|
Bibliography [Ahrens 2004] H. Ahrens, S. Förster, C. A. Helm, N. A. Kumar, A. Naji, R. R. Netz, and C. Seidel, “Nonlinear osmotic brush regime: Experiments, simulations and scaling theory”, J. Phys. Chem. B 108, 16870 (2004) [Baeurle 2009] S. A. Baeurle, M. G. Kiselev, E. S. Makarova, E. A. Nogovitsin, “Ef-fect of the counterion behavior on the frictional-compressive properties of chondroitin sulfate solutions”. Polymer 50, 1805 (2009) [Ballauff 2006] M. Ballauff and O. Borisov, “Polyelectrolyte brushes”, Curr. Opin. Colloid Interface Sci. 11, 316 (2006) [Baratlo 2009] M. Baratlo and H. Fazli, “Molecular dynamics simulation of semiflexible polyampholyte brushes - The effect of charged monomers sequence”, Eur. Phys. J. E 29, 131 (2009) [Baratlo 2010] M. Baratlo and H. Fazli, “Brushes of flexible, semiflexible, and rodlike diblock polyampholytes: Molecular dynamics simulation and scaling analysis”, Phys. Rev. E 81, 011801 (2010) [Bathe 2005] M. Bathe, G. C. Rutledge, A. J. Grodzinsky, B. Tidor, “A Coarse-grained molecular model for glycosaminoglycans: Application to chondroitin, chondroitin sulfate, and hyaluronic acid". Biophys. J. 88, 3870 (2005) [Biesheuvel 2008] P. M. Biesheuvel, W. M. de Vos, and V. M. Amoskov, “Semianaytical continuum model for nondilute neutral and charged brushes including finite stretching”, Macromolecules 41, 6254 (2008) [Borisov 1991] O.V. Borisov, T.M. Birshtein, and E. B. Zhulina, “Collapse of grafted polyelectrolyte layer”, J. Phys. II France 1, 521 (1991) [Borisov 1994] O. V. Borisov, E. B. Zhulina, T. M. Birshtein, “Diagram of the States of a Grafted Polyelectrolyte Layer”, Macromolecules 27, 4795 (1994) [Bünsow 2010] J. Bünsow, T. S. Kelby, and W. T. S. Huck, “Polymer brushes: Routes toward mechanosensitive surfaces”, Acc. Chem. Res. 43, 466 (2010) [Cabane 2012] E. Cabane, X.-Y. Zhang, K. Langowska, C. G. Palivan, and W. Meier,” Stimuli-responsive polymers and their applications in nanomedicine”, Biointerphases 7, 9 (2012) [Cao 2009] Q.-Q. Cao, C.-C. Zuo, H.-W. He and L.-J. Li, “A molecular dynamics study of two apposing polyelectrolyte brushes with mono- and multivalent counterions”, Macromol. Theory Simul. 18, 441 (2009) [Cao 2011a] Q.-Q. Cao, C.-C. Zuo, L.-J. Li and M.-F. Gao, “Interactions of polye-lectrolyte brushes with oppositely charged surfactants”, Colloid Polym. Sci. 289, 1089 (2011) [Cao 2011b] Q.-Q. Cao, C.-C. Zuo, L.-J. Li, and G. Yan, “Effects of chain stiffness and salt concentration on responses of polyelectrolyte brushes under external electric field”, Biomicrofluidics 5, 044119 (2011) [Cao 2012a] Q.-Q. Cao, C.-C. Zuo, L.-J. Li, Y.-H. Zhang, and G. Yan, “Elec-tro-osmotic flow in nanochannels with voltage-controlled polyelectro-lyte brushes: Dependence on grafting density and normal electric field”, J. Polym. Sci. B Polym. Phys. 50, 805 (2012) [Cao 2012b] Q.-Q. Cao, C.-C. Zuo, L.-J. Li, and Y.-H. Zhang, “Modulation of elec-troosmotic flow by electric field-responsive polyelectrolyte brushes: A molecular dynamics study”, Microfluid. Nanofluid. 