -------------------------------------- 54
6.4. Summary and Conclusions ------------------------------------ 59

7. Summary and Conclusions
7.1. Summary of work on Silicon Devices ---------------------- 61
7.2. Summary of work on Indium Nitride Devices ------------ 62

References -------------------------------------------------------------------- 63
63
References
Chapter-1
1. P. A. Lee and A. D. Stone, Phys. Rev. Lett., 55, 1622 (1985).
2. C. W. Beenakker and H. van Houten, Phys. Rev. B, 37, 6544 (1988).
3. W. J. Skocpol, Physica scripta, T19, 95 (1987).
4. C. W. J.Beenakker and H. van Houton, Solid state physics, 44, 1 (1991).
5. R. Landauer, Phil. Mag. 21, 863 (1970).
6. Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press,
Cambridge, 1995).
7. Wenjie Liang, Marc Bockrath, Dolores Bozovic, Jason H. Hafner, M. Tinkham
and Hongkun Park, Nature, 411, 665 (2001).
8. M. Bockrath, D. H. Cobden et. al, Nature, 397, 598-601 (1999).
9. E. Slot, Herre van der Zant et al. Phys. Rev. Lett., 93 (2004) 176602.
Chapter-2
1. Y.Li, F.Qian, J.Xiang, and C.M. Lieber, Materials Today 9, 18 (2006)
2. Q.X.Guo, M. Nishio, H. Ogawa et.al, Phys. Rev. B 58, 15304 (1998).
3. J. Wu, W.Walukiewicz, K.M.Yu, et.al , Appl. Phys. Lett. 80, 3967 (2002).
4. T.L.Tansley and C.P.Foley, J. Appl. Phys. 59, 3241 (1986).
5. B. L. Al’tshuler, V. E. Kravtsov, and I. V. Lerner, JETP Lett.43, 441(1986).
6. M.S.Hu,W.M.Wang,T.T.Chen et.al Adv. Funct. Mater. 16, 537 (2006).
7. I.Mahboob, T.D.Veal, C.F. Conville et.al Phys. Rev. Lett. 92, 036804 (2004).
8. I.Mahboob, T.D.Veal, L.F.J.Piper et.al Phys. Rev.B, 69, 201307 (2004).
9. C.Y.Chang, G.C.Chi, W.M.Wang et.al Appl. Phys. Lett. 87, 093112 (2005).
10. Ping Sheng, Phys.Rev.B 21, 2180 (1980), Y.H.Lin, S.P.Chiu and J.J.Lin,
Nanotechnology 19, 365201 (2008).
11. M.M. Fogler, S.V. Malinin and T.Nattermann, Phys. Rev. Lett. 97, 096601
(2006).
12. A L Efros and B I Shklovskii, J. Phys.C: Solid State Phys. 8, 49 (1975); S.
Beloborodov, A. V. Lopatin, et.al, Rev. Mod. Phys. 79, 469 (2007).
13. W.Eiler, Jour.Low Temp.Phys. 56,481 (1984).
14. P.A.Lee and A.D.Stone, Phys. Rev. Lett. 55, 1622 (1985).
15. C.W.Beenakker and H.van Houten, Phys. Rev. B 37, 6544 (1988).
16. W. J. Skocpol, Physica scripta, T19, 95 (1987).
17. C.W.J.Beenakker and H.van Houton, Solid state physics, 44, 1 (1991).
18. Ch.Blomers, Th.Schapers, T.Richter et.al Appl. Phys. Lett. 92, 132101 (2008);
Phys.Rev B 77, 201301(R) (2008).
64
19. Onsager Phys. Rev. 38, 2265 (1931); H.B.G.Casimir, Rev.Mod. Phys.17, 343
(1945).
20. A.Anaya, M.B.Bowman, A.L.Korotkov and D.Davidovic Phy. Rev. B 72,
035452 (2005).
21. S.B.Kaplan, Phys.Rev.B 38, 7558(1988).
22. Z. W. Jia, W. Z. Shen, H.Ogawa and Q.X.Guo, Appl. Phys. Lett. 89, 232107
(2004).
23. U.Murek, R.Schafer, W.Langheinrich, Phys.Rev.Lett. 70, 841 (1993);
P.A.M.Holweg, J.A.Kokkedee, J.Caro et.al Phys.Rev.Lett. 67, 2549 (1991).
