跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 19:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉建瑋
研究生(外文):JOHNNY
論文名稱:氧化锌介面之水液珠光驅動研究
論文名稱(外文):Light actuated water droplet motions on ZnO nanorods
指導教授:王玉麟王玉麟引用關係
指導教授(外文):Wang, Yu Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:54
中文關鍵詞:氧化锌超疏水液珠的運動
外文關鍵詞:ZnOSuperhydrophobicDroplet manipulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在一個開放的系統,通過使用低溫水熱法ZnO納米棒陣列的製備。 ZnO納米棒的形態的籽晶層的厚度和pH值的強烈影響。 ZnO納米棒陣列具有不同的形態和大小進行了研究,通過掃描電子顯微鏡(SEM),和接觸角測量(CAM)。它們的表面潤濕性進行了研究就其表面形貌。 ZnO納米棒與硬脂酸(SA,碳18)反應得到的超疏水性表面。然而,ZnO納米棒的表面成為親水性後通過UV光照射。表面潤濕性的變化將導致接觸角的變化,它可以驅動液滴運動。

有兩個運動發生在這個過程中,推進運動和拉運動。拉運動發生時的液滴部分的一半UV光曝光,的霧滴會走向UV光模式。推進運動時發生的液滴分別為曝光由UV光圖案的邊緣。霧滴會遠離UV光模式。這兩項議案是受兩個因素影響:接觸角的影響和加熱。液滴的操縱來實現,通過使用這兩個因素。

ZnO nanorods arrays were prepared in an open system by using a low temperature hydrothermal method. The morphology of the ZnO nanorods is strongly influenced by the thickness of seed layer and pH value. ZnO nanorod arrays with different morphology and size were studied by scanning electron microscopy (SEM), and contact angle measurement (CAM). Their surface wettability were studied in relation to their surface morphologies. The superhydrophobic surface was obtained by reacting stearic acid (SA, Carbon 18) with ZnO nanorod. However, the surface of ZnO nanorod became Hydrophilic after being irradiated by UV light. The change of surface wettability will led to contact angle change which can drive droplet movement.

There are two motion that occurred in this process, Pushing motion and Pulling motion. Pulling motion occurred when half of the droplet part were exposured by UV light, the droplet will move towards UV light pattern. Pushing motion occurred when the droplet were exposure by the edge of UV light pattern. The droplet will moving away from UV light pattern. These two motion were affected by two factors: contact angle effect and heating. The manipulation of droplet is achieved by using these two factors.

Chapter 1 Introduction…………………………………………………1
1.1 Motivation……………………………………………………....1
1.2 Background……………………………………………………..2
1.3 Goals……………………………………………………………3
Chapter 2 Literature review……………………………………………4
2.1 Factor that can affect growth of the ZnO nanorods…………….4
2.1.1 Effect of zinc salt concentration………………………….....4
2.1.2 Effect of pH value in the ZnO nanorod……………………..6
2-1.3 Effect of growth temperature in the ZnO nanorod………….8
2-1.4 Effect of Seed layer on the growth of the ZnO nanorod…..10
2-2 Fabrication of superhydrophobic ZnO surface……………….12
2-2.1. Forming surface nanostructure to increase surface roughness
…………………………………………………………….13
2-2.1-a Effect of UV irradiation………………………………..16
2-2.2 Modifying surface with low surface energy material coatings
……………………………………………………………..17
2-3 Manipulation droplet movement……………………………20
2-4 Summary of Literature review……………………………...22
Chapter 3 Experiment plan……………………………………………23
3.1 Experiment method……………………………………………23
3.1.1 Research plan………………………………………………24
3-2. Growth of ZnO nanorod array………………………………..25
3-2.1 Preparation for solution based hydrothermal method for ZnO nanorods array growth……………………………..25
3-2.2 Preparation ZnO nanorod array using sputter to grow thin film as seed layer and using hydrothermal method for ZnO array growth…………………………………………….26
3-2.3 Fabrication of superhydrophobic surface on ZnO nanorod..28
3-2.4 Design of droplet movement on the zinc oxide nanorod…..28
Chapter 4 Experiment result………………………………....………….33
4-1 Growth of ZnO nanorod based on hydrothermal method……..33
4-1.1 SEM image of Zinc oxide nanorod grown on the silicon substrate…………………………………………………34
4-1.2 Zinc oxide nanorod Using sputter to grow zinc oxide Thin film or zinc oxide seed layer on the different substrate…37
4-2 Fabrication of superhydrophobic surface on Zinc oxide nanorod result…………………………………………………….43
4-2.1 UV effect to ZnO nanorod…………………………………44
4-3 Droplet manipulation result…………………………………...45
4-3.1 Top approach………………………………………………45
4-3.2 Back approach……………………………………………..45
Chapter 5 Conclusion………………………………………………....51
Chapter 6 References………………………………………………….52

