跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 12:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林劭品
研究生(外文):Lin, Shao-Pin
論文名稱:銲接製程對308L沃斯田不鏽鋼銲道疲勞裂縫成長行為之影響
論文名稱(外文):Influence of welding processes on fatigue crack growth behavior of 308L stainless steel weldments
指導教授:黃嘉宏黃嘉宏引用關係喻冀平
指導教授(外文):Huang, Jia-HongYu, Ge-Ping
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
論文頁數:95
中文關鍵詞:銲接製程308L不鏽鋼電銲氬銲疲勞成長速率
外文關鍵詞:308L weldmentsshielded metal arc weldinggas tungsten arc weldingfatigue crack growth rate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用施作電銲、氬銲與寬隙氬銲件來探討銲接製程對於308L沃斯田不鏽鋼銲道在室溫與288 °C之疲勞裂縫成長行為的影響。電銲與氬銲件的金相皆顯示FA固化模式的枝狀晶結構;因為電銲條有較高的鉻鎳當量比且銲接時有較低的熱輸入量,其金相呈現長條狀肥粒鐵模式,而氬銲則呈現蠕蟲狀肥粒鐵。拉伸測試中可發現銲道的降伏應力有明顯上升,其主要原因為銲接的快速固化過程使銲道轉變為肥粒鐵與沃斯田鐵的雙相結構而有強化降伏應力的效果。
疲勞測試結果則顯示銲道不論在室溫或288 °C皆有較母材304L好的疲勞抗性,其主要原因與銲道的非均質結構造成疲勞裂面與路徑的粗糙化與複雜化,增加了實際的疲勞路徑,而銲件不論在疲勞或拉伸試驗中都幾乎沒有因應變而麻田散鐵化的強化現象。
寬隙銲件由於第一道需要較長銲接時間而形成了平行銲接方向成長的粗化枝狀晶,並造成一開始較電、氬銲件快的疲勞裂縫成長速率,但此差異隨著裂縫成長與應力強度因子範圍的上升而逐漸減小。
由結果可發現由銲接造成結構上的差異主要影響疲勞裂縫成長的初期,而後期隨著塑化區增大、裂面粗糙化並呈現大量的山脊紋路與準劈裂特徵,應力狀態成為主要的影響因素。

Shielded metal arc (SMA), gas tungsten arc (GTA), and wide-gap tungsten arc weldments were produced to study the influence of welding process on fatigue crack growth behavior of 308L austenitic stainless steel weldments at room temperature (RT) and 288 °C. Both SMA and GTA weldments showed dendritic microstructure with FA solidification mode; however, the lower heat input with larger (Cr/Ni)eq in SMAW process led to lathy ferrite morphology and more residual ferrite in the SMA welds, while vermicular ferrite morphology was shown in GTA weldments. The yield strength of the welds significantly increased with the decreasing elongation, which was mainly due to the dual phase strengthening effect after rapid solidification during welding.
All the weldments showed better fatigue resistance than the 304L base metal at RT and 288 °C in air, which was attributed to the non-homogeneous structure leading to a rougher and more complex crack path. In addition, no strengthening effect by deformation-induced martensitic transformation was observed in both welds. Moreover, due to the slower welding speed in the first pass on the wide-gap GTA weldment, larger spacing dendritic structure was produced along the welding direction at the center, which led to higher fatigue crack growth rate (FCGR) than that of SMA and GTA welds at lower ∆K region; however, the FCGR of all welds converged as ∆K reached 32 and above.
The influence of microstructure on the FCGR was more distinct at lower ∆K region, which could be observed only on specimens without side-grooves, where crack growth direction was not limited, and then the crack growth behavior switched to stress-state controlled mode where the plastic zone became sufficiently large and the fracture surface displayed more ridges and quasi-cleavage fracture.

