跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/16 20:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王安妮
研究生(外文):Wang, An-ni
論文名稱:氮化鈦硬膜破裂韌性量測
論文名稱(外文):Fracture Toughness Measurement on TiN Hard Coating
指導教授:黃嘉宏黃嘉宏引用關係喻冀平
指導教授(外文):Huang, Jia-hongYu, Ge-Ping
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
論文頁數:140
中文關鍵詞:破裂韌性硬膜氮化鈦
外文關鍵詞:fracture toughnesshard coatingsTiN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
許多研究團隊致力於建構量測薄膜破裂韌性規範,然而至今仍未有一套標準量測機制。現有的方法主要為基於應力計算或能量差兩類;但是這些方法都需要外加應力,因此必須設計特殊幾何形狀之基材,或精細的微米尺寸薄膜應變計,或需要製造原子等級銳利的預裂縫。其中多數方法都難以避免基材效應,且必須事先量測殘留應力分布,或是在外加應力的環境之下,即時量測薄膜內應力分布。這些需求條件都成為建立量測方法的困難所在,因此本研究目的是嘗試建立一個無需外加應力的破裂韌性量測方法,此法可以適用於具有殘餘應力之硬膜。由於氮化鈦薄膜有相當良好的機械性質與等向性,因此本研究選擇氮化鈦薄膜作為模式材料。
依據Griffith’s 能量理論,裂縫前進由薄膜內之應變能釋放而驅動。利用裂縫生成前後之應力變化量即可計算膜內平均儲存能(Gs),當此儲存能足以產生裂縫時,其數值即為破裂韌性。本研究所提出之破裂韌性量測方法包含X光繞射之應力與應變量測,雷射曲率應力量測,並以奈米壓印量測楊氏係數。應力梯度的量測中,彈性常數使用平均有效X光彈性常數(AEXEC),以減少因統計造成的應力梯度誤差。本實驗成功的量測氮化鈦鍍膜之破裂韌性,16.7 J/m2,與前人研究結果相較,本實驗之數值落在一合理的範圍內。本研究並結合cos2αsin2ψ X光繞射應力量測法與分層(layer by layer)應力解析,得到一積分儲存能(GIS)。此積分儲存能可代表局部能量分布並與裂縫成長形式相關。本實驗提出兩個能量參數:GS與GIS,GS可用於量測硬膜之破裂韌性,而GIS分布則可用於預測裂縫成長的趨勢。薄膜厚度也可應用破裂韌性與GS的公式控制。此外,本實驗中所提出一個新的X光彈性常數結合楊式常數與普松比,AEXEC成功的改善了X光量測中的統計誤差,以增加樣本總量的觀念,減低來自X光應變量測的誤差,並提供了一個簡單可靠的X光彈性常數用於殘留應力梯度量測

In last two decades, extensive studies have been dedicated in establishing a standard method on toughness measurement for thin film materials. However, there has no standard methodology or test procedure up to now. Stress based or energy based methods have been proposed on this subject, where the externally applying stress is usually required, and therefore special substrate geometry is designed, or micro-scaled strain gauge or atomically sharp cracks need to be fabricated. In addition, the stress distribution in the specimen should be monitored during the measurement. These requirements may introduce the complicated substrate effect and thereby increasing the difficulty of fracture toughness measurement. This research was in an attempt to develop a new method without applying external stress for measuring fracture toughness of hard coatings. TiN was selected as a model material, owing to its well-established mechanical properties and nearly elastic isotropy.
The proposed method involved residual stress measurements by XRD and laser curvature methods, and Young’s modulus obtained from nanoindentation. The difference of stress before and after crack initiation was used to evaluate the average storage energy (Gs), from which fracture toughness was derived. The results showed that the fracture toughness of random-textured TiN coatings was 16.7J/m2, which is comparable to previous reported data. The integrated stored energy (GIS) was assessed from Gs by considering the stress gradient measured from cos2αsin2ψ XRD method accompanying with layer-by-layer analysis. GIS can be regarded as the local energy distribution and is a guidance of local fracture location. GIS distribution was found to be consistent with the fracture morphologies of the coatings. Furthermore, the fracture toughness can be used to determine the critical thickness which is useful in thickness control. A new elastic constant named AEXEC (average effective X-ray elastic constant) was suggested, which can reduce the statistical fluctuation in stress measurement. The AEXEC also provides a simple and nondestructive way to acquire reliable XECs that are comparable to those determined by nanoindentation.

