|
Agilent Technologies, Inc. (2001). Agilent 7500 Inductively Coupled Plasma Mass Spectrometry. Agilent Technologies, Inc. (2005). ICP-MS: Inductively Coupled Pasma Mass Spectrometry: A Primer. Akerman, M., Chan, W., Laakkonen, P., Bhatia, S., & Ruoslahti, E. (2002). Nanocrystal Targeting in Vivo. Proceedings of the National Academy of Sciences, 99(20), pp. 12617-12621. Arrowsmith, P. (1987). Laser Ablation of Solids for Elemental Analysis by Inductively Coupled Plasma Mass Spectrometry. Anal. Chem., 59, pp. 1437-1444. Azzazy, H., Mansour, M., & Kazmierczak, S. (2006). Nanodiagnostics: A New Frontier for Clinical Laboratory Medicine. Clinical Chemistry, 52(7), pp. 1238-1246. Ballou, B., Ernst, L., Andreko, S., Harper, T., Fitzpatrick, J., Waggoner, A., et al. (2007). Sentinel Lymph Node Imaging Using Quantum Dots in Mouse Tumor Models. Bioconjugate Chem., 18(2), pp. 389–396. Ballou, B., Lagerholm, B., Ernst, L., Bruchez, M., & Waggoner, A. (2004). Noninvasive imaging of quantum dots in mice. Bioconjug. Chem., 15(1), pp. 79–86. Baumann, H. (1992). Solid Sampling with Inductively Coupled Plasma-Mass Spectrometry — A Survey. Fresenius' Journal of Analytical Chemistry, 342(12), pp. 907-916. Becker, J. (2002). State-of-the-Art and Progress in Precise and Accurate Isotope Ratio Measurements by ICP-MS and LA-ICP-MS. J. Anal. At. Spectrom., 17, pp. 1172-1185. Becker, J., & Dietze, H. (2000). Inorganic Mass Spectrometric Methods for Trace, Ultratrace, Isotope, and Surface Analysis. Int. J. Mass Spectrom., 197(1-3), pp. 1-35. Becker, J., & Salber, D. (2010c). New Mass Spectrometric Tools in Brain Research. TrAC Trends in Analytical Chemistry, 29(9), pp. 966-979. Becker, J., Breuer, U., Hsieh, H., Osterholt, T., Kumtabtim, U., Wu, B., et al. (2010b). Bioimaging of Metals and Biomolecules in Mouse Heart by Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Secondary Ion Mass Spectrometry. Anal. Chem., 82, pp. 9528–9533. Becker, J., Dietrich, R., Matusch, A., Pozebon, D., & Dressler, V. (2008). Quantitative Images of Metals in Plant Tissues Measured by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Spectrochim Acta B, 63, pp. 1248–1252. Becker, J., Gorbunoff, A., Zoriy, M., Izmer, A., & Kayser, M. (2006). Evidence of Near-Field Laser Ablation Inductively Coupled Plasma Mass Spectrometry (NF-LA-ICP-MS) at Nanometre Scale for Elemental and Isotopic Analysis on Gels and Biological Samples. . J. Anal. At. Spectrom., 21, pp. 19-25. Becker, J., Zoriy, M., Becker, J., Dobrowolska, J., & Matusch, A. (2007). Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in Elemental Imaging of Biological Tissues and in Proteomics. J. Anal. At. Spectrom., 22, pp. 736–744. Becker, J., Zoriy, M., Dehnhardt, M., Pickhardt, C., & Zilles, K. (2005a). Copper, Zinc, Phosphorus and Sulfur Distribution in Thin Section of Rat Brain Tissues Measured by Laser Ablation Inductively Coupled Plasma Mass Spectrometry Possibility for Small-Size Tumor Analysis. J. Anal. At. Spectrom., 20, pp. 912-917. Becker, J., Zoriy, M., Matusch, A., Wu, B., Salber, D., Palm, C., et al. (2010a). Bioimaging of Metals by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Mass Spectrom Rev., 29(1), pp. 156-175. Becker, J., Zoriy, M., Pickhardt, C., N., P.