|
1. Han, J. and W. Gao, Surface Wettability of Nanostructured Zinc Oxide Films. Journal of Electronic Materials, 2009. 38(4): p. 601-608. 2. Huang, M.H., et al., Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001. 292(5523): p. 1897-1899. 3. Hu, W. and A. Ohta, Aqueous droplet manipulation by optically induced Marangoni circulation. Microfluidics and Nanofluidics, 2011. 11(3): p. 307-316. 4. Kwak, G., et al., Superhydrophobic ZnO Nanowire Surface: Chemical Modification and Effects of UV Irradiation. The Journal of Physical Chemistry C, 2009. 113(28): p. 12085-12089. 5. Song, J., et al., Role of OH− in the low temperature hydrothermal synthesis of ZnO nanorods. Journal of Chemical Technology &; Biotechnology, 2008. 83(3): p. 345-350. 6. Ji, L.-W., et al., Effect of seed layer on the growth of well-aligned ZnO nanowires. Journal of Physics and Chemistry of Solids, 2009. 70(10): p. 1359-1362. 7. Qin, Z., et al., Effect of hydrothermal reaction temperature on growth, photoluminescence and photoelectrochemical properties of ZnO nanorod arrays. Materials Chemistry and Physics, 2010. 123(2-3): p. 811-815. 8. Lv, J., et al., Tunable surface wettability of ZnO nanorods prepared by two-step method. Applied Surface Science, 2011. 257(17): p. 7534-7538. 9. Feng, X.J. and L. Jiang, Design and Creation of Superwetting/Antiwetting Surfaces. Advanced Materials, 2006. 18(23): p. 3063-3078. 10. Srivastava, M., B.B.J. Basu, and K.S. Rajam, Improving the Hydrophobicity of ZnO by PTFE Incorporation. Journal of Nanotechnology, 2011. 2011. 11. Sakai, M., et al., Sliding of Water Droplets on the Superhydrophobic Surface with ZnO Nanorods†† Part of the “Langmuir 25th Year: Wetting and superhydrophobicity” special issue. Langmuir, 2009. 25(24): p. 14182-14186. 12. Pal, U. and P. Santiago, Controlling the Morphology of ZnO Nanostructures in a Low-Temperature Hydrothermal Process. The Journal of Physical Chemistry B, 2005. 109(32): p. 15317-15321. 13. Gao, X., X. Li, and W. Yu, Flowerlike ZnO Nanostructures via Hexamethylenetetramine-Assisted Thermolysis of Zinc−Ethylenediamine Complex. The Journal of Physical Chemistry B, 2005. 109(3): p. 1155-1161. 14. Kong, B.H. and H.K. Cho, Formation of vertically aligned ZnO nanorods on ZnO templates with the preferred orientation through thermal evaporation. Journal of Crystal Growth, 2006. 289(1): p. 370-375. 15. Shinde, V.R., et al., Hydrophobic and textured ZnO films deposited by chemical bath deposition: annealing effect. Applied Surface Science, 2005. 245(1-4): p. 407-413. 16. Tak, Y. and K. Yong, Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method. The Journal of Physical Chemistry B, 2005. 109(41): p. 19263-19269. 17. Wu, J.J. and S.C. Liu, Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition. Advanced Materials, 2002. 14(3): p. 215-218. 18. Cui, J. and U.J. Gibson, Enhanced Nucleation, Growth Rate, and Dopant Incorporation in ZnO Nanowires. The Journal of Physical Chemistry B, 2005. 109(46): p. 22074-22077. 19. Karami, H. and E. Fakoori, Synthesis and Characterization of ZnO Nanorods Based on a New Gel Pyrolysis Method. Journal of Nanomaterials, 2011. 2011. 20. Baruah, S. and J. Dutta, pH-dependent growth of zinc oxide nanorods. Journal of Crystal Growth, 2009. 311(8): p. 2549-2554. 21. Sambath, K., et al., Morphology controlled synthesis of ZnO nanostructures by varying pH. Journal of Materials Science: Materials in Electronics: p. 1-6. 22. Hsieh, C.-T., S.-Y. Yang, and J.-Y. Lin, Electrochemical deposition and superhydrophobic behavior of ZnO nanorod arrays. Thin Solid Films, 2010. 518(17): p. 4884-4889. 23. Bae, Y.S., et al., Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures. Surface and Interface Analysis, 2010. 42(6-7): p. 978-982. 24. Song, J. and S. Lim, Effect of Seed Layer on the Growth of ZnO Nanorods. The Journal of Physical Chemistry C, 2006. 111(2): p. 596-600. 25. Liu, S.-Y., et al., The effect of pre-annealing of sputtered ZnO seed layers on growth of ZnO nanorods through a hydrothermal method. Applied Physics A: Materials Science &; Processing, 2009. 94(4): p. 775-780. 26. Li, C., et al., Effect of Seed Layer on Structural Properties of ZnO Nanorod Arrays Grown by Vapor-Phase Transport. The Journal of Physical Chemistry C, 2008. 112(4): p. 990-995. 27. Lee, J.H., I.C. Leu, and M.H. Hon, Substrate effect on the growth of well-aligned ZnO nanorod arrays from aqueous solution. Journal of Crystal Growth, 2005. 275(1-2): p. e2069-e2075. 28. Ma, M. and R.M. Hill, Superhydrophobic surfaces. Current Opinion in Colloid &; Interface Science, 2006. 11(4): p. 193-202. 29. Zhu, X., et al., Fabrication of an intelligent superhydrophobic surface based on ZnO nanorod arrays with switchable adhesion property. Applied Surface Science, 2010. 256(24): p. 7619-7622. 30. Villafiorita Monteleone, F., et al., Light-Controlled Directional Liquid Drop Movement on TiO2 Nanorods-Based Nanocomposite Photopatterns. Langmuir, 2010. 26(23): p. 18557-18563.
|