跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/23 17:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林潤森
研究生(外文):Jen-sen Lin
論文名稱:具靜電放電防護的閘極接地N通道金氧半場效應電晶體之設計
論文名稱(外文):The Design and Simulation of a High Performance ESD Protection Device Using the Gate-Grounded NMOSFET Structure
指導教授:陳居毓
指導教授(外文):Chu-Yu Chen
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:73
中文關鍵詞:折回高電壓N通道金氧半場效應電晶體靜電放電閘極接地N通道金氧半場效應電晶體
外文關鍵詞:snapbackhigh voltage NMOSFETelectrostatic discharge (ESD)GGNMOSFET
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1414
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用閘極接地N通道金氧半場效應電晶體(Gate-Grounded N-channel Metal-Oxide-Semiconductor Field-Effect Transistor, GGNMOSFET)的結構來達到靜電放電(Electrostatic discharge, ESD)的有效防護,並將結構加入了淺溝槽隔絕(Shallow Trench Isolation, STI) 與N+深埋層(N+ buried layer, NBL)兩種製程方式去探討整體結構對於折回(Snapback)現象之影響。
ESD防護電路的效能主要由NMOSFET的折回(Snapback)特性所決定,而關鍵就在如何得到適當的崩潰電壓(Breakdown Voltage)與持住電壓(Holding Voltage),以提供整體電路ESD保護效果且避免閂鎖效應(Latch-up effect)的發生,其中崩潰電壓給予電路即時的防護,接著元件的持住電壓來給予下一級電路穩定的供應電壓與足以驅動其電路的持住電流。本論文所設計GGNMOSFET元件的崩潰電壓約在25V,持住電壓在10V左右,而持住電流約在2A,此特性能讓GGNMOSFET擁有較佳的防護能力與穩定性的,其中元件電壓在25V時產生崩潰來防止電壓過大而使得電路燒毀,而在持住特性方面,使其發生時能夠穩定供應給下一級電路10V的電壓,另一方面其持住電流也能夠讓下一級電路正常操作,再經由改變NBL濃度去分析其折回特性的變化。本論文接著探討了GGNMOSFET製程部分,以防止製程過程中發生結構損壞或龜裂並經由不斷的修正使其可提高晶圓廠的生產良率。
最後本論文也將所設計之元件連接在RC暫態(Transient)電路中進行分析去證明此結構ESD防護的穩定性,從所設定的增加時間和τ常數去分析元件的溫度與I-V曲線之變化,因此可得知本論文所設計的元件受到時間因素時ESD防護效果的變化,綜合以上分析來證明本文所設計的GGNMOSFET足以提供電路穩定且可靠的ESD防護。
A Gate-Grounded N-channel Metal-Oxide-Semiconductor Field-Effect Transistor (GGNMOSFET) structure is presented to provide the effective ESD protection. By implementing Shallow Trench Isolation (STI) and N+ buried layer (NBL) into the GGNMOSFET, the snapback effect of the structure can be further controlled.
The effectiveness of an ESD protection circuit is highly dependent with the NMOSFET snapback characteristic. The key point is how to control appropriate breakdown voltage and holding voltage, which would provide the effective ESD protection and avoid latch-up phenomena in the circuit. The proper breakdown voltage can protect circuit immediately. The holding voltage supplies the stability to the input of the next level while the holding current is sufficient to drive it. In this thesis, the breakdown voltage, the holding voltage and the holding current are designed with about 25V, 10V and 2A, respectively. The snapback characteristic curve provides the GGNMOSFET with proper protection and stability. When the input voltage of the GGNMOSFET is 25V, it causes breakdown to protect the circuit from burning out. The holding voltage with steady 10V is supplied to the input of the next level circuit, and the holding current of 2A can keep the next level circuit under normal operation. The sensitivity to different NBL concentrations is investigated for the snapback effect. The manufacturing process is discussed to prevent damage or crack and improve repeatedly to increase the yield rate for the GGNMOSFET.
Finally, the device is connected with RC transient test circuit. Such a circuit has been verified as an effective method to evaluate the stability in ESD applications. When the ESD protection effect is observed, the rise time and time constantτare utilized to obtain the time-domain temperature and I-V curve. The analysis indicates that the GGNMOSFET can provide stable and effective ESD protection for the circuit.
