跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/12 19:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:杜冠儒
研究生(外文):Tu, Kuan-Ju
論文名稱:以鹼性過氧化氫溶液修飾二氧化鈦的染料可見光降解
論文名稱(外文):Photodegradation of Dye by TiO2 Modified with Hydrogen Peroxide in Alkaline Solution under Visible Light
指導教授:吳劍侯
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:59
中文關鍵詞:二氧化鈦過氧化氫染料可見光染料敏化
外文關鍵詞:TiO2H2O2DyeFe3+Sulforhodamine B
相關次數:
  • 被引用被引用:0
  • 點閱點閱:396
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
二氧化鈦廣泛運用於染料敏化太陽能電池及水體汙染物降解等環境及能源領域。本研究以鹼性環境下過氧化氫修飾二氧化鈦,並利用動態雷射光散射儀(DLS)、傅立葉轉換紅外線光譜(FTIR)、熱重分析儀 (TGA)、比表面基測定儀(BET)、高解析穿透式電子顯微鏡(HR-TEM)、X光粉末繞射(XRPD)分別對修飾過後的二氧化鈦進行表面分析;另外,利用電子順磁共振光譜儀(EPR) 觀測溶液中氫氧自由基。 
結果顯示在可見光染料敏化系統中,利用UVC前處理二氧化鈦增加表面的氫氧官能基,但沒有明顯增快降解反應速率。鹼性環境下過氧化氫修飾二氧化鈦,因為鹼侵蝕讓粒子粒徑變小(4 nm),表面有較高密度的氫氧官能基(13.89 OH/nm2),提高染料吸附量,產生較多光電子增加光催化效益;另外,在系統中加入不同的金屬離子(Fe3+、Cu2+、Zn2+以及Al3+)做測試,結果發現配合Fe3+離子錯合機制形成Fe(OH)2+,照光後電子轉移釋放出更多的氫氧自由基,降解反應速率比市售二氧化鈦(Degussa P25)的高出一個數量級。

TiO2 is widely used in the field of environment and energy, such as dye-sensitized solar cells and photocatalysts for the degradation of organic pollutants. This study is to enhance of the photodegradation of dye (Sulforhodamine B as a model compound) under visible light by TiO2 pretreated with alkaline hydrogen peroxide. Modified TiO2 nanoparticles were characterized by dynamic laser light scattering (DLS), fourier transform infrared (FT-IR), thermogravimetry analysis (TGA), surface area analysis (BET), high-resolution transmission electron microscopy (HRTEM) and X-ray powder diffraction (XRPD). In addition, electron paramagnetic resonance spectrometer (EPR) was utilized to observe the formation of hydroxyl radicals in the system.
TiO2 could not only increase the density of surface hydroxyl groups on the TiO2 surface (13.89 OH/nm2), but also lead to smaller particle size (4 nm). The dispersion and photocatalytic activity of the modified TiO2 were greatly enhanced. On the other hand, TiO2 pretreated with UVC light could increase the surface hydroxyl groups on the TiO2 surface though, the degradation rate was not unexpectedly enhanced.
The effect of metal ion (Fe3+, Cu2+, Zn2+ and Al3+) on the photocatalytic activity of the modified TiO2 was investigated under visible light. The results show that Fe3+ accelerated the photodegradation of dyes in aqueous modified TiO2 dispersions with one order of magnitude larger than commercial P-25. This may be ascribed to the complexation of the hydroxyl groups bound to TiO2 surface with Fe3+ to form Fe(OH)2+.



