|
[1] S. Zhang, D. Sun, Y. Fu, H. Du, Toughness measurement of thin films: a critical review, Surface and Coatings Technology 198 (2005) 74-84. [2] G. Gille, Investigations on Mechanical-Behavior of Brittle Wear-Resistant Coatings .2. Theory, Thin Solid Films 111 (1984) 201-218. [3] G. Gille, K. Wetzig, Investigations on Mechanical-Behavior of Brittle Wear-Resistant Coatings .1. Experimental Results, Thin Solid Films 110 (1983) 37-54. [4] U. Wiklund, M. Bromark, M. Larsson, P. Hedenqvist, S. Hogmark, Cracking resistance of thin hard coatings estimated by four-point bending, Surface & Coatings Technology 91 (1997) 57-63. [5] U. Wiklund, P. Hedenqvist, S. Hogmark, Multilayer cracking resistance in bending, Surface & Coatings Technology 97 (1997) 773-778. [6] P.M. Ramsey, H.W. Chandler, T.F. Page, Bending Tests to Estimate the through-Thickness Strength and Interfacial Shear-Strength in Coated Systems, Thin Solid Films 201 (1991) 81-89. [7] J.N. Florando, W.D. Nix, A microbeam bending method for studying stress-strain relations for metal thin films on silicon substrates, Journal Of The Mechanics And Physics Of Solids 53 (2005) 619-638. [8] Z.C. Xia, J.W. Hutchinson, Crack patterns in thin films, Journal Of The Mechanics And Physics Of Solids 48 (2000) 1107-1131. [9] A. Strawbridge, H.E. Evans, Mechanical Failure of Thin Brittle Coatings, Engineering Failure Analysis 2 (1995) 85-103. [10] J.L. Beuth, Cracking of Thin Bonded Films in Residual Tension, International Journal Of Solids And Structures 29 (1992) 1657-1675. [11] F.X. Lu, Z. Jiang, W.Z. Tang, T.B. Huang, J.M. Liu, Accurate measurement of strength and fracture toughness for miniature-size thick diamond-film samples by three-point bending at constant loading rate, Diamond And Related Materials 10 (2001) 770-774. [12] G. Jaeger, I. Endler, M. Heilmaier, K. Bartsch, A. Leonhardt, A new method of determining strength and fracture toughness of thin hard coatings, Thin Solid Films 377 (2000) 382-388. [13] M.P. Manoharan, A.V. Desai, M.A. Haque, Fracture toughness characterization of advanced coatings, Journal Of Micromechanics And Microengineering 19 (2009) 115004. [14] S. Massl, W. Thomma, J. Keckes, R. Pippan, Investigation of fracture properties of magnetron-sputtered TiN films by means of a FIB-based cantilever bending technique, Acta Materialia 57 (2009) 1768-1776. [15] D. Taylor, The theory of critical distances☆, Engineering Fracture Mechanics 75 (2008) 1696-1705. [16] P. Cornetti, N. Pugno, A. Carpinteri, D. Taylor, Finite fracture mechanics: A coupled stress and energy failure criterion, Engineering Fracture Mechanics 73 (2006) 2021-2033. [17] D. Taylor, S. Kasiri, A comparison of critical distance methods for fracture prediction, International Journal Of Mechanical Sciences 50 (2008) 1075-1081. [18] A. Carpinteri, P. Cornetti, N. Pugno, A. Sapora, D. Taylor, A finite fracture mechanics approach to structures with sharp V-notches☆, Engineering Fracture Mechanics 75 (2008) 1736-1752. [19] G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, A CRITICAL-EVALUATION OF INDENTATION TECHNIQUES FOR MEASURING FRACTURE-TOUGHNESS .1. DIRECT CRACK MEASUREMENTS, Journal Of The American Ceramic Society 64 (1981) 533-538. [20] W. Feng, D. Yan, J. He, G. Zhang, G. Chen, W. Gu, S. Yang, Microhardness and toughness of the TiN coating prepared by reactive plasma spraying, Applied Surface