( 您好!臺灣時間:2021/03/06 03:45
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Hsieh, Hui-An
論文名稱(外文):Using LA-ICP-MS to investigate biodistribution of quantum dots in rat organs
指導教授(外文):Wang, Chu-Fang
外文關鍵詞:LA-ICP-MSQuantum dotsBiodistribution
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
與傳統的螢光染料相比,量子點(QDs)有許多卓越的光學性能,是一種能廣泛應用於生醫領域的理想螢光探針。因此,了解它們的毒性以及它們如何在體內分佈是很重要的。雷射剝蝕感應耦合電漿質譜儀(LA-ICP-MS)在生物樣品的元素空間分布研究中是一個強而有力的分析工具。在本研究中,我們探討了利用LA-ICP-MS分析量子點在大鼠和小鼠器官組織中生物分布的可行性。實驗過程中,將CdSeTe/ZnS核殼型量子點由氣管灌注或靜脈注射到老鼠體內。 結果證實量子點以氣管灌注小鼠的方式會累積在肺臟,而以靜脈注射大鼠的方式會累積在肝臟、脾臟和腎上腺等器官組織中。由於Cd-114是量子點的主要組成成份,可以選擇作為量子點生物分布的標誌物。由螢光顯微鏡觀察所得到的量子點位置和LA-ICP-MS所得到的Cd-114影像間對比的高一致性,以及量子點組成元素間的高度相關性,可以證實Cd-114的確來自於量子點本身。另一方面,Cd-114與Se-82間的低相關性以及Cd-114與Se-82的LA-ICP-MS訊號強度比值,可做為評估量子點降解與否的依據。這些螢光顯微鏡所無法觀察到的重要發現,說明了LA-ICP-MS作為分析量子點生物分布的優勢:不僅可以定位量子點在生物組織中的分佈,同時可以了解量子點是否發生降解反應。

Quantum dots (QDs) have many remarkable optical properties compared to conventional fluorophores and are ideal candidates for versatile biological applications. It is thus important to understand their toxicity and how they are distributed within a body. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful analytical tool for investigating the spatial distribution of elements in biological samples. In this study, we explore the feasibility of LA-ICP-MS to study QDs biodistribution in tissue sections from mice and rats. CdSeTe/ZnS core–shell QDs were administered to the animals by intratracheal instillation or intravenous injection. We demonstrated that QDs are accumulated in mouse lungs following intratracheal instillation and rat liver, spleen and adrenal gland following intravenous injection. Cd-114 is the specific marker of biodistribution of QDs because it is the major component of QDs and the most abundant isotope. From the high correspondence between locations of QDs from the fluorescence observation and the distribution image of Cd-114, and the high correlation coefficients between QDs component element, we can confirm that Cd-114 indeed come from QDs. On the other hand, the bad correlations between Cd-114 and Se-82 and their LA-ICP-MS signal ratio can be an indicator of partial dissociation of QDs. These results which cannot be obtained by fluorescence microscopy illustrated the advantages of LA-ICP-MS. Not only LA-ICP-MS can locate QDs but also provide the information on whether QDs dissociation occurred. In this work, for the first time, we showed that LA-ICP-MS can be employed to investigate QDs biodistribution in tissue sections from animals.