總 目 錄
中文摘要…………………………………………………………………………I
英文摘要…………………………………………………………………………II
謝誌………………………………………………………………………………III
總目錄……………………………………………………………………………IV
圖目錄……………………………………………………………………………VII
表目錄……………………………………………………………………………IX
第一章 前言…………………………………………………1
1.1簡介…………………………………………………………………………1
1.2 研究動機與目的……………………………………………………1
第二章 文獻回顧…………………………………………………………3
2.1 二氧化鈦(TiO2)……………………………………………………3
2.1.1 超親水性質…………………………………………………………4
2.1.2 光催化特性……………………………………………………………5
2.2 二氧化鈦可見光催化……………………………………………………6
2.2.1 金屬的參雜作用…………………………………………………………6
2.2.2 染料敏化………………………………………………………………7
2.3 金屬及非金屬離子的影響……………………………………………………………………………9
2.4 染料分類……………………………………………………………11
第三章 實驗方法……………………………………………………13
3.1 材料藥品與儀器 …………………………………………………13
3.1.1 材料藥品……………………………………………………………………………13
3.1.2 實驗裝置…………………………………………………………14
3.1.3 分析儀器……………………………………………………………15
3.2 實驗流程與內容…………………………………………………………15
3.2.1 紫外光前處理二氧化鈦表面………………………………………16
3.2.2 鹼性環境下的過氧化氫修飾二氧化鈦表面…………………………16
3.2.3 紫外光催化系統……………………………………………………16
3.2.4 可見光染料敏化系統…………………………………………………17
3.2.5 陰離子的影響 ……………………………………………17
3.2.6 金屬離子的影響………………………………………………………17
3.2.7 粒徑分析…………………………………………………………………17
3.2.8 OH自由基的電子順磁共振………………………………………………18
3.2.9 其他表面特性分析實驗………………………………………………18
3.3 分析方法………………………………………………………………19
3.3.1 動態雷射光散射儀………………………………………………………19
3.3.2 電子順磁共振光譜儀……………………………………………… 22
第四章 結果與討論………………………………………………23
4.1 鹼性環境下過氧化氫對二氧化鈦表面之影響………………………………………………23
4.2 可見光染料敏化系統………………………………………………30
4.2.1 光催化系統中二氧化鈦g/L的影響………………………………………………30
4.2.2 光催化系統中pH的影響 ………………………………………31
4.2.3 光催化系統中SRB濃度的影響…………………………32
4.2.4 鹼性環境下過氧化氫修飾二氧化鈦之染料吸附量與光催化比較……33
4.2.5 金屬離子對二氧化鈦光催化之影響……………………………34
4.2.5.1 Fe3+對二氧化鈦光催化之影響…………………………………34
4.2.6 非金屬離子對二氧化鈦光催化之影響………………………………37
4.2.7 氫氧自由基之測定………………………………………………39
4.2.8 除氧對二氧化鈦光催化之影響……………………………………41
4.2.9 修飾前驅物晶型之比較………………………………………………42
4.2.10 二氧化鈦的重複使用性………………………………………………43
4.3 紫外光催化系統………………………………………………44
第五章 結論………………………………………………46
第六章 未來展望………………………………………………47
參考文獻………………………………………………48
附錄………………………………………………53
圖 目 錄
圖2.1 二氧化鈦薄膜在UV光照下增加表面OH 官能基的機制………………4
圖2.2 TiO2光催化機制圖……………………………………………………5