24. C.S. Yang, C.Zhang, J. Redepenning, Appl. Phys. Lett. 84, 2865 (2004).
25. M.Viret, S.Berger, M.Gabureac et.al, Phys.Rev B 66, 220401 (2002).
26. E.Y.Tsymbal, A.Sokolov, I.F.Sabirianov et.al Phys. Rev. Lett. 90, 186602
(2003).
27. R.P. Tan, J.Carrey, C.Desvaux, et.al Phys. Rev. Lett. 99, 176805 (2007).
28. K.Hamaya M.Kitabatake, M.Jung et.al Appl. Phys. Lett. 93, 222107 (2008).
29. L.K.Castelano, G.Q.Hai and M.T.Lee Phys. stat. sol.(c) 4, 466(2007).
30. B.Solleder, C.Lemell, K.Tokesi et.al Phys. Rev B 76, 075115 (2007).
Chapter-3
1. D. Heiss, ‘Quantum Dots: Door way to Nano scale physics’ Lect. Notes in Phys,
(Springer, Berlin, 2005).
2. M. Bayer, O. Stern, P. Hawrylak, et.al Nature 405, 923 (2000).
3. H. Grabert and M. H. Devoret, ‘Single Charge Tunneling’, (Plenum Press, New
York, 1992).
4. R. C. Ashoori, H. L. Stormer, J. S. Weiner et.al Phys. Rev. Lett. 68, 3088 (1992).
5. B. Meurer, D. Heitmann, and K. Ploog, Phys. Rev. Lett. 68, 1371 (1992).
6. L. P. Rokhinson, L. J. Guo, S. Y. Chou et.al Phys. Rev. Lett. 87, 166802 (2001).
7. L. P. Rokhinson, L. J. Guo, S. Y. Chou et.al Phys. Rev. Lett. 88, 186801 (2002).
8. L. P. Rokhinson, L. J. Guo, S. Y. Chou et.al Phys. Rev. B 63, 035321 (2001).
9. L. P. Kouwenhoven, D. G. Austing and S. Tarucha, Rep. Prog. Phys. 64, 701
(2001).
10. Y. Hada and M. Eto, Phys. Rev. B 68, 155322 (2003).
11. K. Natori, T. Uehara and N. Sano, Jpn. J. Appl. Phys. 39, 2550 (2000).
12. K. Yano, T. Ishii, T. Hashimoto et.al IEEE Trans. Electron Devices 41, 1628
(1994).
13. B. J. van Wees, L. P. Kouwenhoven, C. J. P. M. Harmans et.al Phys. Rev. Lett.
62, 2523 (1989).
14. V. Fock, Z. Phys. 47, 446 (1928).
15. L.L. Sohn, L. P. Kouwenhoven, G. Schon, ‘Mesoscopic Electron Transport’,
65
(Kluwer, Dordrecht, 1997).
16. P. L. McEuen, E. B. Foxman, U. Meirav et.al Phys. Rev. Lett. 66, 1926 (1991).
17. H. Van Houton, C. W. J. Beenakker, A. A. M. Staring, cond-mat/0508454 v1 19
Aug 2005.
18. A. T. Tilke, F. C. Simmel, R. H. Blick et.al Prog.Qua.Electron. 25, 97(2001).
19. A. Tilke, R. H. Blick, H. Lorenz, J. Appl. Phys. 90, 942 (2001).
20. V. Ranjan, R.K.Pandey, M.K.Harbola, et.al Phys. Rev. B 65, 045311 (2002).
M. Macucci, K. Hess, G. J. Iafrate, Phys. Rev. B 55, R4879 (1997).
Chapter-4
1. Y.Li, F.Qian, J.Xiang, and C.M. Lieber, Materials Today 9, 18 (2006)
2. Jie Xiang, Wei Lu, Yongjie Hu, et.al Nature 441, 489 (2006)
3 J. Wu, W.Walukiewicz, K.M.Yu, et.al Appl. Phys. Lett. 80, 3967 (2002).
4 M.S.Hu,W.M.Wang,T.T.Chen et.al Adv. Funct. Mater. 16, 537 (2006).
5 H.Grabert,. and M. H.Devoret, ‘Single Charge Tunneling’, (Plenum Press, New
York,1992), Vol. 294.