12, 649 (2012) [Chen 1996] H. Chen, R. Zajac, and A. Chakrabarti, “Conformational properties of polyelectrolyte brushes: A Monte Carlo and self-consistent-field study”, J. Chem. Phys. 104, 1579 (1996) [Chen 2011] L. Chen, H. Merlitz, S.-Z. He, C.-X. Wu, and J.-U. Sommer, “Polyelec-trolyte brushes: Debye approximation and mean-field theory”, Macro-molecules 44, 3109 (2011) [Coluzza 2008] I. Coluzza and J. P. Hansen, “Transition from highly to fully stretched polymer brushes in good solvent”, Phys. Rev. Lett. 100, 016104 (2008) [Csajka 2011] F. S. Csajka, R. R. Netz, C. Seidel, and J.-F. Joanny, “Collapse of po-lyelectrolyte brushes: Scaling theory and simulations”, Eur. Phys. J. E 4, 505 (2001) [de Vos 2010] W. M. de Vos, F. A. M. Leermakers, A. de Keizer, M. A. C. Stuart, and J. M. Kleijn, “Field theoretical analysis of driving forces for the uptake of proteins by like-charged polyelectrolyte brushes: Effects of charge regulation and patchiness, Langmuir 26, 249 (2010) [Dobrynin 2005] A. V. Dobrynin and M. Rubinstein, “Theory of polyelectrolytes in solu-tions and at surfaces”, Prog. Polym. Sci. 30, 1049 (2005) [Eward 1921] P. Ewald, “Die berechnung optischer und elektrostatischer gitterpoten-tiale", Ann. Phys. 369, 253 (1921) [Fazli 2006] H. Fazli, R. Golestanian, P. L. Hansen, and M. R. Kolahchi, “Rod-like polyelectrolyte brushes with mono- and multivalent counterions”, Eu-rophys. Lett. 73, 429 (2006) [Goujon 2012] F. Goujon, A. Ghoufi, P. Malfreyt, and D. J. Tildesley, “Frictional forces in polyelectrolyte brushes: Effects of sliding velocity, solvent quality and salt”, Soft Matter 8, 4635 (2012) [Harden 2001] J. L. Harden, D. Long, and A. Ajdari, “Influence of end-grafted polye-lectrolytes on electro-osmosis along charged surfaces, Langmuir 17, 705 (2011) [He 2010] S.-Z. He, H. Merlitz, L. Chen, J.-U. Sommer, and C.-X. Wu, “Polyelec-trolyte brushes: MD simulation and SCF theory”, Macromolecules 43, 7845 (2010) [Hehmeyer 2005] O. J. Hehmeyer and M. J. Stevens, “Molecular dynamics simulations of grafted polyelectrolytes on two apposing walls”, J. Chem. Phys. 122, 134909 (2005) [Hehmeyer 2007] O. J. Hehmeyer, G. Arya, A. Z. Panagiotopoulos, and I. Szleifer, “Monte Carlo simulation and molecular theory of tethered po-lyelectrolytes”, J. Chem. Phys. 126, 244902 (2007) [Hickey 2009] O. A. Hickey, J. L. Harden, and G. W. Slater, “Molecular dynamics si-mulations of optimal dynamic uncharged polymer coatings for quenching electro-osmotic flow, Phys. Rev. Lett. 102, 108304 (2009) [Hickey 2012] Owen A. Hickey, James L. Harden and Gary W. Slater, “Computer si-mulations of time-dependent suppression of EOF by polymer coatings”, Microfluid. Nanofluid.1, 1 (2012) [Hou 2011] Yi Hou, G.-M. Liu, Y. Wua and G.-Z. Zhang, “Reentrant behavior of grafted poly(sodium styrenesulfonate) chains investigated with a quartz crystal microbalance”, Phys. Chem. Chem. Phys. 13, 2880 (2011) [Hsiao 2006] P.-Y. Hsiao, “Chain morphology, swelling exponent, persistence length, like-charge attraction, and charge distribution around a chain in polye-lectrolyte solutions: effects of salt concentration and ion size studied by molecular dynamics simulations”, Macromolecules 39, 7125 (2006) [Hu 2009] Y.