List of Tables ........................................viii
List of Figures ........................................viii
Chapter 1 introduction...............................1
Chapter 2 Literature Review..........................3
2.1 Austenitic stainless steels........................3
2.1.1 Characteristics....................................3
2.1.2 Elemental composition..............................3
2.1.3 Strain-induced martensitic transformation..........6
2.1.4 Solidification mode and solidification cracking....7
2.2 Arc welding process................................9
2.2.1 Effects of welding parameter......................10
2.2.2 Effects of welding process to characteristics of weldments.................................................14
2.2.3 Weldibility of austenitic stainless steels........15
2.3 Fatigue failure of austenitic steel weldments.....19
2.3.1 Fatigue failure mechanism.........................19
2.3.2 Fatigue failure of austenitic steels weldments....21
2.4 Methods of residual stress measurement............22
Chapter 3 Experimental Procedures...................24
3.1 Materials.........................................24
3.2 Specimen preparation..............................25
3.3 Metallography.....................................28
3.4 Microhardness test................................28
3.5 Ferrite number evaluation.........................29
3.6 Tensile test......................................30
3.7 Fatigue test......................................31
3.8 Scanning electron microscopy (SEM)................32
3.9 Residual stress measurement.......................33
3.9.1 XRD sin2ψ method..................................33
3.9.2 Neutron diffraction method........................35
Chapter 4 Results...................................37
4.1 Metallography.....................................37
4.1.1 Base metal microstructures........................37
4.1.2 Macrostructure of weldments.......................37
4.1.3 Microstructure of weldments.......................37
4.2 Microhardness and ferrite content.................42
4.3 Tensile properties................................45
4.4 Fatigue crack growth rate.........................47
4.5 Residual stress measurement.......................49
4.6 Fatigue fracture surface morphology...............52
4.6.1 Macroscopic fracture surface morphologies.........52
4.6.2 Fracture morphology of weldments tested at room temperature...............................................52
4.6.3 Fracture morphology of weldments tested at 288 °C.53
Chapter 5 Discussion................................63
5.1 Metallography of the weldments....................63
5.2 Microhardness and ferrite contents................63
5.3 Tensile properties................................64
5.4 Residual stress measurement.......................65
5.5 Fatigue crack growth rate (FCGR)..................66
5.5.1 Factors affecting the fatigue growth rate.........66
5.5.2 Fatigue crack growth at room temperature..........67
5.5.3 Fatigue crack growth at 288 °C....................68
Chapter 6 Conclusions...............................70
References................................................72
Appendix 1................................................77
Appendix 2................................................79

[1] ASM Handbook Vol.1 Properties and Selection Irons Steels and High Performance Alloys, 1993.
[2] ASM Handbook Vol.6 Welding, Brazing, and Soldering, 1993.
[3] J.M. Vitek, S.A. David, D.J. Alexander, J.R. Keiser, R.K. Nanstad, Low temperature aging behavior of type 308 stainless steel weld metal, Acta Metallurgica et Materialia, 39 (1991) 503-516.
[4] J.C. Lippold, D.J. Kotecki, Welding metallurgy and weldability of stainless steels, John Wiley & Sons, Inc., New Jersey, 2005.
[5] H.R. Copson, Effect of composition on stress corrosion cracking of some alloys containing Ni, in: Physical Metallurgy of Stress Corrosion Fracture, Interscience Publishers, New York, 1959, pp. 247-272.
[6] A.F. Padilha, P.R. Rios, Decomposition of austenite in austenitic stainless steels, ISIJ Int., 42 (2002) 325-337.
[7] K. Nohara, Y. Ono, N. Ohashi, Composition and grain-size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steels, ISIJ Int., 63 (1977) 212-222.
[8] A. Hedayati, A. Najafizadeh, A. Kermanpur, F. Forouzan, The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel, J. Mater. Process. Technol., 210 (2010) 1017-1022.
[9] J.A. Lichtenfeld, M.C. Mataya, C.J. Van Tyne, Effect of strain rate on stress-strain behavior of alloy 309 and 304L austenitic stainless steel, Metall. Mater. Trans. A, 37A (2006) 147-161.
[10] V. Shankar, T.P.S. Gill, S.L. Mannan, S. Sundaresan, Solidification cracking in austenitic stainless steel welds, Sadhana-Acad. P. Eng. S., 28 (2003) 359-382.
[11] N. Suutala, T. Takalo, T. Moisio, Ferritic-austenitic solidification mode in austenitic stainless steel welds, Metall. Trans. A, 11 (1980) 717-725.
[12] J.W. Elmer, S.M. Allen, T.W. Eagar, Microstructural development during solidification of stainless steel alloys, Metall. Trans. A, 20 (1989) 2117-2131.
[13] J.A. Brooks, A.W. Thompson, Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds, Int. Mater. Rev., 36 (1991) 16-44.
[14] S. Kuo, Welding metallurgy, John Wiley & Sons, Inc., New York, 1987.
[15] C.C. Silva, H.C. de Miranda, H.B. de Sant'Ana, J.P. Farias, Microstructure, hardness and petroleum corrosion evaluation of 316L/AWS E309MoL-16 weld metal, Mater. Charact., 60 (2009) 346-352.
[16] S. Tabatabaeipour, F. Honarvar, A comparative evaluation of ultrasonic testing of AISI 316L welds made by shielded metal arc welding and gas tungsten arc welding processes, J. Mater. Process. Technol., 210 (2010) 1043-1050.
[17] A. Comer, L. Looney, Crack propagation resistance of Zeron 100 weld metal fabricated using the GTA and SMA welding processes, Theor. Appl. Fract. Mech., 45 (2006) 139-147.
[18] W.J. Mills, Fracture toughness of type 304 and 316 stainless steels and their welds, Int. Mater. Rev., 42 (1997) 45-82.
[19] M.T.Z. Butt, S. Ahmed, S. Rasool, U. Ali, S.U. Rehman, Effect of welding techniques (GTAW & SMAW) on the microstructure &mechanical properties of mild steel SA516 Gr.70, News Journal of Pakistan Engineering Congress, 15 (2010) 35-40.
[20] F.T. Tzeng, The Dynamic Impact Response and Microstructural Evolution of 304L Stainless Steel GTAW and SMAW Joints, MS thesis, National Cheng Kung University, 2002.
