[1] A. L. L. R.W. Wood, "The physical and biological effects of high frequency sound waves of great intensity," Philosophical Magazine, vol. 22, pp. 417-436, 1927.
[2] S. Mitragotri and J. Kost, "Low-frequency sonophoresis: a review," Advanced Drug Delivery Reviews, vol. 56, pp. 589-601, Mar 27 2004.
[3] N. B. Smith, S. Lee, E. Maione, R. B. Roy, S. McElligott, and K. K. Shung, "Ultrasound-mediated transdermal transport of insulin in vitro through human skin using novel transducer designs," Ultrasound in Medicine and Biology, vol. 29, pp. 311-317, 2003.
[4] K. H. MASAHIDE KUROKI, HIRONORI ABE, HIROTOMO SHIBAGUCHI,, S.-I. M. MOTOMU KUROKI, JUN YANAGISAWA,, and T. T. a. Y. Y. TETSUSHI KINUGASA, "Sonodynamic therapy of cancer using novel sonosensitizers," ANTICANCER RESEARCH, vol. 27, 2007.
[5] U. R. Shaul Atar, "Perspectives on the Role of Ultrasonic Devices in Thrombolysis," Journal of Thrombosis and Thrombolysis, vol. 17, pp. 107-114, 2004.
[6] S. Mitragotri, "Healing sound: the use of ultrasound in drug delivery and other therapeutic applications," Nature Reviews Drug Discovery, vol. 4, pp. 255-260, Mar 2005.
[7] R. Kunstfeld, G. Wickenhauser, U. Michaelis, M. Teifel, W. Umek, K. Naujoks, K. Wolff, and P. Petzelbauer, "Paclitaxel encapsulated in cationic liposomes diminishes tumor angiogenesis and melanoma growth in a "humanized" SCID mouse model," Journal of Investigative Dermatology, vol. 120, pp. 476-482, Mar 2003.
[8] E. L. Yuh, S. G. Shulman, S. A. Mehta, J. W. Xie, L. L. Chen, V. Frenkel, M. D. Bednarski, and K. C. P. Li, "Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: Study in a murine model," Radiology, vol. 234, pp. 431-437, Feb 2005.
[9] N. Vykhodtseva, N. McDannold, and K. Hynynen, "Progress and problems in the application of focused ultrasound for blood-brain barrier disruption," Ultrasonics, vol. 48, pp. 279-296, Aug 2008.
[10] J. E. Kennedy, "High-intensity focused ultrasound in the treatment of solid tumours," Nature Reviews Cancer, vol. 5, pp. 321-7, Apr 2005.
[11] N. d. Jong, "Improvements of ultrasound contrast agents," IEEE engineering in medicine and biology, vol. 15, pp. 72-82, 1996.
[12] P. A. Dijkmans, L. J. Juffermans, R. J. Musters, A. van Wamel, F. J. ten Cate, W. van Gilst, C. A. Visser, N. de Jong, and O. Kamp, "Microbubbles and ultrasound: from diagnosis to therapy," European Journal of Echocardiography, vol. 5, pp. 245-56, Aug 2004.
[13] P. J. Frinking, A. Bouakaz, J. Kirkhorn, F. J. Ten Cate, and N. de Jong, "Ultrasound contrast imaging: current and new potential methods," Ultrasound in Medicine and Biology, vol. 26, pp. 965-75, Jul 2000.
[14] F. Calliada, R. Campani, O. Bottinelli, A. Bozzini, and M. G. Sommaruga, "Ultrasound contrast agents - Basic principles," European Journal of Radiology, vol. 27, pp. S157-S160, May 1998.
[15] N. Dejong, L. Hoff, T. Skotland, and N. Bom, "Absorption and Scatter of Encapsulated Gas Filled Microspheres - Theoretical Considerations and Some Measurements," Ultrasonics, vol. 30, pp. 95-103, Mar 1992.
[16] J. R. Lindner, "Microbubbles in medical imaging: current applications and future directions," Nature Reviews Drug Discovery, vol. 3, pp. 527-532, Jun 2004.