6 I.Mahboob,T.D.Veal, L.F.J.Piper et.al Phys. Rev.B 69, 201307 (2004).
7. I.Mahboob, T.D.Veal, C.F.McConville et.al Phys. Rev. Lett. 92,036804 (2004).
8. F.Werner, F.Limbach, M.Carsten et.al Nano Lett. 9, 1567 (2009)
9. V.Houten and C.W.J. Beenakker Phys. Rev. Lett. 63 1893 (1989)
10. L. I. Glazman and V.Chandrasekhar Euro.Phys. Lett. 19 , 623 (1992)
Chapter-5
1. A.O.Orlov, I.Amlani, G.H.Bernstein et.al Science 277, 928 (1997).
2. K. C. Nowack, F. H. L. Koppens, Yu. V. Nazarov, L. M. K. Vandersypen, Science
318, 1430 (2007) App. Phys. Lett., 89, 023111 (2006).
3. E. B. Foxman, P.L.McEuen, U. Meirav, Ned S. Wingreen, Yigal Meir, Paul A.
Belk, N. R. Belk, M. A. Kastner and S. J. Wind., Phys. Rev. B, 47, 10 020 (1993).
4. N. C. van der Vaart, S. F. Godijn, Y. V. Nazarov, C. J. P. M. Harmans, J. E. Mooij,
L. W. Molenkamp, C. T. Foxon Phys. Rev. Lett., 74, 4702 (1995).
5. L. Zhuang, L.Guo, and S.Y.Chou Appl. Phys. Lett., 72, 1205 (1998).
6. M.C.Lin, K.Aravind, C.S.Wu, Y.P.Wu, C.H.Kuan, Watson Kuo, C.D.Chen, Appl.
Phys. Lett., 90, 032106 (2007).
7. K. Yano, T. Ishii, T. Hashimoto et.al IEEE Trans Electron Devices 41, 1628
(1994).
8. J. A. Melsen, Ulrik Hanke, H.O. Muller et.al Phys. Rev.B, 55, 10638 (1997).
9. M. Amman and R. Wilkins, E. Ben-Jacob et.al, Phys. Rev. B, 43, 1146 (1991).
10. A. Zaslavsky, V.J.Goldman, D. C. Tsui et.al Appl.Phys.Lett., 53, 1408 (1988).

66
Chapter-6
1. J. Wu, W. Walukiewicz, K. M. Yu, et.al , Appl. Phys. Lett. 80, 3967 (2002).
2. Q. X. Guo, M. Nishio, H. Ogawa , A. Wakahara and A. Yoshida, Phys. Rev. B 58,
15304 (1998);T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241 (1986).
3. I. Mahboob, T. D. Veal, C. F. McConville, et.al, Phys. Rev.Lett., 92, 036804
(2004). I. Mahboob, T. D. Veal, L. F. J. Piper, et.al, Phys. Rev. B 69, 201307
(2004)
4. T. Inushima, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, S.
Motokawa, and S. Ohoya, J. Cryst. Growth, 227, 481 (2001).
5. T. Inushima Science and Technology of Advanced Materials 7, S112 (2006); T.
Inushima, M. Higashiwaki, T. Matsui, T. Takenobu, and M. Motokawa,
Phys. Rev. B 72, 085210 (2005).
6. T. Inushima, N. Kato, T. Takenobu and M. Motokawa, Phys. Stat. Sol. (a) 203, 80
(2006).
7. D. C. Ling, J. H. Cheng, Y. Y. Lo, C. H. Du, A. P. Chiu, C. A. Chang, and P. H.
Chang, Phys. Stat. Sol. (b), 244, 4594 (2007)
8. M. S. Hu, W. M. Wang, T. T. Chen, L. S. Hong, C. W. Chen, C. C. Chen, Y. F.
Chen, K. H. Chen, and L. C. Chen, Adv. Funct. Mater. 16, 537 (2006)
9. H. S. J. van der Zant, W. J. Elion, L. J. Geerligs, and J. E. Mooij, Phys.Rev B, 54,
10081 (1996).
10. Y. W. Su, K. Aravind, C. S. Wu, et.al J. Phys. D: Appl. Phys. 42, 185009 (2009).
11. M. Tinkham, Introduction to superconductivity, 2nd edition, 18-19 and page 63,
Dover publications, Inc (1996).
12. F. Giubileo, D. Roditchev, W. Sacks, et.al Phys. Rev. Lett. 87, 177008 (2001); F.
Giubileo, D. Roditchev, W. Sacks, R. Lamy and J. Klein, Europhys. Lett., 58, 764
(2002).
13. K. Aravind, Y. W. Su,I. L. Ho, et.al App.Phys.Lett 95, 092110 (2009) and
references therein.
14. D.B. Haviland and Per Delsing Phys. Rev. B 54, R6857 (1996).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