2.1. Quantum dots
2.1.1. Developments of QDs
2.1.2. Structure and composition of QDs
2.1.3. Optical Properties of QDs
2.1.4. Applications of QDs
2.1.5. Toxicity studies of QDs
2.1.6. Biodistribution studies of QDs
2.2. LA-ICP-MS
2.2.1. Developments and applications
2.2.2. Imaging technique for elemental analysis in biological samples
CHAPTER 3: Principle of LA-ICP-MS
3.1. Laser ablation system
3.2. ICP-MS
3.2.1. Sample introduction system
3.2.2. ICP ionization source
3.2.3. Interface and ion optic system
3.2.4. Quadrupole mass analyzer
3.2.5. Ion detector
4.1. Materials
4.1.1. Quantum dots
4.1.2. Reagents
4.2. Instruments
4.2.1. LA-ICP-MS system
4.2.2. Fluorescence microscope system
4.3. Animals and sample preparation
4.3.1. Intratracheally instillated mice
4.3.2. Intravenously injected rats
4.4. Data processing
4.5. Heterogeneous images registration
4.6. Summary
5.1. Reliability in analyzing QDs by LA-ICP-MS
5.2. Imaging in lung tissues after intratracheal instillation of QDs
5.3. Imaging in tissue sections after intravenous injection of QDs
5.3.1. Imaging in spleen, liver and kidney tissue sections
5.3.2. Correlation analysis between elements in the tissue sections
6.1. Conclusions
6.2. Future work

Agilent Technologies, Inc. (2001). Agilent 7500 Inductively Coupled Plasma Mass Spectrometry.
Agilent Technologies, Inc. (2005). ICP-MS: Inductively Coupled Pasma Mass Spectrometry: A Primer.
Akerman, M., Chan, W., Laakkonen, P., Bhatia, S., & Ruoslahti, E. (2002). Nanocrystal Targeting in Vivo. Proceedings of the National Academy of Sciences, 99(20), pp. 12617-12621.
Arrowsmith, P. (1987). Laser Ablation of Solids for Elemental Analysis by Inductively Coupled Plasma Mass Spectrometry. Anal. Chem., 59, pp. 1437-1444.
Azzazy, H., Mansour, M., & Kazmierczak, S. (2006). Nanodiagnostics: A New Frontier for Clinical Laboratory Medicine. Clinical Chemistry, 52(7), pp. 1238-1246.
Ballou, B., Ernst, L., Andreko, S., Harper, T., Fitzpatrick, J., Waggoner, A., et al. (2007). Sentinel Lymph Node Imaging Using Quantum Dots in Mouse Tumor Models. Bioconjugate Chem., 18(2), pp. 389–396.
Ballou, B., Lagerholm, B., Ernst, L., Bruchez, M., & Waggoner, A. (2004). Noninvasive imaging of quantum dots in mice. Bioconjug. Chem., 15(1), pp. 79–86.
Baumann, H. (1992). Solid Sampling with Inductively Coupled Plasma-Mass Spectrometry — A Survey. Fresenius' Journal of Analytical Chemistry, 342(12), pp. 907-916.
Becker, J. (2002). State-of-the-Art and Progress in Precise and Accurate Isotope Ratio Measurements by ICP-MS and LA-ICP-MS. J. Anal. At. Spectrom., 17, pp. 1172-1185.
Becker, J., & Dietze, H. (2000). Inorganic Mass Spectrometric Methods for Trace, Ultratrace, Isotope, and Surface Analysis. Int. J. Mass Spectrom., 197(1-3), pp. 1-35.
Becker, J., & Salber, D. (2010c). New Mass Spectrometric Tools in Brain Research. TrAC Trends in Analytical Chemistry, 29(9), pp. 966-979.
Becker, J., Breuer, U., Hsieh, H., Osterholt, T., Kumtabtim, U., Wu, B., et al. (2010b). Bioimaging of Metals and Biomolecules in Mouse Heart by Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Secondary Ion Mass Spectrometry. Anal. Chem., 82, pp. 9528–9533.
Becker, J., Dietrich, R., Matusch, A., Pozebon, D., & Dressler, V. (2008). Quantitative Images of Metals in Plant Tissues Measured by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Spectrochim Acta B, 63, pp. 1248–1252.
Becker, J., Gorbunoff, A., Zoriy, M., Izmer, A., & Kayser, M. (2006). Evidence of Near-Field Laser Ablation Inductively Coupled Plasma Mass Spectrometry (NF-LA-ICP-MS) at Nanometre Scale for Elemental and Isotopic Analysis on Gels and Biological Samples. . J. Anal. At. Spectrom., 21, pp. 19-25.