-G., & K., Z. (2005b). Imaging of Copper, Zinc, and Other Elements in Thin Section of Human Bbrain Samples (Hippocampus) by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Anal Chem., 77(10), pp. 3208-3216. Broeck, B. (2004). Laser Ablation - Inductively CoupledPlasma - Mass Spectroscopy (LA-ICP-MS). Buda, A., & Jarynowski, A. (2010). Life-time of Correlations and its Applications. (Vol. vol.1). Wroclaw: Niezależne Wydawnictwo. Burzo, M., Komarov, P., & Raad, P. (2004). Non-Contact Thermal Conductivity Measurements of p-doped and n-doped Gold Covered Natural and Isotopically-Pure Slicon and Their Oxides. Cai, W., Chen, K., Li, Z., Gambhir, S., & Chen, X. (2007). Dual-Function probe for PET and Near-Infrared Fluorescence Imaging of Tumor Vasculature. The journal of nuclear medicine, 48(11), pp. 1862-1870. Cai, W., Shin, D., Chen, K., Gheysens, O., Cao, Q., Wang, S., et al. (2006). Peptide-Labeled Near-Infrared Quantum Dots for Imaging Tumor Vasculature in Living Subjects. Nano Letters, 6(4), pp. 669-676. Chan, W., & Nie, S. (1998). Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science, 281(5385), pp. 2016-2018. Chatziioannou, A. (2008). VP-PET: A New Imaging Modality? J. Nucl. Med. , 49(3), pp. 345-346. Cho, S., Maysinger, D., Jain, M., Roder, B., Hackbarth, S., & Winnik, F. (2007). Long-Term Exposure to CdTe Quantum Dots Causes Functional Impairments in Live Cells. Langmuir, 23(4), pp. 1974-1980. Choi, H., Ipe, B., Misra, P., Lee, J., Bawendi, M., & Frangioni, J. (2009). Tissue- and Organ-selective biodistribution of NIR Fluorescent Quantum Dots. Nano Lett., 9(6), pp. 2354–2359. Dabbousi, B., Rodriguez-Viejo, J., Mikulec, F., Heine, J., Mattoussi, H., Ober, R., et al. (1997). (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J. Phys. Chem. B, 101(46), pp. 9463–9475. Derfus, A., Chan, W., & Bhatia, S. (2004). Intracellular Delivery of Quantum Dots for Live Cell Labeling and Organelle Tracking. Adv. Mater., 16(12), pp. 961-966. Diagaradjane, P., Orenstein-Cardona, J., E Colon-Casasnovas, N., Deorukhkar, A., Shentu, S., Kuno, N., et al. (2008). Imaging Epidermal Growth Factor Receptor Expression in Vivo: Pharmacokinetic and Biodistribution Characterization of a Bioconjugated Quantum Dot Nanoprobe. Clin. Cancer Res., 14(3), pp. 731-741. Downer, N. (2008). Method Development for the Digestion and Analysis of Four Common Sedimentary Lithologies using ICP-OES and ICP-MS. University of Johannesburg. Driscoll, K., Costa, D., Hatch, G., Henderson, R., Oberdorster, G., Salem, H., et al. (2000). Intratracheal Instillation as an Exposure Technique for the Evaluation of Respiratory Tract Toxicity: Uses and Limitations. Toxicol. Sci., 55(1), pp. 24-35. Durrant, S., & Ward, N. (2005). Recent biological and environmental applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J. Anal. At. Spectrom., 20, pp. 821-829. Duval, M., Aubert, M., Hellstrom, J., & Grun, R. (2011). High Resolution LA-ICP-MS Mapping of U and Th Isotopes in an Early Pleistocene Equid Tooth from Fuente Nueva-3 (Orce, Andalusia, Spain). Quaternary Geochronology , 6(5), pp. 458-467. Ecyhmuller, A., Voβmeyer, T., Mews, A., & Weller, H. (1994). Transient Photobleaching in the Quantum Dot Quantum Well CdS/HgS/CdS. Journal of Luminescence, 58, pp. 223-226. Fail, P., & Anderson, S. (2002). Monitoring Endocrine Function in Males: Using Intra‐Atrial Cannulas to Monitor Plasma Hormonal Dynamics in Toxicology Experiments. Current Protocols in Toxicology. Fernandez, B., Claverie, F., Pecheyran, C., D. O., & Claverie, F. (2007). Direct Analysis of Solid Samples by fs-LA-ICP-MS. TrAC Trends in Analytical Chemistry, 26(10), pp. 951-966. Fischer, H., Liu, L., Pang, K., & Chan, W. (2006). Pharmacokinetics of Nanoscale Quantum Dots: In Vivo Distribution, Sequestration, and Clearance