Science 243 (2005) 204-213. [21] S. Kataria, S.K. Srivastava, P. Kumar, G. Srinivas, Siju, J. Khan, D.V.S. Rao, H.C. Barshilia, Nanocrystalline TiN coatings with improved toughness deposited by pulsing the nitrogen flow rate, Surface and Coatings Technology. [22] P. Chantikul, G.R. Anstis, B.R. Lawn, D.B. Marshall, A CRITICAL-EVALUATION OF INDENTATION TECHNIQUES FOR MEASURING FRACTURE-TOUGHNESS .2. STRENGTH METHOD, Journal Of The American Ceramic Society 64 (1981) 539-543. [23] X.D. Li, D.F. Diao, B. Bhushan, Fracture mechanisms of thin amorphous carbon films in nanoindentation, Acta Materialia 45 (1997) 4453-4461. [24] H. Chai, Indentation-induced subsurface tunneling cracks as a means for evaluating fracture toughness of brittle coatings, International Journal of Fracture 158 (2009) 15-26. [25] T.Y. Tsui, Y.C. Joo, A new technique to measure through film thickness fracture toughness, Thin Solid Films 401 (2001) 203-210. [26] G. Wei, B. Bhushan, S.J. Jacobs, Nanoscale fatigue and fracture toughness measurements of multilayered thin film structures for digital micromirror devices, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 22 (2004) 1397. [27] W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal Of Materials Research 19 (2004) 3-20. [28] A.E. Giannakopoulos, P.L. Larsson, R. Vestergaard, Analysis of Vickers Indentation, International Journal Of Solids And Structures 31 (1994) 2679-2708. [29] T. Lube, T. Fett, A threshold stress intensity factor at the onset of stable crack extension of Knoop indentation cracks, Engineering Fracture Mechanics 71 (2004) 2263-2269. [30] X.D. Li, B. Bhushan, Measurement of fracture toughness of ultra-thin amorphous carbon films, Thin Solid Films 315 (1998) 214-221. [31] X. Zhang, S. Zhang, Rethinking the role that the “step” in the load–displacement curves can play in measurement of fracture toughness for hard coatings, Thin Solid Films 520 (2012) 3423-3428. [32] R. Saha, W.D. Nix, Effects of the substrate on the determination of thin film mechanical properties by nanoindentation, Acta Materialia 50 (2002) 23-38. [33] W. Nix, J. Greer, G. Feng, E. Lilleodden, Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation, Thin Solid Films 515 (2007) 3152-3157. [34] W.D. Nix, H.J. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, Journal Of The Mechanics And Physics Of Solids 46 (1998) 411-425. [35] C. She, Y.-W. Zhang, K.-Y. Zeng, A three-dimensional finite element analysis of interface delamination in a ductile film/hard substrate system induced by wedge indentation, Engineering Fracture Mechanics 76 (2009) 2272-2280. [36] A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A. Minor, Y. Shen, Indentation across size scales and disciplines: Recent developments in experimentation and modeling, Acta Materialia 55 (2007) 4015-4039. [37] H.D. Espinosa, B. Peng, A new methodology to investigate fracture toughness of freestanding MEMS and advanced materials in thin film form, Journal Of Microelectromechanical Systems 14 (2005) 153-159. [38] K. Jonnalagadda, S. Cho, I. Chasiotis, T. Friedmann, J. Sullivan, Effect of intrinsic stress gradient on the effective mode-I fracture toughness of amorphous diamond-like carbon films for MEMS, Journal Of The Mechanics And Physics Of Solids 56 (2008) 388-401. [39] H. Kahn, N. Tayebi, R. Ballarini, R.L. Mullen, A.H. Heuer, Fracture toughness of