[17] I. Lentacker, S. C. De Smedt, and N. N. Sanders, "Drug loaded microbubble design for ultrasound triggered delivery," Soft Matter, vol. 5, pp. 2161-2170, 2009.
[18] T. H. Yu, Z. B. Wang, and T. J. Mason, "A review of research into the uses of low level ultrasound in cancer therapy," Ultrasonics Sonochemistry, vol. 11, pp. 95-103, Apr 2004.
[19] H. L. Liu, M. Y. Hua, P. Y. Chen, P. C. Chu, C. H. Pan, H. W. Yang, C. Y. Huang, J. J. Wang, T. C. Yen, and K. C. Wei, "Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment," Radiology, vol. 255, pp. 415-425, May 2010.
[20] S. Sirsi, J. Feshitan, J. Kwan, S. Homma, and M. Borden, "Effect of Microbubble Size on Fundamental Mode High Frequency Ultrasound Imaging in Mice," Ultrasound in Medicine and Biology, vol. 36, pp. 935-948, Jun 2010.
[21] K.-i. Kawabata, N. Sugita, H. Yoshikawa, T. Azuma, and S.-i. Umemura, "Nanoparticles with Multiple Perfluorocarbons for Controllable Ultrasonically Induced Phase Shifting," Japanese Journal of Applied Physics, vol. 44, pp. 4548-4552, 2005.
[22] R. E. Apfel, "Activatable Infusable Dispersions Containing Drops of a Superheated Liquid for Methods of Therapy and Diagnosis," United States Patent vol. 5,840,276, 1998.
[23] M. L. Fabiilli, K. J. Haworth, I. E. Sebastian, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, "Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion," Ultrasound in Medicine and Biology, vol. 36, pp. 1364-75, Aug 2010.
[24] E. C. Unger, T. Porter, W. Culp, R. Labell, T. Matsunaga, and R. Zutshi, "Therapeutic applications of lipid-coated microbubbles," Advanced Drug Delivery Reviews, vol. 56, pp. 1291-314, May 7 2004.
[25] G. M. Lanza and S. A. Wickline, "Targeted ultrasonic contrast agents for molecular imaging and therapy," Progress in Cardiovascular Diseases, vol. 44, pp. 13-31, Jul-Aug 2001.
[26] A. H. Lo, O. D. Kripfgans, P. L. Carson, E. D. Rothman, and J. B. Fowlkes, "Acoustic droplet vaporization threshold: Effects of pulse duration and contrast agent," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 54, pp. 933-946, May 2007.
[27] P. Mohan and N. Rapoport, "Doxorubicin as a Molecular Nanotheranostic Agent: Effect of Doxorubicin Encapsulation in Micelles or Nanoemulsions on the Ultrasound-Mediated Intracellular Delivery and Nuclear Trafficking," Molecular Pharmaceutics, vol. 7, pp. 1959-1973, Nov-Dec 2010.
[28] N. Reznik, R. Williams, and P. N. Burns, "Investigation of vaporized submicron perfluorocarbon droplets as an ultrasound contrast agent," Ultrasound in Medicine and Biology, vol. 37, pp. 1271-9, Aug 2011.
[29] M. W. Chang, E. Stride, and M. Edirisinghe, "A novel process for drug encapsulation using a liquid to vapour phase change material," Soft Matter, vol. 5, pp. 5029-5036, 2009.
[30] O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, "Acoustic droplet vaporization for therapeutic and diagnostic applications," Ultrasound in Medicine and Biology, vol. 26, pp. 1177-1189, Sep 2000.
[31] Z. Z. Wong, O. D. Kripfgans, A. Qamar, J. B. Fowlkes, and J. L. Bull, "Bubble evolution in acoustic droplet vaporization at physiological temperature via ultra-high speed imaging," Soft Matter, vol. 7, pp. 4009-4016, 2011.
[32] N. de Jong, A. Bouakaz, and P. Frinking, "Basic acoustic properties of microbubbles," Echocardiography-a Journal of Cardiovascular Ultrasound and Allied Techniques, vol. 19, pp. 229-240, Apr 2002.