in the Rat. Adv. Funct. Mater., 16(10), pp. 1299–1305. Gao, X., Chan, W., & Nie, S. (2002). Quantum-Dot Nanocrystals for Ultrasensitive Biological Labeling and Multicolor Optical Encoding. J Biomed Opt., 7(4), pp. 532-537. Gao, X., Cui, Y., Levenson, R., Chung, L., & Nie, S. (2004). In-Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots. Nature Biotechnol, 22, pp. 969-976. Geertsen, C., Briand, A., Chartier, F., Lacour, J., Mauchien, P., Sjostrom, S., et al. (1994). Comparison Between Infrared and Ultraviolet Laser Ablation at Atmospheric Pressure-Implications for Solid Sampling Inductively Coupled Plasma Spectrometry. J. Anal. At. Spectrom., 9, pp. 17-22. Geys, J., Nemmar, A., Verbeken, E., Smolders, E., Ratoi, M., Hoylaerts, M., et al. (2008). Acute Toxicity and Prothrombotic Effects of Quantum Dots: Impact of Surface Charge. Environmental Health Perspectives, 116(12), pp. 1607-1613. Gopee, N., Roberts, D., Webb, P., Cozart, C., Siitonen, P., Warbritton, A., et al. (2007). Migration of Intradermally Injected Quantum Dots to Sentinel Organs in Mice. Toxicol. Sci., 98(1), pp. 249–257. Gray, A. (1985). Solid Sample Introduction by Laser Ablation for Inductively Coupled Plasma Source Mass Spectrometry. Analyst, 110(5), pp. 551-556. Guillong, M., Horn, I., & Gunther, D. (2002). Capabilities of a Homogenized 266 nm Nd:YAG Laser Ablation System for LA-ICP-MS. J. Anal. At. Spectrom., 17, pp. 8-14. Gunther, D., & Hattendorf, B. (2005). Solid Sample Analysis using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. 24(3), pp. 255-265. Haesselbarth, A., Eychmueller, A., Eichberger, R., Giersig, M., Mews, A., & Weller, H. (1993). Chemistry and Photophysics of Mixed Cadmium Sulfide/Mercury Sulfide Colloids. J. Phys. Chem., 97(20), pp. 5333–5340. Hardman, R. (2006). A Toxicologic Review of Quantum Dots Toxicity Depends on Physicochemical and Environmental Factors. Environmental Health Perspectives, 114, pp. 165-172. Hill, S. (2006). Inductively Coupled Plasma Spectrometry and Its Applications. John Wiley & Sons. Hines, M., & Guyot-Sionnest, P. (1996). Synthesis and Characterization of Strongly Luminescing ZnS-CappedCdSe Nanocrystals. J. Phys. Chem., 100(2), pp. 468–471. Hsieh, J., Ho, M., Wu, P., Chou, P., Tsai, T., & Chi, Y. (2006). Iridium-Complex Modified CdSe/ZnS Quantum Dots; a Conceptual Design for Bi-Functionality toward Imaging and Photosensitization. Chem Commun (Camb), pp. 615–617. Hu, J., Zhang, X., Dong, X., Collins, L., Sawyer, G., & Fabre, J. (2005). A Remarkable Permeability of Canalicular Tight Junctions Might Facilitate Retrograde, Non-Viral Gene Delivery to the Liver via the Bile Duct. Gut, 54, pp. 1473-1479. Hughes, S., Fry, R., & Brady, J. (2008). Laser Ablation for Direct ICP and ICP-MS Analysis. Retrieved from Gases & Instrumentation International Magazine: http://www.gasesmag.com/articles.php?pid=36 Izmer, A. (2006). Method development using ICP-MS and LA-ICP-MS and their application in environmental and material science. Jacobsen, N., Moller, P., Jensen, K., Vogel, U., Ladefoged, O., Loft, S., et al. (2009). Lung Inflammation and Genotoxicity Following Pulmonary Exposure to Nanoparticles in ApoE-/- Mice. Particle and Fibre Toxicology, 6(2), pp. 1-17. Jaiswal, J., & Simon, S. (2004). Potentials and Pitfalls of Fluorescent Quantum Dots for Biological Imaging. Trends in Cell Biology, 14(9), pp. 497-504. Jaiswal, J., Mattoussi, H., Mauro, J., & Simon, S. (2002). Long-term Multiple Color Imaging of Live Cells Using Quantum Dot Bioconjugates. Nat. Biotechnol., 