CONTENT …………………………………………………………………………………………….I
TABLE CAPTION VII
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 3
2.1 BENDING TEST 3
2.2 INDENTATION TEST 4
2.3 TENSILE TEST 7
2.4 BUCKLING TEST 9
CHAPTER 3 THEORETICAL BASIS 11
3.1 WORK OF FRACTURE 11
3.2 STRAIGHT LINE CRACK DUE TO RESIDUAL COMPRESSION 16
3.3 FRACTURE TOUGHNESS 17
CHAPTER 4 EXPERIMENTAL DETAILS 25
4.1 SPECIMEN PREPARATION AND DEPOSITION PROCESS 25
4.2 CHARACTERIZATION METHODS 28
4.2.1 X-RAY DIFFRACTION AND GRAZING INCIDENT X-RAY DIFFRACTION (XRD AND GIXRD) 28
4.2.2 FIELD-EMISSION GUN SCANNING ELECTRON MICROSCOPY (FEG-SEM) 29
4.2.3 X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) 29
4.3 MECHANICAL PROPERTIES MEASUREMENT 31
4.3.1 HARDNESS AND YOUNG’S MODULUS 31
4.3.2 MEASUREMENT OF RESIDUAL STRESS 32
4.3.2.1 OPTICAL METHOD 33
4.3.2.2 COS2SIN2 XRD METHOD 35
4.3.2.3 SIN2Ψ XRD METHOD: X-RAY ELASTIC CONSTANT VERIFICATION 36
4.3.2.4 LAYER-BY-LAYER METHOD 39
4.4 FRACTURE TOUGHNESS MEASUREMENT 41
4.4.1 STORAGE ENERGY (GS) AND FRACTURE TOUGHNESS (GC) 41
4.4.2 CRITICAL FILM THICKNESS ( ) 42
CHAPTER 5. RESULTS 44
5.1 COMPOSITIONS (XPS) 44
5.2. STRUCTURE 46
5.2.1 XRD AND GIXRD 46
5.2.2 SEM 50
5.3. MECHANICAL PROPERTIES 57
5.3.1. HARDNESS AND YOUNG’S MODULUS 58
5.3.2. RESIDUAL STRESS 58
5.3.3. RESIDUAL STRESS GRADIENT MEASURED BY XRD 58
A. ELASTIC CONSTANT VERIFICATION 59
I. AVERAGE EFFECTIVE X-RAY ELASTIC CONSTANTS 59
II. AEXEC VS. ENIP 61
III. AEXEC VERIFICATION 63
B. RESIDUAL STRESS GRADIENT 66
5.4 FRACTURE TOUGHNESS 71
CHAPTER 6 DISCUSSION 76
6.1 ELASTIC CONSTANTS VERIFICATION 76
6.1.1 AEXEC 76
6.2FRACTURE TOUGHNESS 79
6.2.1 FRACTURE TOUGHNESS COMPARISON 79
6.2.2 EFFECT OF TEXTURE 82
6.2.3 FRACTURE MORPHOLOGY AND THE LOCAL ENERGY DISTRIBUTION 84
6.2.4 CRITICAL THICKNESS 86
CHAPTER 7 CONCLUSIONS 87
REFERENCES 88
APPENDIX A 95
APPENDIX B 100
APPENDIX C 124
APPENDIX D 128
APPENDIX E 139

[1] S. Zhang, D. Sun, Y. Fu, H. Du, Toughness measurement of thin films: a critical review, Surface and Coatings Technology 198 (2005) 74-84.