摘要
ABSTRACT
誌 謝
表目錄
圖目錄
第一章
1.1 靜電防護(ELECTROSTATIC DISCHARGE PROTECTION)元件之簡介
1.1.1 二極體(Diode)簡介
1.1.2 雙極性接面電晶體(Bipolar Junction Transistor, BJT)簡介
1.1.3 矽控整流器(Silicon-Controlled Rectifier)簡介
1.1.4 金氧半場效應電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)簡介
1.2 論文架構
第二章 閘極接地N通道金氧半場效應電晶體(GATE-GROUNDED NMOSFET, GGNMOSFET)之特性介紹
2.1. 折回特性(SNAPBACK CHARACTERISTIC)
2.2. 崩潰特性(BREAKDOWN CHARACTERISTIC)
2.3. 持住特性(HOLDING CHARACTERISTIC)
2.4. 閂鎖效應(LATCH-UP)
第三章 具ESD防護的閘極接地N通道金氧半場效應電晶體(GGNMOSFET)之設計與模擬分析
3.1. 具ESD防護GGNMOSFET之基本架構與操作原理
3.1.1 基本架構
3.1.2 操作原理
3.2. 元件之折回特性模擬分析
3.3 模擬結果與討論
3.4. 結論
第四章 具ESD防護之閘極接地N通道金氧半場效電晶體(GGNMOSFET)的製程模擬與暫態分析
4.1. 製程模擬
4.2. 製程參數分析
4.2.1 元件的尺寸分析
4.2.2 元件參雜濃度之分析
4.3. 暫態分析
4.3.1 具溫度變化之暫態分析
4.3.2 具濃度變化之暫態分析
4.4. 結論
第五章 總結與未來展望
參考文獻
附件1
附件2
附件3
[1]A. Amersekera, C. Duvvury, ESD in Silicon Integrated Circuits. JOHN WILEY & SONS, LTD, 1999.
[2]Sonia Ben Dhia, Mohamed Ramdani and Etienne Sicard, Electromagnetic Compatibility of Integrated Circuits: Techniques for Low Emission And Susceptibility. Springer Verlag, 2005.
[3]Iyer N.M., Jiang Hao, Yap Hin Kiong, Zhang Guo Wei, Xiaoping Wang, Cheng Chao and Verma P.R., “ESD Engineering Fully Silicided Large MOSFET Driver for Maximum It1 Performance,” Proc. EOS/ESD Symp., pp.1 – 6, 2010.
[4]3M, “什麼是靜電防護,” http://solutions.3m.com.tw/wps/portal/3M/zh_TW/ESD/home/ESD_TW/whatIs/, 2012.
[5]IEC61000-4-5, “ELECTROMAGNETIC COMPATIBILITY (EMC)Part 4-5:Testing and measurement techniques –Surge immunity test,” International Electrotechnical Commission, 1995.
[6]Semtech, “ESD Protection,” http://www.semtech.com/, 2012.
[7]Adwl S. Sedra, Kenneth C. Smith, Microelectronic CIRCUITS. 5th Ed., New York: Oxford University Press, 2004.
[8]De Heyn V., Groeseneken G., Keppens B., Natarajan M., Vacaresse L. and Gallopyn G., “Design And Analysis of New Protection Structures for Smart Power Technology with Controlled Trigger and Holding Voltage,” in 39th Annual International Reliability Physics Symposium, pp. 253 – 258, 2001.
[9]Bertrand G., Delage C., Bafleur M., Nolhier N., Dorkel J.-M., Nguyen Q., Mauran N., Tremouilles D. and Perdu P., ”Analysis and Compact Modeling of a Vertical Grounded-Base n-p-n Bipolar Transistor Used as ESD Protection in a Smart Power Technology,” IEEE J. Solid-State Circuits, vol. 36, no. 9, pp. 1373 – 1381, Sept. 2001.
[10]Oleg Semenov, Hossein Sarbishaei, Manoj Sachdev, ESD Protection Device and Circuit Design for Advanced CMOS Technologies. Springer Verlag, 2008.
[11]Yuanzhong Zhou, Hajjar J.-J., Righter A.W. and Lisiak K.P., “Modeling Snapback of LVTSCR Devices for ESD Circuit Simulation Using Advanced BJT and MOS Models,” Proc. 23th EOS/ESD Symp.(2007), pp. 3A.3-1 – 3A.3-10.
[12]Meneghesso G., Tazzoli A., Marino F.A., Cordoni M. and Colombo P., ”DEVELOPMENT OF A NEW HIGH HOLDING VOLTAGE SCR-BASED ESD PROTECTION STRUCTURE,” in 46th Annual. International Reliability Physics Symposium, pp. 3 – 8, 2008.
[13]Jen-Chou Tseng, Chung-Ti Hsu, Chia-Ku Tsai, Yu-Ching Liao and Ming-Dou Ker, “ESD PROTECTION DESIGN FOR LOW TRIGGER VOLTAGE AND HIGH LATCH-UP IMMUNITY,” in Proc. IPFA, pp. 1 – 4, 2010.