圖2.3 金屬的參雜作用機制圖………………………………………………7
圖2.4 二氧化鈦染料敏化的機制圖…………………………………………8
圖2.5 二氧化鈦經氫氟酸處理後的機制圖……………………………………9
圖2.6 二氧化鈦染料敏化加入Cu2+的機制圖………………11
圖2.7 (A) Rhodamine B、(B) Sulforhodamine B 結構圖…………12
圖3.1 可見光染料敏化照光系統 …………………………………………14
圖3.2 實驗架構流程示意圖……………………………………………15
圖3.3 DMPO抓取氫氧自由基示意圖……………………………………18
圖3.4 (a)傳統PCS 與 (b)背向光散射(NIBS)儀器示意圖………………19
圖3.5 界面電位示意圖……………………………………………………20
圖3.6 Zeeman Effect 示意圖…………………………………………22
圖4.1 (a)經UVC照光處理(照光4小時)與(b)未經處理的二氧化鈦(ST-01)之懸浮液………………………………………………………………………23
圖4.2 鹼性環境下過氧化氫修飾二氧化鈦表面示意圖……………………24
圖4.3 (a)鹼性環境下過氧化氫修飾二氧化鈦表面後的懸浮液與(b)市售二氧化鈦懸浮液……………………………………………………………………25
圖4.4 (a)鹼性環境下過氧化氫修飾二氧化鈦(b) Degussa P25 (c) ST-01 的粒徑分析圖……………………………………………………25
圖 4.5 (a)鹼性環境下過氧化氫修飾二氧化鈦 (b) Degussa P25 (c) ST-01 在25℃靜置五天的粒徑分布圖…………………………………………26
圖4.6 鹼性環境下過氧化氫修飾二氧化鈦的X光繞射分析…………………26
圖4.7 利用鹼性過氧化氫修飾二氧化鈦表面後的TEM圖 ………………27
圖4.8 FT-IR 光譜分析 (a) 經鹼性過氧化氫修飾的二氧化鈦,(b) Degussa P25,(c) ST-01……………………………………………28
圖 4.9 市售的二氧化鈦(Degussa P25)與鹼性溶液的過氧化氫修飾的二氧化鈦在氮氣環境下的 TGA 曲線……………………………………………29
圖 4.10 不同g/L比的鹼性過氧化氫修飾二氧化鈦對染劑 SRB 的光降解速率 ……………………………………………………………………30
圖 4.11 不同pH值下的鹼性過氧化氫修飾二氧化鈦對染劑 SRB 的光降解速率 ……………………………………………………………………31
圖 4.12 不同SRB濃度下的鹼性過氧化氫修飾二氧化鈦對染劑 SRB 的光降解速率 ………………………………………………………32
圖4.13 不同的二氧化鈦對染劑 SRB 的吸附量………………………33
圖4.14 不同的二氧化鈦對染劑 SRB 的光降解速率………………………34
圖4.15 FeCl3 在不同二氧化鈦懸浮液中,對染劑 SRB 可見光降解速率之影響………………………………………………………………………………35
圖4.16 不同 FeCl3 濃度在經修飾過後的二氧化鈦對 SRB 可見光降解速率之影響…………………………………………………………………36
圖 4.17 不同酸洗的鹼性環境下過氧化氫修飾二氧化鈦懸浮液…………37
圖4.18 不同酸洗的鹼性環境下過氧化氫修飾二氧化鈦之FT-IR光譜分析…38
圖4.19 不同酸洗的鹼性環境下過氧化氫修飾二氧化鈦對染劑 SRB的光降解速率 …………………………………………………………………………39
圖4.20 以DMPO捕捉氫氧自由基的EPR光譜圖……………………………40
圖4.21 以DMPO捕捉氫氧自由基於添加250 μM FeCl3修飾過後的二氧化鈦懸浮液,持續照光40分鐘的EPR光譜圖………………………………………41
圖4.22 在不同的照光環境下,添加250 μM FeCl3的鹼性環境下過氧化氫修飾二氧化鈦對染劑 SRB的光降解速率 …………………………………42
圖4.23 修飾不同晶型的二氧化鈦添加10 μM FeCl3對染劑 SRB 的光降解速率 …………………………………………………………………43
圖4.24 鹼性環境下過氧化氫修飾二氧化鈦對染劑 SRB的光降解速率之重複性測試 ………………………………………………………………………44
圖4.25 比較(a)ST-01、(b)UVC前處理ST-01、(c) Degussa P25與(d) 鹼性環境下過氧化氫修飾二氧化鈦對染劑 SRB 的紫外光降解速率………45