[2] G. Gille, Investigations on Mechanical-Behavior of Brittle Wear-Resistant Coatings .2. Theory, Thin Solid Films 111 (1984) 201-218.
[3] G. Gille, K. Wetzig, Investigations on Mechanical-Behavior of Brittle Wear-Resistant Coatings .1. Experimental Results, Thin Solid Films 110 (1983) 37-54.
[4] U. Wiklund, M. Bromark, M. Larsson, P. Hedenqvist, S. Hogmark, Cracking resistance of thin hard coatings estimated by four-point bending, Surface & Coatings Technology 91 (1997) 57-63.
[5] U. Wiklund, P. Hedenqvist, S. Hogmark, Multilayer cracking resistance in bending, Surface & Coatings Technology 97 (1997) 773-778.
[6] P.M. Ramsey, H.W. Chandler, T.F. Page, Bending Tests to Estimate the through-Thickness Strength and Interfacial Shear-Strength in Coated Systems, Thin Solid Films 201 (1991) 81-89.
[7] J.N. Florando, W.D. Nix, A microbeam bending method for studying stress-strain relations for metal thin films on silicon substrates, Journal Of The Mechanics And Physics Of Solids 53 (2005) 619-638.
[8] Z.C. Xia, J.W. Hutchinson, Crack patterns in thin films, Journal Of The Mechanics And Physics Of Solids 48 (2000) 1107-1131.
[9] A. Strawbridge, H.E. Evans, Mechanical Failure of Thin Brittle Coatings, Engineering Failure Analysis 2 (1995) 85-103.
[10] J.L. Beuth, Cracking of Thin Bonded Films in Residual Tension, International Journal Of Solids And Structures 29 (1992) 1657-1675.
[11] F.X. Lu, Z. Jiang, W.Z. Tang, T.B. Huang, J.M. Liu, Accurate measurement of strength and fracture toughness for miniature-size thick diamond-film samples by three-point bending at constant loading rate, Diamond And Related Materials 10 (2001) 770-774.
[12] G. Jaeger, I. Endler, M. Heilmaier, K. Bartsch, A. Leonhardt, A new method of determining strength and fracture toughness of thin hard coatings, Thin Solid Films 377 (2000) 382-388.
[13] M.P. Manoharan, A.V. Desai, M.A. Haque, Fracture toughness characterization of advanced coatings, Journal Of Micromechanics And Microengineering 19 (2009) 115004.
[14] S. Massl, W. Thomma, J. Keckes, R. Pippan, Investigation of fracture properties of magnetron-sputtered TiN films by means of a FIB-based cantilever bending technique, Acta Materialia 57 (2009) 1768-1776.
[15] D. Taylor, The theory of critical distances☆, Engineering Fracture Mechanics 75 (2008) 1696-1705.
[16] P. Cornetti, N. Pugno, A. Carpinteri, D. Taylor, Finite fracture mechanics: A coupled stress and energy failure criterion, Engineering Fracture Mechanics 73 (2006) 2021-2033.
[17] D. Taylor, S. Kasiri, A comparison of critical distance methods for fracture prediction, International Journal Of Mechanical Sciences 50 (2008) 1075-1081.
[18] A. Carpinteri, P. Cornetti, N. Pugno, A. Sapora, D. Taylor, A finite fracture mechanics approach to structures with sharp V-notches☆, Engineering Fracture Mechanics 75 (2008) 1736-1752.
[19] G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, A CRITICAL-EVALUATION OF INDENTATION TECHNIQUES FOR MEASURING FRACTURE-TOUGHNESS .1. DIRECT CRACK MEASUREMENTS, Journal Of The American Ceramic Society 64 (1981) 533-538.
[20] W. Feng, D. Yan, J. He, G. Zhang, G. Chen, W. Gu, S. Yang, Microhardness and toughness of the TiN coating prepared by reactive plasma spraying, Applied Surface Science 243 (2005) 204-213.