[33] M. Zhang, M. L. Fabiilli, K. J. Haworth, J. B. Fowlkes, O. D. Kripfgans, W. W. Roberts, K. A. Ives, and P. L. Carson, "Initial investigation of acoustic droplet vaporization for occlusion in canine kidney," Ultrasound in Medicine and Biology, vol. 36, pp. 1691-703, Oct 2010.
[34] P. Zhang and T. Porter, "An in vitro study of a phase-shift nanoemulsion: a potential nucleation agent for bubble-enhanced HIFU tumor ablation," Ultrasound in Medicine and Biology, vol. 36, pp. 1856-66, Nov 2010.
[35] L. H. Hartwell and M. B. Kastan, "Cell-Cycle Control and Cancer," Science, vol. 266, pp. 1821-1828, Dec 16 1994.
[36] K. Vermeulen, D. R. Van Bockstaele, and Z. N. Berneman, "The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer," Cell Proliferation, vol. 36, pp. 131-149, Jun 2003.
[37] B. Vogelstein, D. Lane, and A. J. Levine, "Surfing the p53 network," Nature, vol. 408, pp. 307-310, Nov 16 2000.
[38] K. A. Schafer, "The cell cycle: A review," Veterinary Pathology, vol. 35, pp. 461-478, Nov 1998.
[39] M. B. Kastan, C. E. Canman, and C. J. Leonard, "P53, Cell-Cycle Control and Apoptosis - Implications for Cancer," Cancer and Metastasis Reviews, vol. 14, pp. 3-15, Mar 1995.
[40] D. G. Albertson, C. Collins, F. McCormick, and J. W. Gray, "Chromosome aberrations in solid tumors," Nature Genetics, vol. 34, pp. 369-376, Aug 2003.
[41] J. M. Nigro, S. J. Baker, A. C. Preisinger, J. M. Jessup, R. Hostetter, K. Cleary, S. H. Bigner, N. Davidson, S. Baylin, P. Devilee, T. Glover, F. S. Collins, A. Weston, R. Modali, C. C. Harris, and B. Vogelstein, "Mutations in the P53 Gene Occur in Diverse Human-Tumor Types," Nature, vol. 342, pp. 705-708, Dec 7 1989.
[42] P. Anand, A. B. Kunnumakara, C. Sundaram, K. B. Harikumar, S. T. Tharakan, O. S. Lai, B. Y. Sung, and B. B. Aggarwal, "Cancer is a Preventable Disease that Requires Major Lifestyle Changes," Pharmaceutical Research, vol. 25, pp. 2097-2116, Sep 2008.
[43] K. Hede, "Environmental protection: Studies highlight importance of tumor microenvironment," Journal of the National Cancer Institute, vol. 96, pp. 1120-1121, Aug 4 2004.
[44] P. Vaupel, F. Kallinowski, and P. Okunieff, "Blood-Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human-Tumors - a Review," Cancer Res, vol. 49, pp. 6449-6465, Dec 1 1989.
[45] S. J. Lunt, N. Chaudary, and R. P. Hill, "The tumor microenvironment and metastatic disease," Clinical &; Experimental Metastasis, vol. 26, pp. 19-34, Jan 2009.
[46] C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, D. G. Buerk, and D. L. Fraker, "An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model," Cancer Res, vol. 63, pp. 7232-7240, Nov 1 2003.
[47] J. Folkman, "Fundamental concepts of the angiogenic process," Current Molecular Medicine, vol. 3, pp. 643-651, Nov 2003.
[48] P. Carmeliet, "Mechanisms of angiogenesis and arteriogenesis," Nature Medicine, vol. 6, pp. 389-395, Apr 2000.
[49] W. Risau, "Mechanisms of angiogenesis," Nature, vol. 386, pp. 671-674, Apr 17 1997.
[50] C. Murdoch, M. Muthana, S. B. Coffelt, and C. E. Lewis, "The role of myeloid cells in the promotion of tumour angiogenesis," Nature Reviews Cancer, vol. 8, pp. 618-631, Aug 2008.