-Y. Hu and D.-P. Cao, “Adsorption of nonuniformly charged fulle-rene-like nanoparticles on planar polyelectrolyte brushes in aqueous solutions, Langmuir 25, 4965 (2009) [Huang 2006] J.-H. Huang, Y.-M. Wang, and M. Laradji, “Flow control by smart na-nofluidic channels: A dissipative particle dynamics simulation, Ma-cromolecules 39, 5546 (2006) [Ibergay 2009] C. Ibergay, P. Malfreyt, and D. J. Tildesley, “Electrostatic interactions in dissipative particle dynamics: Toward a mesoscale modeling of the polyelectrolyte brushes”, J. Chem. Theory Comput. 5, 3245 (2009) [Ibergay 2010] C. Ibergay, P. Malfreyt, and D. J. Tildesley, “Mesoscale modeling of polyelectrolyte brushes with salt”, J. Phys. Chem. B 114, 7274 (2010) [Ibergay 2011] C. Ibergay, P. Malfreyt and D. J. Tildesley, “Interaction between two polyelectrolyte brushes: A mesoscale modelling of the compression”, Soft Matter 7, 4900 (2011) [Jiang 2008] T. Jiang and J.-Z. Wu, “Self-organization of multivalent counterions in polyelectrolyte brushes”, J. Chem. Phys. 129, 084903 (2008) [Kumar 2005] N. A. Kumar and C. Seidel, “Polyelectrolyte brushes with added salt”, Macromolecules 38, 9341 (2005) [Kumar 2007] N. A. Kumar and C. Seidel, “Interaction between two polyelectrolyte brushes”, Phys. Rev. E. 76, 020801(R) (2007) [Lammps] http://lammps.sandia.gov/doc/kspace_modify.html [Leermakers 2007] F. A. M. Leermakers, M. Ballauff, and O. V. Borisov, “On the mechan-ism of uptake of globular proteins by polyelectrolyte brushes: A two-gradient self-consistent field analysis”, Langmuir 23, 3937 (2007) [Manning 1969] G. S. Manning, “Limiting laws and counterion condensation in polye-lectrolyte solutions I. colligative properties”, J. Chem. Phys. 51, 924 (1969) [Mercurieva 2002] A. A. Mercurieva, T. M. Birshtein, E. B. Zhulina, P. Iakovlev, J. van Male, and F. A. M. Leermakers, “An annealed polyelectrolyte brush in a polar-nonpolar binary solvent: Effect of pH and ionic strength”, Ma-cromolecules 35, 4739 (2002) [Merlitz 2008] H. Merlitz, G.-L. He, C.-X. Wu, and J.-U. “Sommer, Surface Instabili-ties of Monodisperse and Densely Grafted Polymer Brushes”, Macro-molecules 41, 5070 (2008) [Merlitz 2009] H. Merlitz, G.-L. He, C.-X. Wu, and J.-U. Sommer, “Nanoscale Brushes: How to Build a Smart Surface Coating”, Phys. Rev. Lett. 102, 115702 (2009) [Minko 2006] S. Minko, “Responsive Polymer Brushes”, J. Macromol. Sci. Part C 46, 397 (2006) [Naji 2003] A. Naji, R. R. Netz and C. Seidel, Non-linear osmotic brush regime: Simulations and mean-field theory, Eur. Phys. J. E 12, 223 (2003) [Netz 2003] R. R. Netz and D. Andelman, “Neutral and charged polymers at inter-faces”, Physics Reports 380 , 1-95 (2003) [Ouyang 2009] H. Ouyang, Z.-H. Xia, and J. Zhe, “Static and dynamic responses of polyelectrolyte brushes under external electric field”, Nanotechnology 20, 195703 (2009) [Ouyang 2010] H. Ouyang, Z.-H. Xia, and J. Zhe, “Voltage-controlled flow regulating in nanofluidic channels with charged polymer brushes”, Microfluid. Nanofluid. 