Aarthi, T.; Madras, G., Photocatalytic degradation of rhodamine dyes with nano-TiO2. Ind. Eng. Chem. Res. 2007, 46, 7-14.
Akbal, F., Photocatalytic degradation of organic dyes in the presence of titanium dioxide under UV and solar light: Effect of operational parameters. Environ. Prog. 2005, 24, 317-322.
Bavykin, D. V.; Parmon, V. N.; Lapkina, A. A.; Walshc, F. C., The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. chem. 2004, 14, 3370-3377.
Bhatkhande, D. S.; Pangarkar, V. G.; Beenackers, A., Photocatalytic degradation for environmental applications - a review. J. Chem. Technol. Biotechnol. 2002, 77, 102-116.
Cao, J.; Xu, B. Y.; Luo, B. D.; Lin, H. L.; Chen, S. F., Preparation, characterization and visible-light photocatalytic activity of AgI/AgCl/TiO2. Appl. Surf. Sci. 2011, 257, 7083-7089.
Chen, C. C.; Li, X. Z.; Ma, W. H.; Zhao, J. C.; Hidaka, H.; Serpone, N., Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: A probe for the interfacial electron transfer process and reaction mechanism. Journal of Physical Chemistry B 2002, 106, 318-324.
Cho, Y. M.; Choi, W. Y.; Lee, C. H.; Hyeon, T.; Lee, H. I., Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environ. Sci. Technol. 2001, 35, 966-970.
Devi, L. G.; Kottam, N.; Murthy, B. N.; Kumar, S. G., Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light. J. Mol. Catal. A-Chem. 2010, 328, 44-52.
Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37±.
Galindo, C.; Jacques, P.; Kalt, A., Photooxidation of the phenylazonaphthol AO20 on TiO2: kinetic and mechanistic investigations. Chemosphere 2001, 45, 997-1005.
Gao, Y. F.; Masuda, Y.; Koumoto, K., Light-excited superhydrophilicity of amorphous TiO2 thin films deposited in an aqueous peroxotitanate solution. Langmuir 2004, 20, 3188-3194.
Guo, C.; Xu, J.; He, Y.; Zhang, Y.; Wang, Y., Photodegradation of rhodamine B and methyl orange over one-dimensional TiO2 catalysts under simulated solar irradiation. Appl. Surf. Sci. 2011, 257, 3798-3803.
Jain, R.; Mathur, M.; Sikarwar, S.; Mittal, A., Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J. Environ. Manage. 2007, 85, 956-964.
Kim, J.; Choi, W., TiO2 modified with both phosphate and platinum and its photocatalytic activities. Appl. Catal. B-Environ. 2011, 106, 39-45.
Kitano, M.; Nakajima, K.; Kondo, J. N.; Hayashi, S.; Hara, M., Protonated Titanate Nanotubes as Solid Acid Catalyst. J. Am. Chem. Soc. 2010, 132, 6622–6623.
Konstantinou, I. K.; Albanis, T. A., TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations - A review. Appl. Catal. B-Environ. 2004, 49, 1-14.
Kuo, W. S.; Ho, P. H., Solar photocatalytic decolorization of methylene blue in water. Chemosphere 2001, 45, 77-83.
Li, G. T.; Wong, K. H.; Zhang, X. W.; Hu, C.; Yu, J. C.; Chan, R. C. Y.; Wong, P. K., Degradation of Acid Orange 7 using magnetic AgBr under visible light: The roles of oxidizing species. Chemosphere 2009, 76, 1185-1191.
Li, Y. Z.; Zhang, H.; Guo, Z. M.; Han, J. J.; Zhao, X. J.; Zhao, Q. N.; Kim, S. J., Highly efficient visible-light-induced photocatalytic activity of nanostructured AgI/TiO2 photocatalyst. Langmuir 2008, 24, 8351-8357.
Liu, G. M.; Li, X. Z.; Zhao, J. C.; Hidaka, H.; Serpone, N., Photooxidation pathway of sulforhodamine-B. Dependence on the adsorption mode on TiO2 exposed to visible light radiation. Environ. Sci. Technol. 2000, 34, 3982-3990.
Liu, G. M.; Zhao, J. C.; Hidaka, H., ESR spin-trapping detection of radical intermediates in the TiO2-assisted photo-oxidation of sulforhodamine B under visible irradiation. J. Photochem. Photobiol. A-Chem. 2000, 133, 83-88.