polysilicon MEMS devices, Sensors And Actuators A-physical 82 (2000) 274-280. [40] J.H. Han, M.T.A. Saif, In situ microtensile stage for electromechanical characterization of nanoscale freestanding films, Review Of Scientific Instruments 77 (2006) 045102. [41] D. Kiener, W. Grosinger, G. Dehm, R. Pippan, A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples, Acta Materialia 56 (2008) 580-592. [42] X. Zhang, S. Zhang, A Microbridge Method in Tensile Testing of Substrate for Fracture Toughness of Thin Films, Nanoscience and Nanotechnology Letters 3 (2011) 735-743. [43] H. Hosokawa, A. Desai, M. Haque, Plane stress fracture toughness of freestanding nanoscale thin films, Thin Solid Films 516 (2008) 6444-6447. [44] M.A. Haque, M.T.A. Saif, Mechanical behavior of 30-50 mn thick aluminum films under uniaxial tension, Scripta Materialia 47 (2002) 863-867. [45] S. Orso, U.G.K. Wegst, C. Eberl, E. Arzt, Micrometer-scale tensile testing of biological attachment devices, Advanced Materials 18 (2006) 874. [46] D.S. Gianola, A. Sedlmayr, R. Mönig, C.A. Volkert, R.C. Major, E. Cyrankowski, S.A.S. Asif, O.L. Warren, O. Kraft, In situ nanomechanical testing in focused ion beam and scanning electron microscopes, Review Of Scientific Instruments 82 (2011) 063901. [47] D.S. Gianola, C. Eberl, Micro- and nanoscale tensile testing of materials, JOM 61 (2009) 24-35. [48] K.J. Hemker, W.N. Sharpe, Microscale characterization of mechanical properties, Annual Review Of Materials Research 37 (2007) 93-126. [49] Y. Zhu, A. Corigliano, H.D. Espinosa, A thermal actuator for nanoscale in situ microscopy testing: design and characterization, Journal Of Micromechanics And Microengineering 16 (2006) 242-253. [50] A.A. Geisberger, N. Sarkar, M. Ellis, G.D. Skidmore, Electrothermal properties and modeling of polysilicon microthermal actuators, Journal Of Microelectromechanical Systems 12 (2003) 513-523. [51] D. Nyyssonen, L. Landstein, E. Coombs, 2-Dimensional Atomic Force Microprobe Trench Metrology System, Journal Of Vacuum Science & Technology B 9 (1991) 3612-3616. [52] G. Richter, K. Hillerich, D.S. Gianola, R. Monig, O. Kraft, C.A. Volkert, Ultrahigh Strength Single Crystalline Nanowhiskers Grown by Physical Vapor Deposition, Nano Letters 9 (2009) 3048-3052. [53] M. Qin, D. Ju, Y. Wu, C. Sun, J. Li, Determination of the fracture strength for ceramic film on substrate by X-ray stress analysis method, Materials Characterization 56 (2006) 208-213. [54] J. Bohm, P. Gruber, R. Spolenak, A. Stierle, A. Wanner, E. Arzt, Tensile testing of ultrathin polycrystalline films: A synchrotron-based technique, Review Of Scientific Instruments 75 (2004) 1110-1119. [55] M. Qin, V. Ji, Y. Wu, C. Chen, J. Li, Determination of proof stress and strain-hardening exponent for thin film with biaxial residual stresses by in-situ XRD stress analysis combined with tensile test, Surface and Coatings Technology 192 (2005) 139-144. [56] E. Harry, A. Rouzaud, M. Ignat, P. Juliet, Mechanical properties of W and W(C) thin films: Young's modulus, fracture toughness and adhesion, Thin Solid Films 332 (1998) 195-201. [57] E. Harry, M. Ignat, Y. Pauleau, A. Rouzaud, P. Juliet, Mechanical behaviour of hard PVD multilayered coatings, Surface & Coatings Technology 125 (2000) 185-189. [58] S. Zhang, D. Sun, Y. Fu, H. Du, Toughness measurement of ceramic thin films by two-step uniaxial tensile