1. Han, J. and W. Gao, Surface Wettability of Nanostructured Zinc Oxide Films. Journal of Electronic Materials, 2009. 38(4): p. 601-608.
2. Huang, M.H., et al., Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001. 292(5523): p. 1897-1899.
3. Hu, W. and A. Ohta, Aqueous droplet manipulation by optically induced Marangoni circulation. Microfluidics and Nanofluidics, 2011. 11(3): p. 307-316.
4. Kwak, G., et al., Superhydrophobic ZnO Nanowire Surface: Chemical Modification and Effects of UV Irradiation. The Journal of Physical Chemistry C, 2009. 113(28): p. 12085-12089.
5. Song, J., et al., Role of OH− in the low temperature hydrothermal synthesis of ZnO nanorods. Journal of Chemical Technology &; Biotechnology, 2008. 83(3): p. 345-350.
6. Ji, L.-W., et al., Effect of seed layer on the growth of well-aligned ZnO nanowires. Journal of Physics and Chemistry of Solids, 2009. 70(10): p. 1359-1362.
7. Qin, Z., et al., Effect of hydrothermal reaction temperature on growth, photoluminescence and photoelectrochemical properties of ZnO nanorod arrays. Materials Chemistry and Physics, 2010. 123(2-3): p. 811-815.
8. Lv, J., et al., Tunable surface wettability of ZnO nanorods prepared by two-step method. Applied Surface Science, 2011. 257(17): p. 7534-7538.
9. Feng, X.J. and L. Jiang, Design and Creation of Superwetting/Antiwetting Surfaces. Advanced Materials, 2006. 18(23): p. 3063-3078.
10. Srivastava, M., B.B.J. Basu, and K.S. Rajam, Improving the Hydrophobicity of ZnO by PTFE Incorporation. Journal of Nanotechnology, 2011. 2011.
11. Sakai, M., et al., Sliding of Water Droplets on the Superhydrophobic Surface with ZnO Nanorods†† Part of the “Langmuir 25th Year: Wetting and superhydrophobicity” special issue. Langmuir, 2009. 25(24): p. 14182-14186.
12. Pal, U. and P. Santiago, Controlling the Morphology of ZnO Nanostructures in a Low-Temperature Hydrothermal Process. The Journal of Physical Chemistry B, 2005. 109(32): p. 15317-15321.
13. Gao, X., X. Li, and W. Yu, Flowerlike ZnO Nanostructures via Hexamethylenetetramine-Assisted Thermolysis of Zinc−Ethylenediamine Complex. The Journal of Physical Chemistry B, 2005. 109(3): p. 1155-1161.
14. Kong, B.H. and H.K. Cho, Formation of vertically aligned ZnO nanorods on ZnO templates with the preferred orientation through thermal evaporation. Journal of Crystal Growth, 2006. 289(1): p. 370-375.
15. Shinde, V.R., et al., Hydrophobic and textured ZnO films deposited by chemical bath deposition: annealing effect. Applied Surface Science, 2005. 245(1-4): p. 407-413.
16. Tak, Y. and K. Yong, Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method. The Journal of Physical Chemistry B, 2005. 109(41): p. 19263-19269.
17. Wu, J.J. and S.C. Liu, Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition. Advanced Materials, 2002. 14(3): p. 215-218.
18. Cui, J. and U.J. Gibson, Enhanced Nucleation, Growth Rate, and Dopant Incorporation in ZnO Nanowires. The Journal of Physical Chemistry B, 2005. 109(46): p. 22074-22077.
19. Karami, H. and E. Fakoori, Synthesis and Characterization of ZnO Nanorods Based on a New Gel Pyrolysis Method. Journal of Nanomaterials, 2011. 2011.
20. Baruah, S. and J. Dutta, pH-dependent growth of zinc oxide nanorods. Journal of Crystal Growth, 2009. 311(8): p. 2549-2554.
21. Sambath, K., et al., Morphology controlled synthesis of ZnO nanostructures by varying pH. Journal of Materials Science: Materials in Electronics: p. 1-6.
22. Hsieh, C.-T., S.-Y. Yang, and J.-Y. Lin, Electrochemical deposition and superhydrophobic behavior of ZnO nanorod arrays. Thin Solid Films, 2010. 518(17): p. 4884-4889.
23. Bae, Y.S., et al., Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures. Surface and Interface Analysis, 2010. 42(6-7): p. 978-982.
24. Song, J. and S. Lim, Effect of Seed Layer on the Growth of ZnO Nanorods. The Journal of Physical Chemistry C, 2006. 111(2): p. 596-600.
25. Liu, S.-Y., et al., The effect of pre-annealing of sputtered ZnO seed layers on growth of ZnO nanorods through a hydrothermal method. Applied Physics A: Materials Science &; Processing, 2009. 94(4): p. 775-780.
26. Li, C., et al., Effect of Seed Layer on Structural Properties of ZnO Nanorod Arrays Grown by Vapor-Phase Transport. The Journal of Physical Chemistry C, 2008. 112(4): p. 990-995.
27. Lee, J.H., I.C. Leu, and M.H. Hon, Substrate effect on the growth of well-aligned ZnO nanorod arrays from aqueous solution. Journal of Crystal Growth, 2005. 275(1-2): p. e2069-e2075.
28. Ma, M. and R.M. Hill, Superhydrophobic surfaces. Current Opinion in Colloid &; Interface Science, 2006. 11(4): p. 193-202.
29. Zhu, X., et al., Fabrication of an intelligent superhydrophobic surface based on ZnO nanorod arrays with switchable adhesion property. Applied Surface Science, 2010. 256(24): p. 7619-7622.
30. Villafiorita Monteleone, F., et al., Light-Controlled Directional Liquid Drop Movement on TiO2 Nanorods-Based Nanocomposite Photopatterns. Langmuir, 2010. 26(23): p. 18557-18563.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top