Becker, J., Zoriy, M., Becker, J., Dobrowolska, J., & Matusch, A. (2007). Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in Elemental Imaging of Biological Tissues and in Proteomics. J. Anal. At. Spectrom., 22, pp. 736–744.
Becker, J., Zoriy, M., Dehnhardt, M., Pickhardt, C., & Zilles, K. (2005a). Copper, Zinc, Phosphorus and Sulfur Distribution in Thin Section of Rat Brain Tissues Measured by Laser Ablation Inductively Coupled Plasma Mass Spectrometry Possibility for Small-Size Tumor Analysis. J. Anal. At. Spectrom., 20, pp. 912-917.
Becker, J., Zoriy, M., Matusch, A., Wu, B., Salber, D., Palm, C., et al. (2010a). Bioimaging of Metals by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Mass Spectrom Rev., 29(1), pp. 156-175.
Becker, J., Zoriy, M., Pickhardt, C., N., P.-G., & K., Z. (2005b). Imaging of Copper, Zinc, and Other Elements in Thin Section of Human Bbrain Samples (Hippocampus) by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Anal Chem., 77(10), pp. 3208-3216.
Broeck, B. (2004). Laser Ablation - Inductively CoupledPlasma - Mass Spectroscopy (LA-ICP-MS).
Buda, A., & Jarynowski, A. (2010). Life-time of Correlations and its Applications. (Vol. vol.1). Wroclaw: Niezależne Wydawnictwo.
Burzo, M., Komarov, P., & Raad, P. (2004). Non-Contact Thermal Conductivity Measurements of p-doped and n-doped Gold Covered Natural and Isotopically-Pure Slicon and Their Oxides.
Cai, W., Chen, K., Li, Z., Gambhir, S., & Chen, X. (2007). Dual-Function probe for PET and Near-Infrared Fluorescence Imaging of Tumor Vasculature. The journal of nuclear medicine, 48(11), pp. 1862-1870.
Cai, W., Shin, D., Chen, K., Gheysens, O., Cao, Q., Wang, S., et al. (2006). Peptide-Labeled Near-Infrared Quantum Dots for Imaging Tumor Vasculature in Living Subjects. Nano Letters, 6(4), pp. 669-676.
Chan, W., & Nie, S. (1998). Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science, 281(5385), pp. 2016-2018.
Chatziioannou, A. (2008). VP-PET: A New Imaging Modality? J. Nucl. Med. , 49(3), pp. 345-346.
Cho, S., Maysinger, D., Jain, M., Roder, B., Hackbarth, S., & Winnik, F. (2007). Long-Term Exposure to CdTe Quantum Dots Causes Functional Impairments in Live Cells. Langmuir, 23(4), pp. 1974-1980.
Choi, H., Ipe, B., Misra, P., Lee, J., Bawendi, M., & Frangioni, J. (2009). Tissue- and Organ-selective biodistribution of NIR Fluorescent Quantum Dots. Nano Lett., 9(6), pp. 2354–2359.
Dabbousi, B., Rodriguez-Viejo, J., Mikulec, F., Heine, J., Mattoussi, H., Ober, R., et al. (1997). (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J. Phys. Chem. B, 101(46), pp. 9463–9475.
Derfus, A., Chan, W., & Bhatia, S. (2004). Intracellular Delivery of Quantum Dots for Live Cell Labeling and Organelle Tracking. Adv. Mater., 16(12), pp. 961-966.
Diagaradjane, P., Orenstein-Cardona, J., E Colon-Casasnovas, N., Deorukhkar, A., Shentu, S., Kuno, N., et al. (2008). Imaging Epidermal Growth Factor Receptor Expression in Vivo: Pharmacokinetic and Biodistribution Characterization of a Bioconjugated Quantum Dot Nanoprobe. Clin. Cancer Res., 14(3), pp. 731-741.
Downer, N. (2008). Method Development for the Digestion and Analysis of Four Common Sedimentary Lithologies using ICP-OES and ICP-MS. University of Johannesburg.