[14]Yu Bo, Wang Yuan, Jia Song and Zhang Ganggang, “A Novel Dual SCR Device for ESD Protection,” IEEE 8th International Conference on ASIC, ASICON ''09, pp. 789 – 791, 2009.
[15]Chen J.Z., Amerasekera A. and Vrotsos T., “Bipolar SCR ESD Protection Circuit for High Speed Submicron Bipolar/BiCMOS Circuits,” Electron Devices Meeting, pp. 337 – 340, 1995.
[16]Pogany D., Johnsson D., Bychikhin S., Esmark K., Rodin P., Stecher M., Gornik E. and Gossner H., “Measuring Holding Voltage Related to Homogeneous Current Flow in Wide ESD Protection Structures Using Multilevel TLP,” IEEE Trans. Electron Devices, vol. 58, no. 2, pp. 1575 – 1579, Feb. 2011.
[17]Mergens M.P.J., Wilkening W., Mettler S., Wolf H., Stricker A. and Fichtner W., “Analysis of Lateral DMOS Power Devices Under ESD Stress Conditions,” IEEE Trans. Electron Devices, vol. 47, no. 11, pp. 2128 – 2137, Nov. 2000.
[18]Duvvury C., Carvajal F., Jones C. and Briggs D., “Lateral DMOS Design for ESD Robustness,” in IEDM Tech. Dig., International, pp. 375 – 378, 1997.
[19]Parthasarathy V., Khemka V., Zhu R., Whitfield J., Bose A. and Ida R., “A Double RESURF LDMOS With Drain Profile Engineering for Improved ESD Robustness,” IEEE Electron Device Lett., vol. 23, no. 4, pp. 212 – 214, Apr. 2002.
[20]Hui Shan, Jianbao Xia, Xiangdong Luo and Yufeng Guo, “Double Snapback Effect in LDMOS Based on Non-isothermal Simulation,” in Proc. ICEICE, pp.2121 – 2124, 2011.
[21]Shrivastava M., Schneider J., Baghini M.S., Gossner H. and Rao V.R., ”On the Failure Mechanism and Current Instabilities in RESURF Type DeNMOS Device Under ESD Conditions,” in Proc. IRPS, pp. 841 – 845, 2010.
[22]Shrivastava M., Russ C., Gossner H., Bychikhin S., Pogany D. and Gornik E., “ESD Robust DeMOS Devices in Advanced CMOS Technologies,” in Proc. EOS/ESD Symp., 2011 33rd NO POD PERMISSION, pp. 1 – 10, 2011.
[23]Wu K.M., Chen J.F., Su Y.K., Lee J.R., Lin Y.C., Hsu S.L. and Shih J.R., “Anomalous Reduction of Hot-Carrier-Induced ON-Resistance Degradation in n-Type DEMOS Transistors,” IEEE Trans. Device and Materials Reliab., vol. 6, no. 3, pp. 371 – 376, Sep. 2006.
[24]Sheng-Fu Hsu, Ming-Dou Ker, “Dependence of Device Structures on Latchup Immunity in a High-Voltage 40-V CMOS Process With Drain-Extended MOSFETs,” IEEE Trans. Electron Devices, vol. 54, no. 4, pp. 840 – 851 Apr. 2007.
[25]Lu Jia, Jiang Yuxi, Dian Yang and Ran Feng, “A Study of Snapback and Parasitic Bipolar Action for ESD NMOS Modeling,” High Density packaging and Micro system Integration, 2007. HDP ''07., pp. 1 – 5, Jun. 2007.
[26]Ming-Dou Ker, Kun-Hsien Lin, “Double Snapback Characteristics in High-Voltage nMOSFETs and the Impact to On-Chip ESD Protection Design,” IEEE Electron Device Lett., vol. 25, no. 9, pp. 640 – 642, Sep. 2004.
[27]Ming-Dou Ker, Kun-Hsien Lin, “ESD Protection Design for I/O Cells With Embedded SCR Structure as Power-Rail ESD Clamp Device in Nanoscale CMOS Technology,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2329 – 2338, Nov. 2005.
[28]Fu-Chieh Hsu, Ping-Keung Ko, Simon Tam, Chenming Hu and Muller, R.S., “An Analytical Breakdown Model for Short-Channel MOSFET''s,” IEEE Trans. Electron Devices, vol. 29, no. 11, pp. 1735 – 1740, Nov. 1982.
[29]Young Chung, Hongzhong Xu, Ida, R. and Baird, B., “SNAPBACK BREAKDOWN DYNAMICS AND ESD SUSCEPTIBILITY OF LDMOS,” in 44th Annual. International Reliability Physics Symposium, pp. 352 – 355, 2006.