21, pp. 47-51. Jayasinghe, S. (2007). Investigation of Selenoproteome and Metalloproteome of Seeds of Bertholletia Excelsa and Metalloproteome of Seds of Glycine Max by LC and MS Techniques. Arts and Sciences : Chemistry. Kagan, V., Bayir, H., & Shvedova, A. (2005). Nanomedicine and Nanotoxicology:Two Sides of the Same Coin. Nanomedicine , 1(4), pp. 313-316. Kim, S., Lim, Y., Soltesz, E., De Grand, A., Lee, J., Nakayama, A., et al. (2004). Near-infrared Fluorescent Type II Quantum Dots for Sentinel Lymph Node Mapping. Nat. Biotechnol., 22, pp. 93-97. Kindness, A., Sekaran, N., & Feldmann, J. (2003). Two-Dimensional Mapping of Copper and Zinc in Liver Sections by Laser Ablation–Inductively Coupled Plasma Mass Spectrometry. Clinical Chemistry, 49, pp. 1916-1923. Klostranec, J., & Chan, W. (2006). Quantum Dots in Biological and Biomedical Research: Recent Progress and Present Challenges. Adv. Mater., 18(15), pp. 1953-1964. Kosler, J., & Sylvester, P. J. (2003). Present Trends and the Future of Zircon in Geochronology: Laser Ablation ICPMS. Reviews in Mineralogy and Geochemistry, 53, pp. 243-275. Krennera, H., & Petroffa, P. (2009). Quantum Posts with Tailored Structural, Electronic and Optical Properties for Optoelectronic and Quantum Electronic Device Applications. Solid State Communications, 149(35-36), pp. 1386-1394. Larson, D., Zipfel, W., Williams, R., Clark, S., Bruchez, M., Wise, F., et al. (2003). Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo. Science, 300, pp. 1434-1436. Lin, C., Chang, L., Chang, H., Yang, M., Yang, C., Lai, W., et al. (2009). The Chemical Fate of the Cd/Se/Te-based Quantum Dots 705 in the Biological System: Toxicity Implications. Nanotechnology, 20(21), pp. 1-8. Lin, C., Yang, M., Chang, L., Yang, C., Chang, H., Chang, W., et al. (2011). Cd/Se/Te-based Quantum Dot 705 Modulated Redox Homeostasis with Hepatotoxicity in Mice. Nanotoxicology, 5(4), pp. 650-663. Los, G., Encell, L., McDougall, M., Hartzell, D., Karassina, N., Zimprich, C., et al. (2008). HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis. ACS Chem. Biol., 3(6), pp. 373–382. Lovric, J., Bazzi, H., Cuie, Y., Fortin, G., Winnik, F., & D., M. (2005). Differences in Subcellular Distribution and Toxicity of Green and Red Emitting CdTe Quantum Dots. J. Mol. Med., 83(5), pp. 377–385. Mao, X., Chan, W., Shannon, M., & Russo, R. (1993). Plasma Shielding during Picosecond Laser Sampling of Solid Materials by Ablation in He versus Ar Atmosphere. J. Appl. Phys., 74(8), pp. 4915-4922. Matusch, A., Depboylu, C., Palm, C., Wu, B., Hoglinger, G., Schafer, M., et al. (2009). Cerebral Bioimaging of Cu, Fe, Zn, and Mn in the MPTP Mouse Model of Parkinson’s Disease using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Journal of The American Society for Mass Spectrometry, 21(1), pp. 161-171. Michalet, X., Pinaud, F., Bentolila, L., Tsay, J., Doose, S., Li, J., et al. (2005). Quantum Dots for Live Cells, In Vivo Imaging, and Diagnostics. Science, 307, pp. 538-544. Milanino, R., Marrella, M., Gasperini, R., Pasqualicchio, M., & Velo, G. (1993). Copper and Zinc body Levels in Inflammation: An Overview of the Data Obtained from Animal and Human Studies. Agents Actions., 39(3-4), pp. 195-209. Miller, L., Wang, Q., Telivala, T., Smith, R., Lanzirotti, A., & Miklossy, J. (2006). Synchrotron-Based Infrared and X-ray Imaging Shows Focalized Accumulation of Cu and Zn Co-Localized with Beta-Amyloid Deposits in Alzheimer's Disease. J Struct Biol., 155(1), pp. 