Driscoll, K., Costa, D., Hatch, G., Henderson, R., Oberdorster, G., Salem, H., et al. (2000). Intratracheal Instillation as an Exposure Technique for the Evaluation of Respiratory Tract Toxicity: Uses and Limitations. Toxicol. Sci., 55(1), pp. 24-35.
Durrant, S., & Ward, N. (2005). Recent biological and environmental applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J. Anal. At. Spectrom., 20, pp. 821-829.
Duval, M., Aubert, M., Hellstrom, J., & Grun, R. (2011). High Resolution LA-ICP-MS Mapping of U and Th Isotopes in an Early Pleistocene Equid Tooth from Fuente Nueva-3 (Orce, Andalusia, Spain). Quaternary Geochronology , 6(5), pp. 458-467.
Ecyhmuller, A., Voβmeyer, T., Mews, A., & Weller, H. (1994). Transient Photobleaching in the Quantum Dot Quantum Well CdS/HgS/CdS. Journal of Luminescence, 58, pp. 223-226.
Fail, P., & Anderson, S. (2002). Monitoring Endocrine Function in Males: Using Intra‐Atrial Cannulas to Monitor Plasma Hormonal Dynamics in Toxicology Experiments. Current Protocols in Toxicology.
Fernandez, B., Claverie, F., Pecheyran, C., D. O., & Claverie, F. (2007). Direct Analysis of Solid Samples by fs-LA-ICP-MS. TrAC Trends in Analytical Chemistry, 26(10), pp. 951-966.
Fischer, H., Liu, L., Pang, K., & Chan, W. (2006). Pharmacokinetics of Nanoscale Quantum Dots: In Vivo Distribution, Sequestration, and Clearance in the Rat. Adv. Funct. Mater., 16(10), pp. 1299–1305.
Gao, X., Chan, W., & Nie, S. (2002). Quantum-Dot Nanocrystals for Ultrasensitive Biological Labeling and Multicolor Optical Encoding. J Biomed Opt., 7(4), pp. 532-537.
Gao, X., Cui, Y., Levenson, R., Chung, L., & Nie, S. (2004). In-Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots. Nature Biotechnol, 22, pp. 969-976.
Geertsen, C., Briand, A., Chartier, F., Lacour, J., Mauchien, P., Sjostrom, S., et al. (1994). Comparison Between Infrared and Ultraviolet Laser Ablation at Atmospheric Pressure-Implications for Solid Sampling Inductively Coupled Plasma Spectrometry. J. Anal. At. Spectrom., 9, pp. 17-22.
Geys, J., Nemmar, A., Verbeken, E., Smolders, E., Ratoi, M., Hoylaerts, M., et al. (2008). Acute Toxicity and Prothrombotic Effects of Quantum Dots: Impact of Surface Charge. Environmental Health Perspectives, 116(12), pp. 1607-1613.
Gopee, N., Roberts, D., Webb, P., Cozart, C., Siitonen, P., Warbritton, A., et al. (2007). Migration of Intradermally Injected Quantum Dots to Sentinel Organs in Mice. Toxicol. Sci., 98(1), pp. 249–257.
Gray, A. (1985). Solid Sample Introduction by Laser Ablation for Inductively Coupled Plasma Source Mass Spectrometry. Analyst, 110(5), pp. 551-556.
Guillong, M., Horn, I., & Gunther, D. (2002). Capabilities of a Homogenized 266 nm Nd:YAG Laser Ablation System for LA-ICP-MS. J. Anal. At. Spectrom., 17, pp. 8-14.
Gunther, D., & Hattendorf, B. (2005). Solid Sample Analysis using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. 24(3), pp. 255-265.
Haesselbarth, A., Eychmueller, A., Eichberger, R., Giersig, M., Mews, A., & Weller, H. (1993). Chemistry and Photophysics of Mixed Cadmium Sulfide/Mercury Sulfide Colloids. J. Phys. Chem., 97(20), pp. 5333–5340.
