|
1. Embrechts, M.J., Benedek, S., “Hybrid identification of nuclear power plant transients with artificial neural networks”, IEEE Trans. on Industry Electron. 51,2004,686 – 693. 2. Lee, S.J., Seong, P.H., “A dynamic neural network based accident diagnosis advisory system for nuclear power plants”, Annals of Nuclear Energy 46, 2007, 268-281. 3. Santosh, T.V., Vinod, G., Saraf, R.K., Ghosh, A.K., Kushwaha,H.S., “Application of artificial neural networks to nuclear power plant transient diagnosis”, Reliability Engineering &; System Safety 92, 2007, 1468-1472. 4. Marseguerra, M., Zoia, A., “The auto associative neural network in signal analysis: II. Application to on-line monitoring of a simulated BWR component”, Annals of Nuclear Energy 32, 2005, 1207-1223. 5. Roverso, D., “Soft computing tools for transient classification”, Information Science: an International Journal 127, 2000, 137 – 156. 6. Roverso, D., “Plant diagnostics by transient classification: The ALADDIN approach”, International Journal of Intellegence System 17, 2002, 767 – 790. 7. Roverso, D., “Fault diagnosis with the ALADDIN transient classifier, system diagnosis and prognosis: security and condition monitoring issues", Conference No 3, Orlando FL, ETATS-UNIS (21/04/2003) 5107, 2003,162-172. 8. Roverso, D., “Dynamic empirical modeling techniques for equipment and process diagnostics in nuclear power plants”, International Journal of Nuclear Knowledge Management. 2, 2005, 239 – 248.’ 9. Kwon, K.C., “HMM-based transient identification in dynamic process”, Transaction on Control Automation, and System Engineering 2, 2000, 40-4. 10. Cholewa,W.,Frid, W., Bednarski,M., “Identification of loss-of-coolant accidents in LWRs by inverse models”, Nuclear Technology 147, 2004, 216-226. 11. Marseguerra, M., Zio, E., Oldrini, A., Brega, E., “Fuzzy identification of transients in nuclear power plants”, Annals of Nuclear Engineering and Design 225, 2003, 285-294. 12. Zio E., Baraldi P. and Roverso D., “An extended classifiability index for feature selection in nuclear transients”, Annals of Nuclear Energy 32, 2005, 1632-1649. 13. MOL Antionio, C.A., ALMEIDA José, C.S., PEREIRA Claudio, M.N.A., MARINS Eugenio, R., LAPA Celso Marcelo, F., “Neural and genetic-based approaches to nuclear transient identification including ‘don’t know’ response”, Progress in Nuclear Energy 48, 2005, 268-282. 14. Mo, K., Lee, S.J., Seong, P.H., “A dynamic neural network aggregation model for transient diagnosis in nuclear power plants”, Progress in Nuclear Energy 49, 2007. 3262-272. 15. Gottlieb, C., Anov, V., Gudowski, W., Garis, N., “Feasibility study on transient identification in nuclear power plants using support vector machines”, Nuclear Technology 155, 2005, 67-77. 16. Antonio, J., Medeiros, C.C., Schirru, R., “Identification of nuclear power plant transients using the particle swarm optimization algorithm”, Annals of Nuclear Energy 35, 2007, 576-582. 17. Baraldi, P., Pedroni, N., Zio, E., “Application of a niched pareto genetic algorithm for selecting features for nuclear transients classification”, International Journal of Intelligence System 24, 2009.118-151. 18. Nicolau, A.S., Schirru, R., Meneses, A..A..M., “Quantum evolutionary algorithm applied to transient identification of a nuclear power plant”, Progress in Nuclear Energy 53, 2011, 86e91. 19. Hadad, K., Pourahmadi, M., Majidi-Maraghi, H., “Fault diagnosis and classification based on wavelet transform and neural network”, Progress in Nuclear Energy 53 (2011), 2011, 41e47. 20. Lin, C, Chang, H.J., “Identification of pressurized water reactor transient using template matching”, Annals of Nuclear Energy 38, 2011, 1662–166. 21. Yuann, R.Y., Hsiue, J.K., Chen, P.C., Chang, J.S., “Transient and accident fast diagnostic system”, Third International Topical Meeting On Nuclear Power Plant, Seoul, Korea, 1988, B5-32–B5-40. 22. Moody, F.J., “Introduction to Unsteady Thermofluid Mechanics”, Wiley, New York, 1990. 23. 陳順宇、鄭碧娥,「統計學」,華泰出版社,2004年。
|