30-37. Montaser, A., Chan, S., & Koppenaal, D. (1987). Inductively Coupled Helium Plasma as an Ion Source for Mass Spectrometry. Anal. Chem., 59(8), pp. 1240-1242. Murray, C., Norris, D., & Bawendi, M. (1993). Synthesis and Characterization of Nearly Monodisperse CdE (E = sulfur, selenium, tellurium) Semiconductor Nanocrystallites. J. Am. Chem. Soc., 115(19), pp. 8706-8715. Orndorff, R., & Rosenthal, S. (2009). Neurotoxin Quantum Dot Conjugates Detect Endogenous Targets Expressed in Live Cancer Cells. Nano Lett, 9, pp. 2589–2599. Osterholt, T., Salber, D., Matusch, A., Becker, J., & Palm, C. (2011). IMAGENA: Image Generation and Analysis–An Interactive Software Tool Handling LA-ICP-MS Data. InternationalJournalofMassSpectrometry, 307(1-3), pp. 232-239. Ozkan, M. (2004). Quantum Dots and Other Nanoparticles: What Can They Offer to Drug Discovery? Drug Discovery Today, 9(24), pp. 1065-1071. Parak, W., Boudreau, R., Gros, M., Gerion, D., Zanchet, D., Micheel, C., et al. (2002). Cell Motility and Metastatic Potential Studies Based on Quantum Dot Imaging of Phagokinetic Tracks. Adv. Mater., 14(12), pp. 882-885. Pelley, J., Daar, A., & Saner, M. (2009). State of Academic Knowledge on Toxicity and Biological Fate of Quantum Dots. Toxicol. Sci., 112(2), pp. 276-296. Peng, Z., & Peng, X. (2001). Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J. Am. Chem. Soc., 123(1), pp. 183–184. PerkinElmer, Inc. (2001). The 30-Minute Guide to ICP-MS. Retrieved from http://www.esc.cam.ac.uk/esc/files/Department/facilities/icp-ms/30-min-guide.pdf Rhyner, M., Smith, A., Gao, X., Mao, H., Yang, L., & Nie, S. (2008). Quantum Dots and Targeted Nanoparticle Probes for In Vivo Tumor Imaging. Fundamental Biomedical Technologies, 102, pp. 413-425. Robe, A., Pic, E., Lassalle, H., Bezdetnaya, L., Guillemin, F., & Marchal, F. (2008). Quantum Dots in Axillary Lymph Node Mapping: Biodistribution Study in Healthy Mice. BMC Cancer, 8, p. 111. Russo, R., Mao, X., Gonzalez, J., & Mao, S. (2002). Femtosecond Laser Ablation-ICP-MS. J. Anal. At. Spectrom., 17, pp. 1072-1075. Santos, M., Wagner, M., Wu, B., Scheider, J., Oehlmann, J., Cadore, S., et al. (2009). Biomonitoring of Metal Contamination in a Marine Prosobranch Snail (Nassarius Reticulatus) by Imaging Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Talanta, 80(2), pp. 428-433 . Schipper, M., Cheng, Z., Lee, S., Bentolila, L., Iyer, G., Rao, J., et al. (2007). MicroPET-Based Biodistribution of Quantum Dots in Living Mice. Journal of Nuclear Medicine, 48(9), pp. 1511-1518. Schipper, M., Iyer, G., Koh, A., Cheng, Z., Ebenstein, Y., Aharoni, A., et al. (2009). Particle Size, Surface Coating, and PEGylation Influence the Biodistribution of Quantum Dots in Living Mice. Small, 5(1), pp. 126-134. Schooss, D., Mews, A., Eychmuller, A., & Weller, H. (1994). Quantum-dot Quantum Well CdS/HgS/CdS: Theory and Experiment. Phys. Rev. B., 49(24), pp. 17072–17078. Seuma, J., Bunch, J., Cox, A., McLeod, C., Bell, J., & Murray, C. (2008). Combination of immunohistochemistry and laser ablation ICP mass spectrometry for imaging of cancer biomarkers. Proteomics, 8, pp. 3775–3784. Shin, S., Kim, I.