Hardman, R. (2006). A Toxicologic Review of Quantum Dots Toxicity Depends on Physicochemical and Environmental Factors. Environmental Health Perspectives, 114, pp. 165-172.
Hill, S. (2006). Inductively Coupled Plasma Spectrometry and Its Applications. John Wiley & Sons.
Hines, M., & Guyot-Sionnest, P. (1996). Synthesis and Characterization of Strongly Luminescing ZnS-CappedCdSe Nanocrystals. J. Phys. Chem., 100(2), pp. 468–471.
Hsieh, J., Ho, M., Wu, P., Chou, P., Tsai, T., & Chi, Y. (2006). Iridium-Complex Modified CdSe/ZnS Quantum Dots; a Conceptual Design for Bi-Functionality toward Imaging and Photosensitization. Chem Commun (Camb), pp. 615–617.
Hu, J., Zhang, X., Dong, X., Collins, L., Sawyer, G., & Fabre, J. (2005). A Remarkable Permeability of Canalicular Tight Junctions Might Facilitate Retrograde, Non-Viral Gene Delivery to the Liver via the Bile Duct. Gut, 54, pp. 1473-1479.
Hughes, S., Fry, R., & Brady, J. (2008). Laser Ablation for Direct ICP and ICP-MS Analysis. Retrieved from Gases & Instrumentation International Magazine: http://www.gasesmag.com/articles.php?pid=36
Izmer, A. (2006). Method development using ICP-MS and LA-ICP-MS and their application in environmental and material science.
Jacobsen, N., Moller, P., Jensen, K., Vogel, U., Ladefoged, O., Loft, S., et al. (2009). Lung Inflammation and Genotoxicity Following Pulmonary Exposure to Nanoparticles in ApoE-/- Mice. Particle and Fibre Toxicology, 6(2), pp. 1-17.
Jaiswal, J., & Simon, S. (2004). Potentials and Pitfalls of Fluorescent Quantum Dots for Biological Imaging. Trends in Cell Biology, 14(9), pp. 497-504.
Jaiswal, J., Mattoussi, H., Mauro, J., & Simon, S. (2002). Long-term Multiple Color Imaging of Live Cells Using Quantum Dot Bioconjugates. Nat. Biotechnol., 21, pp. 47-51.
Jayasinghe, S. (2007). Investigation of Selenoproteome and Metalloproteome of Seeds of Bertholletia Excelsa and Metalloproteome of Seds of Glycine Max by LC and MS Techniques. Arts and Sciences : Chemistry.
Kagan, V., Bayir, H., & Shvedova, A. (2005). Nanomedicine and Nanotoxicology:Two Sides of the Same Coin. Nanomedicine , 1(4), pp. 313-316.
Kim, S., Lim, Y., Soltesz, E., De Grand, A., Lee, J., Nakayama, A., et al. (2004). Near-infrared Fluorescent Type II Quantum Dots for Sentinel Lymph Node Mapping. Nat. Biotechnol., 22, pp. 93-97.
Kindness, A., Sekaran, N., & Feldmann, J. (2003). Two-Dimensional Mapping of Copper and Zinc in Liver Sections by Laser Ablation–Inductively Coupled Plasma Mass Spectrometry. Clinical Chemistry, 49, pp. 1916-1923.
Klostranec, J., & Chan, W. (2006). Quantum Dots in Biological and Biomedical Research: Recent Progress and Present Challenges. Adv. Mater., 18(15), pp. 1953-1964.
Kosler, J., & Sylvester, P. J. (2003). Present Trends and the Future of Zircon in Geochronology: Laser Ablation ICPMS. Reviews in Mineralogy and Geochemistry, 53, pp. 243-275.
Krennera, H., & Petroffa, P. (2009). Quantum Posts with Tailored Structural, Electronic and Optical Properties for Optoelectronic and Quantum Electronic Device Applications. Solid State Communications, 149(35-36), pp. 1386-1394.