表 目 錄
表4.1 Degussa P25與修飾過後的二氧化鈦物化特性……………………29
表4.2 不同金屬離子對二氧化鈦可見光降解速率(min-1)影響 …………36



Aarthi, T.; Madras, G., Photocatalytic degradation of rhodamine dyes with nano-TiO2. Ind. Eng. Chem. Res. 2007, 46, 7-14.

Akbal, F., Photocatalytic degradation of organic dyes in the presence of titanium dioxide under UV and solar light: Effect of operational parameters. Environ. Prog. 2005, 24, 317-322.

Bavykin, D. V.; Parmon, V. N.; Lapkina, A. A.; Walshc, F. C., The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. chem. 2004, 14, 3370-3377.

Bhatkhande, D. S.; Pangarkar, V. G.; Beenackers, A., Photocatalytic degradation for environmental applications - a review. J. Chem. Technol. Biotechnol. 2002, 77, 102-116.

Cao, J.; Xu, B. Y.; Luo, B. D.; Lin, H. L.; Chen, S. F., Preparation, characterization and visible-light photocatalytic activity of AgI/AgCl/TiO2. Appl. Surf. Sci. 2011, 257, 7083-7089.

Chen, C. C.; Li, X. Z.; Ma, W. H.; Zhao, J. C.; Hidaka, H.; Serpone, N., Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: A probe for the interfacial electron transfer process and reaction mechanism. Journal of Physical Chemistry B 2002, 106, 318-324.

Cho, Y. M.; Choi, W. Y.; Lee, C. H.; Hyeon, T.; Lee, H. I., Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environ. Sci. Technol. 2001, 35, 966-970.

Devi, L. G.; Kottam, N.; Murthy, B. N.; Kumar, S. G., Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light. J. Mol. Catal. A-Chem. 2010, 328, 44-52.

Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37±.
Galindo, C.; Jacques, P.; Kalt, A., Photooxidation of the phenylazonaphthol AO20 on TiO2: kinetic and mechanistic investigations. Chemosphere 2001, 45, 997-1005.

Gao, Y. F.; Masuda, Y.; Koumoto, K., Light-excited superhydrophilicity of amorphous TiO2 thin films deposited in an aqueous peroxotitanate solution. Langmuir 2004, 20, 3188-3194.

Guo, C.; Xu, J.; He, Y.; Zhang, Y.; Wang, Y., Photodegradation of rhodamine B and methyl orange over one-dimensional TiO2 catalysts under simulated solar irradiation. Appl. Surf. Sci. 2011, 257, 3798-3803.

Jain, R.; Mathur, M.; Sikarwar, S.; Mittal, A., Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J. Environ. Manage. 2007, 85, 956-964.

Kim, J.; Choi, W., TiO2 modified with both phosphate and platinum and its photocatalytic activities. Appl. Catal. B-Environ. 2011, 106, 39-45.

Kitano, M.; Nakajima, K.; Kondo, J. N.; Hayashi, S.; Hara, M., Protonated Titanate Nanotubes as Solid Acid Catalyst. J. Am. Chem. Soc. 2010, 132, 6622–6623.

Konstantinou, I. K.; Albanis, T. A., TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations - A review. Appl. Catal. B-Environ. 2004, 49, 1-14.

Kuo, W. S.; Ho, P. H., Solar photocatalytic decolorization of methylene blue in water. Chemosphere 2001, 45, 77-83.

Li, G. T.; Wong, K. H.; Zhang, X. W.; Hu, C.; Yu, J. C.; Chan, R. C. Y.; Wong, P. K., Degradation of Acid Orange 7 using magnetic AgBr under visible light: The roles of oxidizing species. Chemosphere 2009, 76, 1185-1191.

Li, Y. Z.; Zhang, H.; Guo, Z. M.; Han, J. J.; Zhao, X. J.; Zhao, Q. N.; Kim, S. J., Highly efficient visible-light-induced photocatalytic activity of nanostructured AgI/TiO2 photocatalyst. Langmuir 2008, 24, 8351-8357.


Liu, G. M.; Li, X. Z.; Zhao, J. C.; Hidaka, H.; Serpone, N., Photooxidation pathway of sulforhodamine-B. Dependence on the adsorption mode on TiO2 exposed to visible light radiation. Environ. Sci. Technol. 2000, 34, 3982-3990.

Liu, G. M.; Zhao, J. C.; Hidaka, H., ESR spin-trapping detection of radical intermediates in the TiO2-assisted photo-oxidation of sulforhodamine B under visible irradiation. J. Photochem. Photobiol. A-Chem. 2000, 133, 83-88.

Mahmoodi, N. M.; Arami, M.; Limaee, N. Y.; Tabrizi, N. S., Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst. Chem. Eng. J. 2005, 112, 191-196.