[21] S. Kataria, S.K. Srivastava, P. Kumar, G. Srinivas, Siju, J. Khan, D.V.S. Rao, H.C. Barshilia, Nanocrystalline TiN coatings with improved toughness deposited by pulsing the nitrogen flow rate, Surface and Coatings Technology.
[22] P. Chantikul, G.R. Anstis, B.R. Lawn, D.B. Marshall, A CRITICAL-EVALUATION OF INDENTATION TECHNIQUES FOR MEASURING FRACTURE-TOUGHNESS .2. STRENGTH METHOD, Journal Of The American Ceramic Society 64 (1981) 539-543.
[23] X.D. Li, D.F. Diao, B. Bhushan, Fracture mechanisms of thin amorphous carbon films in nanoindentation, Acta Materialia 45 (1997) 4453-4461.
[24] H. Chai, Indentation-induced subsurface tunneling cracks as a means for evaluating fracture toughness of brittle coatings, International Journal of Fracture 158 (2009) 15-26.
[25] T.Y. Tsui, Y.C. Joo, A new technique to measure through film thickness fracture toughness, Thin Solid Films 401 (2001) 203-210.
[26] G. Wei, B. Bhushan, S.J. Jacobs, Nanoscale fatigue and fracture toughness measurements of multilayered thin film structures for digital micromirror devices, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 22 (2004) 1397.
[27] W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal Of Materials Research 19 (2004) 3-20.
[28] A.E. Giannakopoulos, P.L. Larsson, R. Vestergaard, Analysis of Vickers Indentation, International Journal Of Solids And Structures 31 (1994) 2679-2708.
[29] T. Lube, T. Fett, A threshold stress intensity factor at the onset of stable crack extension of Knoop indentation cracks, Engineering Fracture Mechanics 71 (2004) 2263-2269.
[30] X.D. Li, B. Bhushan, Measurement of fracture toughness of ultra-thin amorphous carbon films, Thin Solid Films 315 (1998) 214-221.
[31] X. Zhang, S. Zhang, Rethinking the role that the “step” in the load–displacement curves can play in measurement of fracture toughness for hard coatings, Thin Solid Films 520 (2012) 3423-3428.
[32] R. Saha, W.D. Nix, Effects of the substrate on the determination of thin film mechanical properties by nanoindentation, Acta Materialia 50 (2002) 23-38.
[33] W. Nix, J. Greer, G. Feng, E. Lilleodden, Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation, Thin Solid Films 515 (2007) 3152-3157.
[34] W.D. Nix, H.J. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, Journal Of The Mechanics And Physics Of Solids 46 (1998) 411-425.
[35] C. She, Y.-W. Zhang, K.-Y. Zeng, A three-dimensional finite element analysis of interface delamination in a ductile film/hard substrate system induced by wedge indentation, Engineering Fracture Mechanics 76 (2009) 2272-2280.
[36] A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A. Minor, Y. Shen, Indentation across size scales and disciplines: Recent developments in experimentation and modeling, Acta Materialia 55 (2007) 4015-4039.
[37] H.D. Espinosa, B. Peng, A new methodology to investigate fracture toughness of freestanding MEMS and advanced materials in thin film form, Journal Of Microelectromechanical Systems 14 (2005) 153-159.
[38] K. Jonnalagadda, S. Cho, I. Chasiotis, T. Friedmann, J. Sullivan, Effect of intrinsic stress gradient on the effective mode-I fracture toughness of amorphous diamond-like carbon films for MEMS, Journal Of The Mechanics And Physics Of Solids 56 (2008) 388-401.
[39] H. Kahn, N. Tayebi, R. Ballarini, R.L. Mullen, A.H. Heuer, Fracture toughness of polysilicon MEMS devices, Sensors And Actuators A-physical 82 (2000) 274-280.
[40] J.H. Han, M.T.A. Saif, In situ microtensile stage for electromechanical characterization of nanoscale freestanding films, Review Of Scientific Instruments 77 (2006) 045102.
[41] D. Kiener, W. Grosinger, G. Dehm, R. Pippan, A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples, Acta Materialia 56 (2008) 580-592.