Larson, D., Zipfel, W., Williams, R., Clark, S., Bruchez, M., Wise, F., et al. (2003). Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo. Science, 300, pp. 1434-1436.
Lin, C., Chang, L., Chang, H., Yang, M., Yang, C., Lai, W., et al. (2009). The Chemical Fate of the Cd/Se/Te-based Quantum Dots 705 in the Biological System: Toxicity Implications. Nanotechnology, 20(21), pp. 1-8.
Lin, C., Yang, M., Chang, L., Yang, C., Chang, H., Chang, W., et al. (2011). Cd/Se/Te-based Quantum Dot 705 Modulated Redox Homeostasis with Hepatotoxicity in Mice. Nanotoxicology, 5(4), pp. 650-663.
Los, G., Encell, L., McDougall, M., Hartzell, D., Karassina, N., Zimprich, C., et al. (2008). HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis. ACS Chem. Biol., 3(6), pp. 373–382.
Lovric, J., Bazzi, H., Cuie, Y., Fortin, G., Winnik, F., & D., M. (2005). Differences in Subcellular Distribution and Toxicity of Green and Red Emitting CdTe Quantum Dots. J. Mol. Med., 83(5), pp. 377–385.
Mao, X., Chan, W., Shannon, M., & Russo, R. (1993). Plasma Shielding during Picosecond Laser Sampling of Solid Materials by Ablation in He versus Ar Atmosphere. J. Appl. Phys., 74(8), pp. 4915-4922.
Matusch, A., Depboylu, C., Palm, C., Wu, B., Hoglinger, G., Schafer, M., et al. (2009). Cerebral Bioimaging of Cu, Fe, Zn, and Mn in the MPTP Mouse Model of Parkinson’s Disease using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Journal of The American Society for Mass Spectrometry, 21(1), pp. 161-171.
Michalet, X., Pinaud, F., Bentolila, L., Tsay, J., Doose, S., Li, J., et al. (2005). Quantum Dots for Live Cells, In Vivo Imaging, and Diagnostics. Science, 307, pp. 538-544.
Milanino, R., Marrella, M., Gasperini, R., Pasqualicchio, M., & Velo, G. (1993). Copper and Zinc body Levels in Inflammation: An Overview of the Data Obtained from Animal and Human Studies. Agents Actions., 39(3-4), pp. 195-209.
Miller, L., Wang, Q., Telivala, T., Smith, R., Lanzirotti, A., & Miklossy, J. (2006). Synchrotron-Based Infrared and X-ray Imaging Shows Focalized Accumulation of Cu and Zn Co-Localized with Beta-Amyloid Deposits in Alzheimer's Disease. J Struct Biol., 155(1), pp. 30-37.
Montaser, A., Chan, S., & Koppenaal, D. (1987). Inductively Coupled Helium Plasma as an Ion Source for Mass Spectrometry. Anal. Chem., 59(8), pp. 1240-1242.
Murray, C., Norris, D., & Bawendi, M. (1993). Synthesis and Characterization of Nearly Monodisperse CdE (E = sulfur, selenium, tellurium) Semiconductor Nanocrystallites. J. Am. Chem. Soc., 115(19), pp. 8706-8715.
Orndorff, R., & Rosenthal, S. (2009). Neurotoxin Quantum Dot Conjugates Detect Endogenous Targets Expressed in Live Cancer Cells. Nano Lett, 9, pp. 2589–2599.
Osterholt, T., Salber, D., Matusch, A., Becker, J., & Palm, C. (2011). IMAGENA: Image Generation and Analysis–An Interactive Software Tool Handling LA-ICP-MS Data. InternationalJournalofMassSpectrometry, 307(1-3), pp. 232-239.
Ozkan, M. (2004). Quantum Dots and Other Nanoparticles: What Can They Offer to Drug Discovery? Drug Discovery Today, 9(24), pp. 1065-1071.