method, Thin Solid Films 469-470 (2004) 233-238. [59] B. Cotterell, Z. Chen, Buckling and cracking of thin films on compliant substrates under compression, International Journal Of Fracture 104 (2000) 169-179. [60] A.A. Griffith, The Phenomena of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society of London 221 (1921) pp.163-198. [61] G.I. Barenblatt, EQUILIBRIUM CRACKS FORMED ON A BRITTLE FRACTURE, Doklady Akademii Nauk SSSR 127 (1959) 47-50. [62] G.I. Barenblatt, I.P. Zheltov, FUNDAMENTAL EQUATIONS FOR THE FILTRATION OF HOMOGENEOUS FLUIDS THROUGH FISSURED ROCKS, Doklady Akademii Nauk Sssr 132 (1960) 545-548. [63] D. Broek, Elementary engineering fracture mechanics, The Hague ; Boston Hingham, Mass., Martinus Nijhoff ; Distributed by Kluwer Boston, 1982. [64] C. Ma, J. Huang, H. Chen, Nanohardness of nanocrystalline TiN thin films, Surface and Coatings Technology 200 (2006) 3868-3875. [65] W.J. Chou, G.P. Yu, J.H. Huang, Mechanical properties of TiN thin film coatings on 304 stainless steel substrates, Surface & Coatings Technology 149 (2002) 7-13. [66] A.C. Collop, Deformation and fracture mechanics of engineering materials (4th edition) : Richard W. Hertzberg John Wiley, Chichester, UK, 1996, 786 pages, £24.95, ISBN 0-471-01214-9, Engineering Structures 19 (1997) 283-283. [67] L.B. Freund, S. Suresh, Thin film materials : stress, defect formation, and surface evolution, Cambridge, England ; New York, Cambridge University Press, 2003. [68] S. Badrinarayanan, S. Sinha, A.B. Mandale, Xps Studies of Nitrogen Ion-Implanted Zirconium and Titanium, Journal Of Electron Spectroscopy And Related Phenomena 49 (1989) 303-309. [69] J. Huang, K. Lau, G. Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surface and Coatings Technology 191 (2005) 17-24. [70] J. Huang, K. Yu, P. Sit, G. Yu, Heat treatment of nanocrystalline TiN films deposited by unbalanced magnetron sputtering, Surface and Coatings Technology 200 (2006) 4291-4299. [71] J. Frenkel, The theory of the elastic limit and the solidity of crystal bodies, Zeitschrift fur Physik 37 (1926) 572-609. [72] G.E. Dieter, Mechanical metallurgy, New York, McGraw-Hill, 1986. [73] T. Kundu, Fundamentals of fracture mechanics, Boca Raton, FL, CRC Press, 2008. [74] K.M. Liechti, Y.S. Chai, Asymmetric Shielding in Interfacial Fracture Under In-Plane Shear, Journal of Applied Mechanics 59 (1992) 295-304. [75] L.S. Fan, R.T. Howe, R.S. Muller, Fracture-Toughness Characterization of Brittle Thin-Films, Sensors And Actuators A-physical 23 (1990) 872-874. [76] B.D. Cullity, Elements of x-ray diffraction, Reading, Mass., Addison-Wesley Pub. Co., 1978. [77] L.V. Azároff, M.J. Buerger, The powder method in X-ray crystallography, New York,, McGraw-Hill, 1958. [78] D. Briggs, M.P. Seah, Practical surface analysis : by auger and x-ray photo-electron spectroscopy, Chichester ; New York, Wiley, 1983. [79] W.C. Oliver, G.M. Pharr, An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments, Journal Of Materials Research 7 (1992) 1564-1583. [80] G.G. Stoney, The tension of metallic films deposited by electrolysis, Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character 82 (1909) 172-175. [81] M.A. Hopcroft, W.D. Nix, T.W. Kenny, What is the Young's Modulus of Silicon?, Journal Of Microelectromechanical Systems 19 (2010) 229-238. [82] J.M. Pureza, M.M. Lacerda, A.L. De Oliveira, J.F. Fragalli, R.A.S. Zanon, Enhancing