9, 915 (2010) [Pathria 2011] R. K. Pathria, Statistical Mechanics, 3rd Ed, Elsevier, (2011) [Pincus 1991] P. Pincus, “Colloid stabilization with grafted polyelectrolytes”, Ma-cromolecules 24, 2912 (1991) [Pryamitsyn 1996] V. A. Pryamitsyn, F. A. M. Leermakers, G. J. Fleer, and E. B. Zhulina, “Theory of the Collapse of the Polyelectrolyte Brush”, Macromolecules 29, 8260 (1996) [Rapaport 2004] D. C. Rapaport, "The Art of Molecular Dynamics Simulation", 2nd ed., Cambridge (2004) [Romet-Lemonne 2004] G. Romet-Lemonne, J. Daillant, P. Guenoun, J. Yang, and J. W. Mays, “Thickness and density profiles of polyelectrolyte brushes: De-pendence on grafting density and salt concentration”, Phys. Rev. Lett. 93, 148301 (2004) [Rühe 2004] J. Rühe, M. Ballauff, M. Biesalski, P. Dziezok, F. Gröhn, D. Jo-hannsmann, N. Houbenov, N. Hugenberg, R. Konradi, S. Minko, M. Motornov, R. R. Netz, M. Schmidt, C. Seidel, M. Stamm, T. Stephan, D. Usov, and H. Zhang, “Polyelectrolyte Brushes”, Adv. Polym. Sci. 165, 189 (2004) [Seidel 2003] C. Seidel, “Strongly stretched polyelectrolyte brushes”, Macromole-cules 36, 2536 (2003) [Sirchabesan 2007] M. Sirchabesan and S. Giasson, “Mesoscale simulations of the behavior of charged polymer brushes under normal compression and lateral shear forces”, Langmuir 23, 9713 (2007) [Slater 2009] G. W. Slater, C. Holm, M. V. Chubynsky, H. W. de Haan, A. Dubé, K. Grass, O. A. Hickey, C. Kingsburry, D. Sean, T. N. Shendruk, and L.-X. Zhan, “Modeling the separation of macromolecules: A review of cur-rent computer simulation methods”, Electrophoresis 30, 792 (2009) [Stevens 1995] M. J. Stevens, K. Kremer, “The nature of flexible linear polyelectro-lytes in salt free solution: A molecular dynamics study”, J. Chem. Phys. 103, 1669 (1995) [Verlet 1967] L. Verlet, “Computer "experiments" on classical fluids. I. thermody-namical properties of Lennard-Jones molecules. Phys. Rev. 159, 98 (1967) [Verlet 1968] L. Verlet, “Computer "experiments" on classical Fluids. II. equilibrium correlation functions. Phys. Rev. 165, 201 (1968) [Weeks 1971] J. D. Weeks, D. Chandler, and H. C. Andersen, “Role of repulsive forces in determining the equilibrium structure of simple liquids, J. Chem. Phys. 54, 5237 (1971) [Weir 2011] M. P. Weir, S. Y. Heriot, S. J. Martin, A. J. Parnell, S. A. Holt, J. R. P. Webster, and R. A. L. Jones, “Voltage-induced swelling and deswelling of weak polybase brushes, Langmuir 27, 11000 (2011) [Yang 2009] J. Yang and D.-P. Cao, “Counterion valence-induced tunnel formation in a system of polyelectrolyte brushes grafted on two apposing walls”, J. Phys. Chem. B. 113, 11625 (2009) [Yeh 1999] I.-C. Yeh and M. L. Berkowitz, “Ewald summation for systems with slab geometry”, J. Chem. Phys. 111, 3155 (1999) [Zhulina 1992] E. B. Zhulina, O. V. Borisov, and T. Birshtein, “Structure of grafted polyelectrolyte layer”, J. Phys. II France 2, 63 (1992) [Zhulina 1997] E. B. Zhulina and O. V. Borisov, “Structure and interaction of weakly charged polyelectrolyte brushes: Self-consistent field theory”, J. Chem. Phys. 107, 5952 (1997) [Zhulina 2000] E. B. Zhulina, J. Klein Wolterink, and O. V. Borisov, “Screening effects in a polyelectrolyte brush: Self-consistent-field theory”, Macromolecules 33, 4945 (2000)
|