Parak, W., Boudreau, R., Gros, M., Gerion, D., Zanchet, D., Micheel, C., et al. (2002). Cell Motility and Metastatic Potential Studies Based on Quantum Dot Imaging of Phagokinetic Tracks. Adv. Mater., 14(12), pp. 882-885.
Pelley, J., Daar, A., & Saner, M. (2009). State of Academic Knowledge on Toxicity and Biological Fate of Quantum Dots. Toxicol. Sci., 112(2), pp. 276-296.
Peng, Z., & Peng, X. (2001). Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J. Am. Chem. Soc., 123(1), pp. 183–184.
PerkinElmer, Inc. (2001). The 30-Minute Guide to ICP-MS. Retrieved from http://www.esc.cam.ac.uk/esc/files/Department/facilities/icp-ms/30-min-guide.pdf
Rhyner, M., Smith, A., Gao, X., Mao, H., Yang, L., & Nie, S. (2008). Quantum Dots and Targeted Nanoparticle Probes for In Vivo Tumor Imaging. Fundamental Biomedical Technologies, 102, pp. 413-425.
Robe, A., Pic, E., Lassalle, H., Bezdetnaya, L., Guillemin, F., & Marchal, F. (2008). Quantum Dots in Axillary Lymph Node Mapping: Biodistribution Study in Healthy Mice. BMC Cancer, 8, p. 111.
Russo, R., Mao, X., Gonzalez, J., & Mao, S. (2002). Femtosecond Laser Ablation-ICP-MS. J. Anal. At. Spectrom., 17, pp. 1072-1075.
Santos, M., Wagner, M., Wu, B., Scheider, J., Oehlmann, J., Cadore, S., et al. (2009). Biomonitoring of Metal Contamination in a Marine Prosobranch Snail (Nassarius Reticulatus) by Imaging Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Talanta, 80(2), pp. 428-433 .
Schipper, M., Cheng, Z., Lee, S., Bentolila, L., Iyer, G., Rao, J., et al. (2007). MicroPET-Based Biodistribution of Quantum Dots in Living Mice. Journal of Nuclear Medicine, 48(9), pp. 1511-1518.
Schipper, M., Iyer, G., Koh, A., Cheng, Z., Ebenstein, Y., Aharoni, A., et al. (2009). Particle Size, Surface Coating, and PEGylation Influence the Biodistribution of Quantum Dots in Living Mice. Small, 5(1), pp. 126-134.
Schooss, D., Mews, A., Eychmuller, A., & Weller, H. (1994). Quantum-dot Quantum Well CdS/HgS/CdS: Theory and Experiment. Phys. Rev. B., 49(24), pp. 17072–17078.
Seuma, J., Bunch, J., Cox, A., McLeod, C., Bell, J., & Murray, C. (2008). Combination of immunohistochemistry and laser ablation ICP mass spectrometry for imaging of cancer biomarkers. Proteomics, 8, pp. 3775–3784.
Shin, S., Kim, I.-H., Kang, W., Yang, J., & Hah, S. (2010). An Aternative to Western Blot Analysis Using RNA Aptamer-Functionalized Quantum Dots. Bioorganic & Medicinal Chemistry Letters, 20(11), pp. 3322-3325 .
Strlič, M., Šelih, V., & Kolar, J. (n.d.). Analytical Methods Based on Laser Ablation Sampling. Retrieved from LAS: http://alpha1.infim.ro/cost/pagini/handbook/chapters/lasm.htm
Sukhanova, A., Devy, J., Venteo, L., Kaplan, H., Artemyev, M., Oleinikov, V., et al. (2004). Biocompatible Fluorescent Nanocrystals for Immunolabeling of Membrane Proteins and Cells. Anal. Biochem., 324, pp. 60-67.
Sylvester, P., & Eggins, S. (1997). Analysis of Re, Au, Pd, Pt and Rh in NIST Glass Certified Reference Materials and Natural Basalt Glasses by Laser Ablation ICP-MS. Geostandards Newsletter, 21(2), pp. 215–229.