accuracy to Stoney equation, Applied Surface Science 255 (2009) 6426-6428. [83] C.H. Ma, J.H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films 418 (2002) 73-78. [84] B.B. He, Two-dimensional x-ray diffraction, Hoboken, N.J., Wiley, 2009. [85] J.Y. Chang, G.P. Yu, J.H. Huang, Determination of Young's modulus and Poisson's ratio of thin films by combining sin(2)psi X-ray diffraction and laser curvature methods, Thin Solid Films 517 (2009) 6759-6766. [86] V. Hauk, H. Behnken, Structural and residual stress analysis by nondestructive methods : evaluation, application, assessment, Amsterdam ; New York, Elsevier, 1997. [87] X.S. Wang, T.Y. Zhang, Miicrobridge tests on bilayer thin films, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 38A (2007) 2273-2282. [88] P. Mott, C. Roland, Limits to Poisson’s ratio in isotropic materials, Physical Review B 80 (2009). [89] V. Hauk, B. Kruger, A new approach to evaluate steep stress gradients principally using layer removal, Ecrs 5: Proceedings of the Fifth European Conference on Residual Stresses 347-3 (2000) 80-82. [90] H.K. Tonshoff, J. Ploger, H. Seegers, Determination of residual stress gradients in brittle materials using an improved spline algorithm, Ecrs 5: Proceedings of the Fifth European Conference on Residual Stresses 347-3 (2000) 83-88. [91] I. Kraus, G. Gosmanova, On X-Ray Measurements of Residual-Stresses in Materials with Lattice Strain Gradient, Czechoslovak Journal Of Physics 39 (1989) 751-756. [92] J. Koo, J. Valgur, Layer growing/removing method for the determination of residual stresses in thin inhomogeneous discs, Ecrs 5: Proceedings of the Fifth European Conference on Residual Stresses 347-3 (2000) 89-94. [93] C.L.A. Ricardo, M. D'Incau, P. Scardi, Revision and extension of the standard laboratory technique for X-ray diffraction measurement of residual stress gradients, Journal Of Applied Crystallography 40 (2007) 675-683. [94] 藍靜茹, 黃嘉宏, 喻冀平, 結合cos2αsin2ψ X光繞射法與雷射曲率法評估氮化物薄膜內應力梯度研究 = Evaluation of stress gradient in nitride thin films by combining cos2αsin2ψ X-ray diffraction and laser curvature methods, 新竹市, 國立清華大學, 2011. [95] S. J.-E, Structure and properties of TiN coatings, Thin Solid Films 128 (1985) 21-44. [96] M.K. Hibbs, J.E. Sundgren, B.O. Johansson, B.E. Jacobson, The microstructure of reactively sputtered Ti-N films containing the Ti2N phase, Acta Metallurgica 33 (1985) 797-803. [97] 陳威戎, 黃嘉宏, 喻冀平, 磁控濺鍍鈦-矽-氮奈米複合膜之機械性質研究 = The Mechanical Properties of Ti-Si-N Nanocomposite Films Deposited by Magnetron Sputtering, 新竹市, 國立清華大學. [98] P.S. Prevéy, A METHOD OF DETERMINING THE ELASTIC PROPERTIES OF ALLOYS IN SELECTED CRYSTALLOGRAPHIC DIRECTIONS FOR X-RAY DIFFRACTION RESIDUAL STRESS MEASUREMENT, Advances in X-Ray Analysis 20 (1977) 345-354. [99] I.A. Ovid'ko, Materials science - Deformation of nanostructures, Science 295 (2002) 2386-2386. [100] D.F. Bahr, D.E. Kramer, W.W. Gerberich, Non-linear deformation mechanisms during nanoindentation, Acta Materialia 46 (1998) 3605-3617. [101] S. King, G. Antonelli, Simple bond energy approach for non-destructive measurements of the fracture toughness of brittle materials, Thin Solid Films 515 (2007) 7232-7241. [102] E. Connor, M. Sholinbeck, Crc Handbook of Chemistry and Physics: A Ready-Ref- Erence Book of Chemical and Physical Data, Medical Reference Services Quarterly 24 (2005) 114-115.
|