Mahmoodi, N. M.; Arami, M.; Limaee, N. Y.; Tabrizi, N. S., Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst. Chem. Eng. J. 2005, 112, 191-196.
Mueller, R.; Kammler, H. K.; Wegner, K.; Pratsinis, S. E., OH surface density of SiO2 and TiO2 by thermogravimetric analysis. Langmuir 2003, 19, 160-165.
Nagaveni, K.; Sivalingam, G.; Hedge, M. S.; Madras, G., Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2. Appl. Catal. B-Environ. 2004, 48, 83-93.
Nakajima, A.; Koizumi, S.; Watanabe, T.; Hashimoto, K., Effect of repeated photo-illumination on the wettability conversion of titanium dioxide. J. Photochem. Photobiol. A-Chem. 2001, 146, 129-132.
Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M., Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 2001, 123, 1613-1624.
Ohno, T.; Sarukawa, K.; Matsumura, M., Photocatalytic activities of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in HF solution. J. Phys. Chem. B 2001, 105, 2417-2420.
Oregan, B.; Gratzel, M., a Low-cost, High-efficiency Solar-cell Based on Dye-senditized Colloidal TiO2 Films. Nature 1991, 353, 737-740.
Pathak, A. K.; Mukherjee, T.; Maity, D. K., Microhydration of NO3-: A theoretical study on structure, stability and IR spectra. J. Phys. Chem. A 2008, 112, 3399-3408.
Sakai, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K., Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle. Journal of Physical Chemistry B 2003, 107, 1028-1035.
Sauer, T.; Neto, G. C.; Jose, H. J.; Moreira, R., Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. J. Photochem. Photobiol. A-Chem. 2002, 149, 147-154.
Sun, R. D.; Nakajima, A.; Fujishima, A.; Watanabe, T.; Hashimoto, K., Photoinduced surface wettability conversion of ZnO and TiO2 thin films. Journal of Physical Chemistry B 2001, 105, 1984-1990.
Taborda, A. V.; Brusa, M. A.; Grela, M. A., Photocatalytic degradation of phthalic acid on TiO2 nanoparticles. Appl. Catal. A-Gen. 2001, 208, 419-426.
Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T., Dye Sensitized Zinc Oxide Aqueous Electrolyte Platinum Photocell. Nature 1976, 261, 402-403.
Vinu, R.; Polisetti, S.; Madras, G., Dye sensitized visible light degradation of phenolic compounds. Chem. Eng. J. 2010, 165, 784-797.
Wang, J.; Liu , Z.; Cai, R., A New Role for Fe3+ in TiO2 Hydrosol: Accelerated Photodegradation of Dyes under Visible Light. Environ. Sci. Technol. 2008, 42, 5759–5764.
Wang, J. J.; Liu, X. N.; Li, R. H.; Qiao, P. S.; Xiao, L. P.; Fan, J., TiO2 nanoparticles with increased surface hydroxyl groups and their improved photocatalytic activity. Catal. Commun. 2012, 19, 96-99.
Wang, J. Y.; Yu, J. X.; Liu, Z. H.; He, Z. K.; Cai, R. X., A simple new way to prepare anatase TiO2 hydrosol with high photocatalytic activity. Semiconductor Science and Technology 2005, 20, L36-L39.
Wang, Q.; Chen, C. C.; Zhao, D.; Ma, W. H.; Zhao, J. C., Change of adsorption modes of dyes on fluorinated TiO2 and its effect on photocatalytic degradation of dyes under visible irradiation. Langmuir 2008, 24, 7338-7345.
Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T., Light-induced amphiphilic surfaces. Nature 1997, 388, 431-432.
Yamazoe, S.; Okumura, T.; Hitomi, Y.; Shishido, T.; Tanaka, T., Mechanism of photo-oxidation of NH3 over TiO2: Fourier transform infrared study of the intermediate species. J. Phys. Chem. C 2007, 111, 11077-11085.
Zhao, D.; Chen, C.; Wang, Y.; Ji, H.; Ma, W.; Zang, L.; Zhao, J., Surface Modification of TiO2 by Phosphate: Effect on Photocatalytic Activity and Mechanism Implication. J. Phys. Chem. C 2008, 112, 5993-6001.
劉怡彣, 改善奈米二化鈦在水相中的分散性. 碩士論文, 國立清華大學, 新竹, 2008