-H., Kang, W., Yang, J., & Hah, S. (2010). An Aternative to Western Blot Analysis Using RNA Aptamer-Functionalized Quantum Dots. Bioorganic & Medicinal Chemistry Letters, 20(11), pp. 3322-3325 . Strlič, M., Šelih, V., & Kolar, J. (n.d.). Analytical Methods Based on Laser Ablation Sampling. Retrieved from LAS: http://alpha1.infim.ro/cost/pagini/handbook/chapters/lasm.htm Sukhanova, A., Devy, J., Venteo, L., Kaplan, H., Artemyev, M., Oleinikov, V., et al. (2004). Biocompatible Fluorescent Nanocrystals for Immunolabeling of Membrane Proteins and Cells. Anal. Biochem., 324, pp. 60-67. Sylvester, P., & Eggins, S. (1997). Analysis of Re, Au, Pd, Pt and Rh in NIST Glass Certified Reference Materials and Natural Basalt Glasses by Laser Ablation ICP-MS. Geostandards Newsletter, 21(2), pp. 215–229. Talapin, D., Rogach, A., Kornowski, A., Haase, M., & Weller, H. (2001). Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. Nano Lett., 1(4), pp. 207-211. Tissue, B. (2000). Quadrupole Mass Spectrometry. Retrieved from The Chemistry Hypermedia Project.: http://www.files.chem.vt.edu/chem-ed/ms/quadrupo.html Torchilin, V. (2007). Targeted Pharmaceutical Nanocarriers for Cancer Therapy and Imaging. The AAPS Journal, 9(2), pp. E128-147. Tye, C. (2000). Breakthrough Detector Technology - Fastest Data Acquisition over the Widest Dynamic Range. Vashist, S., Tewari, R., Bajpai, R., Bharadwaj, L., & Raiteri, R. (2006). Review of Quantum Dot Technologies for Cancer Detection and Treatment. AzoJono J. Nanotech., 2, pp. 1-14. Walle, M. (2009). Fundamental and Applied Studies on Femtosecond Laser Ablation ICP-MS for Quantitative Analysis of Solids. . Zurich: ETH . Walling, M., Novak, J., & Shepard, J. (2009). Quantum Dots for Live Cell and In Vivo Imaging. Int. J. Mol. Sci., 10(2), pp. 441-491. Wei, Y., Jana, N., Tan, S., & Ying, J. (2009). Surface Coating Directed Cellular Delivery of TAT-Functionalized Quantum Dots. Bioconjug Chem, 20, pp. 1752–1758. Woodward, J., Kennel, S., Mirzadeh, S., Dai, S., Wall, J., Richey, T., et al. (2007). In Vivo SPECT/CT Imaging and Biodistribution Using Radioactive Cd125mTe/ZnS Nanoparticles. Nanotechnology, 18(17), pp. 1-5. Wu, B., Niehren, S., & Becker, J. (2011). Mass Spectrometric Imaging of Elements in Biological Tissues by New BrainMet Technique—Laser Microdissection Inductively Coupled Plasma Mass Spectrometry (LMD-ICP-MS). J. Anal. At. Spectrom., 26, pp. 1653-1659. Wu, X., Liu, H., Liu, J., Haley, K., Treadway, J., Larson, J., et al. (2003). Immunofluorescent Labeling of Cancer Marker Her2 and Other Cellular Targets with Semiconductor Quantum Dots. Nat. Biotechnol., 21, pp. 41-46. Yaghini, E., Seifalian, A., & MacRobert, A. (2009). Quantum Dots and Their Potential Biomedical Applications in Photosensitization for Photodynamic Therapy. Nanomed, 4, pp. 353–363. Yang, R., Chang, L., Wu, J., Tsai, M., Wang, H., Kuo, Y., et al. (2007). Persistent Tissue Kinetics and Redistribution of Nanoparticles, Quantum Dot 705 in Mice ICP-MS Quantitative Assessment. Environ Health Perspect., 115(9), pp. 1339-1343. Zhang, H., Yee, D., & Wang, C. (2008). Quantum Dots for Cancer Diagnosis and Therapy: Biological and Clinical Perspectives. Nanomedicine, 3(1), pp. 83-91. Zoriy, M. (2005). Determination of long-lived radionuclides at ultratrace level using advanced mass spectrometric techniques. Zoriy, M., Matusch, A., Spruss, T., & Becker, J. (2007). Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Imaging of Copper, Zinc, and Platinum in Thin Sections of a Kidney from a Mouse Treated with Cis-Platin. . Int. J. Mass Spectrom., 260, pp. 102-106. Zrazhevskiy, P., Sena, M., & Gao, X. (2010). Designing Multifunctional Quantum Dots for Bioimaging, Detection, and Drug Delivery. Chem. Soc. Rev., 39, pp. 4326-4354. 蘇正寬. (2011). Development of Online Hyphenated Systems for In-vivo Monitoring Extracellular Quantum Dots and Cadium Release in Linving Rat.
|