[51] A. Albini and M. B. Sporn, "The tumour microenvironment as a target for chemoprevention," Nature Reviews Cancer, vol. 7, pp. 139-147, Feb 2007.
[52] T. Hagemann, F. Balkwill, and T. Lawrence, "Inflammation and cancer: A double-edged sword," Cancer Cell, vol. 12, pp. 300-301, Oct 2007.
[53] L. Kopfstein and G. Christofori, "Metastasis: cell-autonomous mechanisms versus contributions by the tumor microenvironment," Cellular and Molecular Life Sciences, vol. 63, pp. 449-468, Feb 2006.
[54] J. JB Hibbs, RR Taintor, HA Chapman, Jr and JB Weinberg, "Macrophage tumor killing: influence of the local environment," Science, vol. 197, pp. 279-282 1977.
[55] T. D. Tlsty and L. M. Coussens, "Tumor stroma and regulation of cancer development," Annual Review of Pathology-Mechanisms of Disease, vol. 1, pp. 119-150, 2006.
[56] 李長安, "癌症治療與用藥手冊," 全國藥品年鑑雜誌社, 2008.
[57] N. C. Denko, "Hypoxia, HIF1 and glucose metabolism in the solid tumour," Nature Reviews Cancer, vol. 8, pp. 705-713, 2008 2008.
[58] A. I. Minchinton and I. F. Tannock, "Drug penetration in solid tumours," Nature Reviews Cancer, vol. 6, pp. 583-592, Aug 2006.
[59] P. Carmeliet, Y. Dor, J. M. Herbert, D. Fukumura, K. Brusselmans, M. Dewerchin, M. Neeman, F. Bono, R. Abramovitch, P. Maxwell, C. J. Koch, P. Ratcliffe, L. Moons, R. K. Jain, D. Collen, and E. Keshert, "Role of HIF-1 alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis," Nature, vol. 395, pp. 525-525, Oct 1 1998.
[60] A. L. Harris, "Hypoxia - A key regulatory factor in tumour growth," Nature Reviews Cancer, vol. 2, pp. 38-47, Jan 2002.
[61] N. C. D. a. A. J. G. Quynh-Thu Le, "Hypoxic gene expression and metastasis," Cancer and Metastasis Reviews, vol. 23, pp. 293-310, 2004.
[62] M. Muthana, A. Giannoudis, S. D. Scott, H. Y. Fang, S. B. Coffelt, F. J. Morrow, C. Murdoch, J. Burton, N. Cross, B. Burke, R. Mistry, F. Hamdy, N. J. Brown, L. Georgopoulos, P. Hoskin, M. Essand, C. E. Lewis, and N. J. Maitland, "Use of Macrophages to Target Therapeutic Adenovirus to Human Prostate Tumors," Cancer Research, vol. 71, pp. 1805-1815, Mar 1 2011.
[63] E. V. Batrakova, S. Li, A. D. Reynolds, R. L. Mosley, T. K. Bronich, A. V. Kabanov, and H. E. Gendelman, "A macrophage-nanozyme delivery system for Parkinson's disease," Bioconjugate Chemistry, vol. 18, pp. 1498-1506, Sep-Oct 2007.
[64] S. Jain, V. Mishra, P. Singh, P. K. Dubey, D. K. Saraf, and S. P. Vyas, "RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting," International Journal of Pharmaceutics, vol. 261, pp. 43-55, Aug 11 2003.
[65] U. Steinfeld, C. Pauli, N. Kaltz, C. Bergemann, and H. H. Lee, "T lymphocytes as potential therapeutic drug carrier for cancer treatment," International Journal of Pharmaceutics, vol. 311, pp. 229-236, Mar 27 2006.
[66] F. J. Muller, E. Y. Snyder, and J. F. Loring, "Gene therapy: can neural stem cells deliver?," Nature Reviews Neuroscience, vol. 7, pp. 75-84, Jan 2006.
[67] A. Mantovani, "The chemokine system: redundancy for robust outputs," Immunology Today, vol. 20, pp. 254-257, Jun 1999.