[42] X. Zhang, S. Zhang, A Microbridge Method in Tensile Testing of Substrate for Fracture Toughness of Thin Films, Nanoscience and Nanotechnology Letters 3 (2011) 735-743.
[43] H. Hosokawa, A. Desai, M. Haque, Plane stress fracture toughness of freestanding nanoscale thin films, Thin Solid Films 516 (2008) 6444-6447.
[44] M.A. Haque, M.T.A. Saif, Mechanical behavior of 30-50 mn thick aluminum films under uniaxial tension, Scripta Materialia 47 (2002) 863-867.
[45] S. Orso, U.G.K. Wegst, C. Eberl, E. Arzt, Micrometer-scale tensile testing of biological attachment devices, Advanced Materials 18 (2006) 874.
[46] D.S. Gianola, A. Sedlmayr, R. Mönig, C.A. Volkert, R.C. Major, E. Cyrankowski, S.A.S. Asif, O.L. Warren, O. Kraft, In situ nanomechanical testing in focused ion beam and scanning electron microscopes, Review Of Scientific Instruments 82 (2011) 063901.
[47] D.S. Gianola, C. Eberl, Micro- and nanoscale tensile testing of materials, JOM 61 (2009) 24-35.
[48] K.J. Hemker, W.N. Sharpe, Microscale characterization of mechanical properties, Annual Review Of Materials Research 37 (2007) 93-126.
[49] Y. Zhu, A. Corigliano, H.D. Espinosa, A thermal actuator for nanoscale in situ microscopy testing: design and characterization, Journal Of Micromechanics And Microengineering 16 (2006) 242-253.
[50] A.A. Geisberger, N. Sarkar, M. Ellis, G.D. Skidmore, Electrothermal properties and modeling of polysilicon microthermal actuators, Journal Of Microelectromechanical Systems 12 (2003) 513-523.
[51] D. Nyyssonen, L. Landstein, E. Coombs, 2-Dimensional Atomic Force Microprobe Trench Metrology System, Journal Of Vacuum Science & Technology B 9 (1991) 3612-3616.
[52] G. Richter, K. Hillerich, D.S. Gianola, R. Monig, O. Kraft, C.A. Volkert, Ultrahigh Strength Single Crystalline Nanowhiskers Grown by Physical Vapor Deposition, Nano Letters 9 (2009) 3048-3052.
[53] M. Qin, D. Ju, Y. Wu, C. Sun, J. Li, Determination of the fracture strength for ceramic film on substrate by X-ray stress analysis method, Materials Characterization 56 (2006) 208-213.
[54] J. Bohm, P. Gruber, R. Spolenak, A. Stierle, A. Wanner, E. Arzt, Tensile testing of ultrathin polycrystalline films: A synchrotron-based technique, Review Of Scientific Instruments 75 (2004) 1110-1119.
[55] M. Qin, V. Ji, Y. Wu, C. Chen, J. Li, Determination of proof stress and strain-hardening exponent for thin film with biaxial residual stresses by in-situ XRD stress analysis combined with tensile test, Surface and Coatings Technology 192 (2005) 139-144.
[56] E. Harry, A. Rouzaud, M. Ignat, P. Juliet, Mechanical properties of W and W(C) thin films: Young's modulus, fracture toughness and adhesion, Thin Solid Films 332 (1998) 195-201.
[57] E. Harry, M. Ignat, Y. Pauleau, A. Rouzaud, P. Juliet, Mechanical behaviour of hard PVD multilayered coatings, Surface & Coatings Technology 125 (2000) 185-189.
[58] S. Zhang, D. Sun, Y. Fu, H. Du, Toughness measurement of ceramic thin films by two-step uniaxial tensile method, Thin Solid Films 469-470 (2004) 233-238.
[59] B. Cotterell, Z. Chen, Buckling and cracking of thin films on compliant substrates under compression, International Journal Of Fracture 104 (2000) 169-179.
[60] A.A. Griffith, The Phenomena of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society of London 221 (1921) pp.163-198.