[21] J.I. Cheng, The Plastic Deformation and Fracture Behavior of 304L Stainless Steel GTAW and SMAW Joint under Dynamic Shear Loading, MS thesis, National Cheng Kung University, 2002.
[22] A.L. Schaeffler, Constitution diagram for stainless steel weld metal, Metal Progress, 56 (1949) 680-680B.
[23] D.J. Kotecki, T.A. Siewert, WRC-1992 constitution diagram for stainless steel weld metal: a modification of the WRC-1988 diagram, Welding Journal, 71 (1992) 171s-178s.
[24] V. Kujanpaa, N. Suutala, T. Takalo, T. Moisio, Correlation between solidification cracking and microstructure in austennitic and austenitic-ferrite stainless steel welds, Welding Research International, 9 (1979) 55.
[25] B.L. Boyce, P.L. Reu, C.V. Robino, The constitutive behavior of laser welds in 304L stainless steel determined by digital image correlation, Metall. Mater. Trans. A, 37A (2006) 2481-2492.
[26] ASM Handbook Vol.19 Fatigue And Fracture, 1993.
[27] R.W. Hertzberg, Deformation and fracture mechanics of engineering materials, 4th ed., John Wiley & Sons, Inc., Hoboken, NJ, 1996.
[28] J.Y. Huang, J.J. Yeh, S.L. Jeng, C.Y. Chen, R.C. Kuo, High-cycle fatigue behavior of type 316L stainless steel, Mater. Trans., 47 (2006) 409-417.
[29] L.W. Tsay, Y.F. Liua, R.T. Huang, R.C. Kuo, The effect of sensitization on the hydrogen-enhanced fatigue crack growth of two austenitic stainless steels, Corros. Sci., 50 (2008) 1360-1367.
[30] Z. Mei, J. Morris, Influence of deformation-induced martensite on fatigue crack propagation in 304-type steels, Metall. Trans. A, 21 (1990) 3137-3152.
[31] H.U. Hong, B.S. Rho, S.W. Nam, A study on the crack initiation and growth from delta-ferrite/gamma phase interface under continuous fatigue and creep-fatigue conditions in type 304L stainless steels, Int. J. Fatigue, 24 (2002) 1063-1070.
[32] B.S. Rho, H.U. Hong, S.W. Nam, The fatigue crack initiation at the interface between matrix and delta-ferrite in 304L stainless steel, Scripta Mater., 39 (1998) 1407-1412.
[33] B.S. Rho, H.U. Hong, S.W. Nam, The effect of delta-ferrite on fatigue cracks in 304L steels, Int. J. Fatigue, 22 (2000) 683-690.
[34] L.W. Tsay, J.J. Chen, J.C. Huang, Hydrogen-assisted fatigue crack growth of AISI 316L stainless steel weld, Corros. Sci., 50 (2008) 2973-2980.
[35] L.W. Tsay, Y.C. Liu, M.C. Young, D.Y. Lin, Fatigue crack growth of AISI 304 stainless steel welds in air and hydrogen, Mater. Sci. Eng., A, 374 (2004) 204-210.
[36] L.W. Tsay, M.C. Young, C. Chen, Fatigue crack growth behavior of laser-processed 304 stainless steel in air and gaseous hydrogen, Corros. Sci., 45 (2003) 1985-1997.
[37] J.R. Hawthorne, Significance of delta ferrite content to fatigue crack growth resistance of austenitic stainless steel weld deposits, NRL Report (1978).
[38] K. Makhlouf, J.W. Jones, Effects of temperature and frequency on fatigue crack growth in 18% Cr ferritic stainless steel, Int. J. Fatigue, 15 (1993) 163-171.
[39] P. Shahinian, H. Smith, H. Watson, Fatigue crack growth characteristics of several austenitic stainless steels at high temperature, Fatigue at Elevated Temperatures, ASTM STP-520, American Society for Testing and Materials (1973) 387-400.
[40] D.J. Michel, H.H. Smith, Fatigue crack propagation in neutron-irradiationed type-304 and type-308 stainless steel plate and weld materials, J. Nucl. Mater., 71 (1977) 173-177.
[41] J.T. Al-Haidary, A.A. Wahab, E.H.A. Salam, Fatigue crack propagation in austenitic stainless steel weldments, Metall. Mater. Trans. A, 37A (2006) 3205-3214.
[42] C. Jang, P.Y. Cho, M. Kim, S.J. Oh, J.S. Yang, Effects of microstructure and residual stress on fatigue crack growth of stainless steel narrow gap welds, Mater. Des., 31 (2010) 1862-1870.
[43] R. Shiue, C. Chang, M. Young, L. Tsay, The effect of residual thermal stresses on the fatigue crack growth of laser-surface-annealed AISI 304 stainless steelPart I: computer simulation, Mater. Sci. Eng., A, 364 (2004) 101-108.
[44] P.J. Withers, H.K.D.H. Bhadeshia, Overview - residual stress part 1 - measurement techniques, Materials Science and Technology, 17 (2001) 355-365.
[45] B.D.S. Cullity, S. R., Elements of x-ray diffraction, 3th ed., Prentice Hal, NJ, 2001.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top