[68] A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati, "The chemokine system in diverse forms of macrophage activation and polarization," Trends in Immunology, vol. 25, pp. 677-686, Dec 2004.
[69] A. Sica and V. Bronte, "Altered macrophage differentiation and immune dysfunction in tumor development," Journal of Clinical Investigation, vol. 117, pp. 1155-1166, May 2007.
[70] A. Sica, T. Schioppa, A. Mantovani, and P. Allavena, "Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy," European Journal of Cancer, vol. 42, pp. 717-727, Apr 2006.
[71] G. Solinas, G. Germano, A. Mantovani, and P. Allavena, "Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation," Journal of Leukocyte Biology, vol. 86, pp. 1065-1073, Nov 2009.
[72] C. Lewis and C. Murdoch, "Macrophage responses to hypoxia - Implications for tumor progression and anti-cancer therapies," American Journal of Pathology, vol. 167, pp. 627-635, Sep 2005.
[73] C. Murdoch, A. Giannoudis, and C. E. Lewis, "Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues," Blood, vol. 104, pp. 2224-2234, Oct 15 2004.
[74] M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, "A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors," Nano Letters, vol. 7, pp. 3759-3765, Dec 2007.
[75] H. Y. Dou, C. B. Grotepas, J. M. McMillan, C. J. Destache, M. Chaubal, J. Werling, J. Kipp, B. Rabinow, and H. E. Gendelman, "Macrophage Delivery of Nanoformulated Antiretroviral Drug to the Brain in a Murine Model of NeuroAIDS," Journal of Immunology, vol. 183, pp. 661-669, Jul 1 2009.
[76] J. Choi, H. Y. Kim, E. J. Ju, J. Jung, J. Park, H. K. Chung, J. S. Lee, J. S. Lee, H. J. Park, S. Y. Song, S. Y. Jeong, and E. K. Choi, "Use of macrophages to deliver therapeutic and imaging contrast agents to tumors," Biomaterials, vol. 33, pp. 4195-4203, Jun 2012.
[77] S. J. Madsen, S. K. Baek, A. R. Makkouk, T. Krasieva, and H. Hirschberg, "Macrophages as Cell-Based Delivery Systems for Nanoshells in Photothermal Therapy," Annals of Biomedical Engineering, vol. 40, pp. 507-515, Feb 2012.
[78] L. M. Kornmann, D. M. J. Curfs, E. Hermeling, I. van der Made, M. P. J. de Winther, R. S. Reneman, K. D. Reesink, and A. P. G. Hoeks, "Perfluorohexane-loaded macrophages as a novel ultrasound contrast agent: A feasibility study," Molecular Imaging and Biology, vol. 10, pp. 264-270, Sep 2008.
[79] R. R. Patil, S. A. Guhagarkar, and P. V. Devarajan, "Engineered nanocarriers of doxorubicin: A current update," Critical Reviews in Therapeutic Drug Carrier Systems, vol. 25, pp. 1-61, 2008.
[80] R. von Moos, B. J. K. Thuerlimann, M. Aapro, D. Rayson, K. Harrold, J. Sehouli, F. Scotte, D. Lorusso, R. Dummer, M. E. Lacouture, J. Lademann, and A. Hauschild, "Pegylated liposomal doxorubicin-associated hand-foot syndrome: Recommendations of an international panel of experts," European Journal of Cancer, vol. 44, pp. 781-790, Apr 2008.
[81] E. R. Gillies and J. M. J. Frechet, "Dendrimers and dendritic polymers in drug delivery," Drug Discovery Today, vol. 10, pp. 35-43, Jan 1 2005.
[82] N. Rapoport, Z. Gao, and A. Kennedy, "Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy," Journal of the National Cancer Institute, vol. 99, pp. 1095-106, Jul 18 2007.
[83] N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, "Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles," Journal of Controlled Release, vol. 138, pp. 268-276, Sep 15 2009.