[61] G.I. Barenblatt, EQUILIBRIUM CRACKS FORMED ON A BRITTLE FRACTURE, Doklady Akademii Nauk SSSR 127 (1959) 47-50.
[62] G.I. Barenblatt, I.P. Zheltov, FUNDAMENTAL EQUATIONS FOR THE FILTRATION OF HOMOGENEOUS FLUIDS THROUGH FISSURED ROCKS, Doklady Akademii Nauk Sssr 132 (1960) 545-548.
[63] D. Broek, Elementary engineering fracture mechanics, The Hague ; Boston
Hingham, Mass., Martinus Nijhoff ;
Distributed by Kluwer Boston, 1982.
[64] C. Ma, J. Huang, H. Chen, Nanohardness of nanocrystalline TiN thin films, Surface and Coatings Technology 200 (2006) 3868-3875.
[65] W.J. Chou, G.P. Yu, J.H. Huang, Mechanical properties of TiN thin film coatings on 304 stainless steel substrates, Surface & Coatings Technology 149 (2002) 7-13.
[66] A.C. Collop, Deformation and fracture mechanics of engineering materials (4th edition) : Richard W. Hertzberg John Wiley, Chichester, UK, 1996, 786 pages, £24.95, ISBN 0-471-01214-9, Engineering Structures 19 (1997) 283-283.
[67] L.B. Freund, S. Suresh, Thin film materials : stress, defect formation, and surface evolution, Cambridge, England ; New York, Cambridge University Press, 2003.
[68] S. Badrinarayanan, S. Sinha, A.B. Mandale, Xps Studies of Nitrogen Ion-Implanted Zirconium and Titanium, Journal Of Electron Spectroscopy And Related Phenomena 49 (1989) 303-309.
[69] J. Huang, K. Lau, G. Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surface and Coatings Technology 191 (2005) 17-24.
[70] J. Huang, K. Yu, P. Sit, G. Yu, Heat treatment of nanocrystalline TiN films deposited by unbalanced magnetron sputtering, Surface and Coatings Technology 200 (2006) 4291-4299.
[71] J. Frenkel, The theory of the elastic limit and the solidity of crystal bodies, Zeitschrift fur Physik 37 (1926) 572-609.
[72] G.E. Dieter, Mechanical metallurgy, New York, McGraw-Hill, 1986.
[73] T. Kundu, Fundamentals of fracture mechanics, Boca Raton, FL, CRC Press, 2008.
[74] K.M. Liechti, Y.S. Chai, Asymmetric Shielding in Interfacial Fracture Under In-Plane Shear, Journal of Applied Mechanics 59 (1992) 295-304.
[75] L.S. Fan, R.T. Howe, R.S. Muller, Fracture-Toughness Characterization of Brittle Thin-Films, Sensors And Actuators A-physical 23 (1990) 872-874.
[76] B.D. Cullity, Elements of x-ray diffraction, Reading, Mass., Addison-Wesley Pub. Co., 1978.
[77] L.V. Azároff, M.J. Buerger, The powder method in X-ray crystallography, New York,, McGraw-Hill, 1958.
[78] D. Briggs, M.P. Seah, Practical surface analysis : by auger and x-ray photo-electron spectroscopy, Chichester ; New York, Wiley, 1983.
[79] W.C. Oliver, G.M. Pharr, An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments, Journal Of Materials Research 7 (1992) 1564-1583.
[80] G.G. Stoney, The tension of metallic films deposited by electrolysis, Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character 82 (1909) 172-175.
[81] M.A. Hopcroft, W.D. Nix, T.W. Kenny, What is the Young's Modulus of Silicon?, Journal Of Microelectromechanical Systems 19 (2010) 229-238.
[82] J.M. Pureza, M.M. Lacerda, A.L. De Oliveira, J.F. Fragalli, R.A.S. Zanon, Enhancing accuracy to Stoney equation, Applied Surface Science 255 (2009) 6426-6428.
[83] C.H. Ma, J.H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films 418 (2002) 73-78.