Talapin, D., Rogach, A., Kornowski, A., Haase, M., & Weller, H. (2001). Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. Nano Lett., 1(4), pp. 207-211.
Tissue, B. (2000). Quadrupole Mass Spectrometry. Retrieved from The Chemistry Hypermedia Project.: http://www.files.chem.vt.edu/chem-ed/ms/quadrupo.html
Torchilin, V. (2007). Targeted Pharmaceutical Nanocarriers for Cancer Therapy and Imaging. The AAPS Journal, 9(2), pp. E128-147.
Tye, C. (2000). Breakthrough Detector Technology - Fastest Data Acquisition over the Widest Dynamic Range.
Vashist, S., Tewari, R., Bajpai, R., Bharadwaj, L., & Raiteri, R. (2006). Review of Quantum Dot Technologies for Cancer Detection and Treatment. AzoJono J. Nanotech., 2, pp. 1-14.
Walle, M. (2009). Fundamental and Applied Studies on Femtosecond Laser Ablation ICP-MS for Quantitative Analysis of Solids. . Zurich: ETH .
Walling, M., Novak, J., & Shepard, J. (2009). Quantum Dots for Live Cell and In Vivo Imaging. Int. J. Mol. Sci., 10(2), pp. 441-491.
Wei, Y., Jana, N., Tan, S., & Ying, J. (2009). Surface Coating Directed Cellular Delivery of TAT-Functionalized Quantum Dots. Bioconjug Chem, 20, pp. 1752–1758.
Woodward, J., Kennel, S., Mirzadeh, S., Dai, S., Wall, J., Richey, T., et al. (2007). In Vivo SPECT/CT Imaging and Biodistribution Using Radioactive Cd125mTe/ZnS Nanoparticles. Nanotechnology, 18(17), pp. 1-5.
Wu, B., Niehren, S., & Becker, J. (2011). Mass Spectrometric Imaging of Elements in Biological Tissues by New BrainMet Technique—Laser Microdissection Inductively Coupled Plasma Mass Spectrometry (LMD-ICP-MS). J. Anal. At. Spectrom., 26, pp. 1653-1659.
Wu, X., Liu, H., Liu, J., Haley, K., Treadway, J., Larson, J., et al. (2003). Immunofluorescent Labeling of Cancer Marker Her2 and Other Cellular Targets with Semiconductor Quantum Dots. Nat. Biotechnol., 21, pp. 41-46.
Yaghini, E., Seifalian, A., & MacRobert, A. (2009). Quantum Dots and Their Potential Biomedical Applications in Photosensitization for Photodynamic Therapy. Nanomed, 4, pp. 353–363.
Yang, R., Chang, L., Wu, J., Tsai, M., Wang, H., Kuo, Y., et al. (2007). Persistent Tissue Kinetics and Redistribution of Nanoparticles, Quantum Dot 705 in Mice ICP-MS Quantitative Assessment. Environ Health Perspect., 115(9), pp. 1339-1343.
Zhang, H., Yee, D., & Wang, C. (2008). Quantum Dots for Cancer Diagnosis and Therapy: Biological and Clinical Perspectives. Nanomedicine, 3(1), pp. 83-91.
Zoriy, M. (2005). Determination of long-lived radionuclides at ultratrace level using advanced mass spectrometric techniques.
Zoriy, M., Matusch, A., Spruss, T., & Becker, J. (2007). Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Imaging of Copper, Zinc, and Platinum in Thin Sections of a Kidney from a Mouse Treated with Cis-Platin. . Int. J. Mass Spectrom., 260, pp. 102-106.
Zrazhevskiy, P., Sena, M., & Gao, X. (2010). Designing Multifunctional Quantum Dots for Bioimaging, Detection, and Drug Delivery. Chem. Soc. Rev., 39, pp. 4326-4354.
蘇正寬. (2011). Development of Online Hyphenated Systems for In-vivo Monitoring Extracellular Quantum Dots and Cadium Release in Linving Rat.

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