Mueller, R.; Kammler, H. K.; Wegner, K.; Pratsinis, S. E., OH surface density of SiO2 and TiO2 by thermogravimetric analysis. Langmuir 2003, 19, 160-165.

Nagaveni, K.; Sivalingam, G.; Hedge, M. S.; Madras, G., Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2. Appl. Catal. B-Environ. 2004, 48, 83-93.

Nakajima, A.; Koizumi, S.; Watanabe, T.; Hashimoto, K., Effect of repeated photo-illumination on the wettability conversion of titanium dioxide. J. Photochem. Photobiol. A-Chem. 2001, 146, 129-132.

Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M., Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 2001, 123, 1613-1624.

Ohno, T.; Sarukawa, K.; Matsumura, M., Photocatalytic activities of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in HF solution. J. Phys. Chem. B 2001, 105, 2417-2420.

Oregan, B.; Gratzel, M., a Low-cost, High-efficiency Solar-cell Based on Dye-senditized Colloidal TiO2 Films. Nature 1991, 353, 737-740.


Pathak, A. K.; Mukherjee, T.; Maity, D. K., Microhydration of NO3-: A theoretical study on structure, stability and IR spectra. J. Phys. Chem. A 2008, 112, 3399-3408.

Sakai, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K., Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle. Journal of Physical Chemistry B 2003, 107, 1028-1035.

Sauer, T.; Neto, G. C.; Jose, H. J.; Moreira, R., Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. J. Photochem. Photobiol. A-Chem. 2002, 149, 147-154.

Sun, R. D.; Nakajima, A.; Fujishima, A.; Watanabe, T.; Hashimoto, K., Photoinduced surface wettability conversion of ZnO and TiO2 thin films. Journal of Physical Chemistry B 2001, 105, 1984-1990.

Taborda, A. V.; Brusa, M. A.; Grela, M. A., Photocatalytic degradation of phthalic acid on TiO2 nanoparticles. Appl. Catal. A-Gen. 2001, 208, 419-426.

Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T., Dye Sensitized Zinc Oxide Aqueous Electrolyte Platinum Photocell. Nature 1976, 261, 402-403.

Vinu, R.; Polisetti, S.; Madras, G., Dye sensitized visible light degradation of phenolic compounds. Chem. Eng. J. 2010, 165, 784-797.

Wang, J.; Liu , Z.; Cai, R., A New Role for Fe3+ in TiO2 Hydrosol: Accelerated Photodegradation of Dyes under Visible Light. Environ. Sci. Technol. 2008, 42, 5759–5764.

Wang, J. J.; Liu, X. N.; Li, R. H.; Qiao, P. S.; Xiao, L. P.; Fan, J., TiO2 nanoparticles with increased surface hydroxyl groups and their improved photocatalytic activity. Catal. Commun. 2012, 19, 96-99.

Wang, J. Y.; Yu, J. X.; Liu, Z. H.; He, Z. K.; Cai, R. X., A simple new way to prepare anatase TiO2 hydrosol with high photocatalytic activity. Semiconductor Science and Technology 2005, 20, L36-L39.

Wang, Q.; Chen, C. C.; Zhao, D.; Ma, W. H.; Zhao, J. C., Change of adsorption modes of dyes on fluorinated TiO2 and its effect on photocatalytic degradation of dyes under visible irradiation. Langmuir 2008, 24, 7338-7345.

Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T., Light-induced amphiphilic surfaces. Nature 1997, 388, 431-432.

Yamazoe, S.; Okumura, T.; Hitomi, Y.; Shishido, T.; Tanaka, T., Mechanism of photo-oxidation of NH3 over TiO2: Fourier transform infrared study of the intermediate species. J. Phys. Chem. C 2007, 111, 11077-11085.

Zhao, D.; Chen, C.; Wang, Y.; Ji, H.; Ma, W.; Zang, L.; Zhao, J., Surface Modification of TiO2 by Phosphate: Effect on Photocatalytic Activity and Mechanism Implication. J. Phys. Chem. C 2008, 112, 5993-6001.

劉怡彣, 改善奈米二化鈦在水相中的分散性. 碩士論文, 國立清華大學, 新竹, 2008


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