[84] B.B. He, Two-dimensional x-ray diffraction, Hoboken, N.J., Wiley, 2009.
[85] J.Y. Chang, G.P. Yu, J.H. Huang, Determination of Young's modulus and Poisson's ratio of thin films by combining sin(2)psi X-ray diffraction and laser curvature methods, Thin Solid Films 517 (2009) 6759-6766.
[86] V. Hauk, H. Behnken, Structural and residual stress analysis by nondestructive methods : evaluation, application, assessment, Amsterdam ; New York, Elsevier, 1997.
[87] X.S. Wang, T.Y. Zhang, Miicrobridge tests on bilayer thin films, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 38A (2007) 2273-2282.
[88] P. Mott, C. Roland, Limits to Poisson’s ratio in isotropic materials, Physical Review B 80 (2009).
[89] V. Hauk, B. Kruger, A new approach to evaluate steep stress gradients principally using layer removal, Ecrs 5: Proceedings of the Fifth European Conference on Residual Stresses 347-3 (2000) 80-82.
[90] H.K. Tonshoff, J. Ploger, H. Seegers, Determination of residual stress gradients in brittle materials using an improved spline algorithm, Ecrs 5: Proceedings of the Fifth European Conference on Residual Stresses 347-3 (2000) 83-88.
[91] I. Kraus, G. Gosmanova, On X-Ray Measurements of Residual-Stresses in Materials with Lattice Strain Gradient, Czechoslovak Journal Of Physics 39 (1989) 751-756.
[92] J. Koo, J. Valgur, Layer growing/removing method for the determination of residual stresses in thin inhomogeneous discs, Ecrs 5: Proceedings of the Fifth European Conference on Residual Stresses 347-3 (2000) 89-94.
[93] C.L.A. Ricardo, M. D'Incau, P. Scardi, Revision and extension of the standard laboratory technique for X-ray diffraction measurement of residual stress gradients, Journal Of Applied Crystallography 40 (2007) 675-683.
[94] 藍靜茹, 黃嘉宏, 喻冀平, 結合cos2αsin2ψ X光繞射法與雷射曲率法評估氮化物薄膜內應力梯度研究 = Evaluation of stress gradient in nitride thin films by combining cos2αsin2ψ X-ray diffraction and laser curvature methods, 新竹市, 國立清華大學, 2011.
[95] S. J.-E, Structure and properties of TiN coatings, Thin Solid Films 128 (1985) 21-44.
[96] M.K. Hibbs, J.E. Sundgren, B.O. Johansson, B.E. Jacobson, The microstructure of reactively sputtered Ti-N films containing the Ti2N phase, Acta Metallurgica 33 (1985) 797-803.
[97] 陳威戎, 黃嘉宏, 喻冀平, 磁控濺鍍鈦-矽-氮奈米複合膜之機械性質研究 = The Mechanical Properties of Ti-Si-N Nanocomposite Films Deposited by Magnetron Sputtering, 新竹市, 國立清華大學.
[98] P.S. Prevéy, A METHOD OF DETERMINING THE ELASTIC PROPERTIES OF ALLOYS IN SELECTED CRYSTALLOGRAPHIC DIRECTIONS FOR X-RAY DIFFRACTION RESIDUAL STRESS MEASUREMENT, Advances in X-Ray Analysis 20 (1977) 345-354.
[99] I.A. Ovid'ko, Materials science - Deformation of nanostructures, Science 295 (2002) 2386-2386.
[100] D.F. Bahr, D.E. Kramer, W.W. Gerberich, Non-linear deformation mechanisms during nanoindentation, Acta Materialia 46 (1998) 3605-3617.
[101] S. King, G. Antonelli, Simple bond energy approach for non-destructive measurements of the fracture toughness of brittle materials, Thin Solid Films 515 (2007) 7232-7241.
[102] E. Connor, M. Sholinbeck, Crc Handbook of Chemistry and Physics: A Ready-Ref- Erence Book of Chemical and Physical Data, Medical Reference Services Quarterly 24 (2005) 114-115.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top