[84] J.-Y. Fang, C.-F. Hung, S.-C. Hua, and T.-L. Hwang, "Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: Drug release and cytotoxicity against cancer cells," Ultrasonics, vol. 49, pp. 39-46, 2009.
[85] T. L. Hwang, Y. K. Lin, C. H. Chi, T. H. Huang, and J. Y. Fang, "Development and Evaluation of Perfluorocarbon Nanobubbles for Apomorphine Delivery," Journal of Pharmaceutical Sciences, vol. 98, pp. 3735-3747, Oct 2009.
[86] M. A. Borden, G. V. Martinez, J. Ricker, N. Tsvetkova, M. Longo, R. J. Gillies, P. A. Dayton, and K. W. Ferrara, "Lateral phase separation in lipid-coated microbubbles," Langmuir, vol. 22, pp. 4291-4297, Apr 25 2006.
[87] R. M. Epand and S. W. Hui, "Effect of Electrostatic Repulsion on the Morphology and Thermotropic Transitions of Anionic Phospholipids," Febs Letters, vol. 209, pp. 257-260, Dec 15 1986.
[88] S. Tinkov, G. Winter, C. Coester, and R. Bekeredjian, "New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: Part I - Formulation development and in-vitro characterization," Journal of Controlled Release, vol. 143, pp. 143-150, Apr 2 2010.
[89] N. Y. Rapoport, A. L. Efros, D. A. Christensen, A. M. Kennedy, and K. H. Nam, "Microbubble Generation in Phase-Shift Nanoemulsions used as Anticancer Drug Carriers," Bubble Science, Engineering and Technology, vol. 1, pp. 31-39, 2009.
[90] S. Tinkov, C. Coester, S. Serba, N. A. Geis, H. A. Katus, G. Winter, and R. Bekeredjian, "New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: In-vivo characterization," Journal of Controlled Release, vol. 148, pp. 368-372, Dec 20 2010.
[91] L. N. Du, Y. G. Jin, W. Y. Zhou, and J. Y. Zhao, "Ultrasound-Triggered Drug Release and Enhanced Anticancer Effect of Doxorubicin-Loaded Poly(D,L-Lactide-Co-Glycolide)-Methoxy-Poly(Ethylene Glycol) Nanodroplets," Ultrasound in Medicine and Biology, vol. 37, pp. 1252-1258, Aug 2011.
[92] H. Hillaireau and P. Couvreur, "Nanocarriers' entry into the cell: relevance to drug delivery," Cellular and Molecular Life Sciences, vol. 66, pp. 2873-2896, Sep 2009.
[93] V. Schafer, H. Vonbriesen, R. Andreesen, A. M. Steffan, C. Royer, S. Troster, J. Kreuter, and H. Rubsamenwaigmann, "Phagocytosis of Nanoparticles by Human-Immunodeficiency-Virus (Hiv)-Infected Macrophages - a Possibility for Antiviral Drug Targeting," Pharmaceutical Research, vol. 9, pp. 541-546, Apr 1992.
[94] 吳維宸,"建立以單核球作為細胞載體攜帶抗癌藥物及影像對比劑之傳遞系統",國立清華大學生醫工程與環境科學研究所碩士論文,2012.[95] J. Y. Fang, C. F. Hung, M. H. Liao, and C. C. Chien, "A study of the formulation design of acoustically active lipospheres as carriers for drug delivery," European Journal of Pharmaceutics and Biopharmaceutics, vol. 67, pp. 67-75, Aug 2007.
[96] I. Lentacker, B. Geers, J. Demeester, S. C. De Smedt, and N. N. Sanders, "Design and Evaluation of Doxorubicin-containing Microbubbles for Ultrasound-triggered Doxorubicin Delivery: Cytotoxicity and Mechanisms Involved," Molecular Therapy, vol. 18, pp. 101-108, Jan 2010.
[97] M. A. Borden, C. F. Caskey, E. Little, R. J. Gillies, and K. W. Ferrara, "DNA and polylysine adsorption and multilayer construction onto cationic lipid-coated microbubbles," Langmuir, vol. 23, pp. 9401-9408, Aug 28 2007.