[30]Gupta R.K., Sakai I. and Hu C., “ANALYSIS OF LATCH-UP HOLDING VOLTAGE FOR SHALLOW TRENCH CMOS,” IEEE Electron Device Lett., vol. 22, no. 23, pp. 1261 – 1263, Nov. 1986.
[31]Vladislav A. Vashchenko, Ann Concannon, Marcel ter Beek, and Peter Hopper, “High Holding Voltage Cascoded LVTSCR Structures for 5.5-V Tolerant ESD Protection Clamps,” IEEE Trans. Device and Materials Reliab., vol. 4, no. 3, pp. 273 – 280, Jun. 2004.
[32]Ming-Jer Chen, Hun-Shung Lee, Jyh-Huei Chen, Chin-Shan Hou, Chaun-Sheng Lin and Yeh-Ning Jou, “A Physical Model for the Correlation Between Holding Voltage and Holding Current in Epitaxial CMOS Latch-Up,” IEEE Electron Device Lett., vol. 19, no. 8, pp. 276 – 278, Aug. 1998.
[33]Seitchik, J.A., Chatterjee, A. and Ping Yang, “An Analytic Model of Holding Voltage for Latch-Up in Epitaxial CMOS,” IEEE Electron Device Lett., vol. 8, no. 4, pp. 157 – 159, Apr. 1987.
[34]Wen-Yi Chen, Ming-Dou Ker, Yeh-Jen Huang, Yeh-Ning Jou and Geeng-Lih Lin, “Measurement on Snapback Holding Voltage of High-Voltage LDMOS for Latch-up Consideration,” IEEE Proceedings of Asia Pacific Conference on Circuits and Systems, pp. 61 – 64, 2008.
[35]Shen-Li Chen, Tzung-Shian Wu, Hung-Wei Chen; Chun-Hsing Shih and Po-Ying Chen, “To Achieve a Novel Weak Snapback Characteristic in the High Voltage nLDMOS,” IEEE International Symposium on Next-Generation Electronics (ISNE), pp. 182 – 185, 2008.
[36]M. D. Ker, H. H. Chang, “How to safely apply the LVTSCR for CMOS whole-chip ESD protection without being accidentally triggered on,” in Proc. EOS/ESD Symp., pp. 72 – 85, 1998.
[37]O. Semenov, H. Sarbishaei, and M. Sachdev, “Analysis and design of LVTSCR-based EOS/ESD protection circuits for burn-in environment,” in Proc. of the Int. Symp. Quality Electron Design, pp. 427–432, 2005.
[38]F. S. Shoucair, “High-temperature latchup characteristics in VLSI CMOS circuits,” IEEE Trans. on Electron, vol. 35, no. 12, pp. 2424 – 2426, Dev. 1988.
[39]F-C. Hsu, R. S. Muller and C. Hu, “Characteristics of Short-Channel MOSFETs in the Breakdown Regime,” IEEE International Electron Devices Meeting, vol. 28, pp. 282 – 285, 1982.
[40]Schutz A., Selberherr S.; Potzl H.W., “Analysis of Breakdown Phenomena in MOSFET''s,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 1, no. 2, pp. 77–85, Apr. 1982
[41]Vassilev, V.; Lorenzini, M.; Groeseneken, G.; Steyaert, M.; Maes, H., “Analysis and Improved Compact Modeling of the Breakdown Behavior of Sub-0.25 Micron ESD Protection ggNMOS Devices,” in Proc. EOS/ESD Symp., pp. 61 – 69, 2001.
[42]Gerardin S., Griffoni A., Tazzoli A., Cester A., Meneghesso G. and Paccagnella A., “Electrostatic Discharge Effects in Irradiated Fully Depleted SOI MOSFETs With Ultra-Thin Gate Oxide,” IEEE Transactions on Nuclear Science, vol. 54, no. 6, Dec. 2007.
[43]Gupta R.K., Sakai I. and Chenming Hu, “Effects of Substrate Resistance on CMOS Latchup Holding Voltages,” IEEE Trans. Electron Devices, vol. 34, no. 11, pp. 2309 – 2316, Nov. 1987.
[44]Ming-Dou Ker, Kun-Hsien Lin, “The Impact of Low-Holding-Voltage Issue in High-Voltage CMOS Technology and the Design of Latchup-Free Power-Rail ESD Clamp Circuit for LCD Driver ICs,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1751 – 1759, Aug. 2005.
[45]SILVACO, “TCAD,” http://www.silvaco.com/, 2012.
[46]S. M. Sze, Physics of Semiconductor Devices. 2nd ed. New York: Wiley, 1981.
[47]Song, B.; Han, Y.; Li, M.; Dong, S.; Guo, W.; Huang, D.; Ma, F.; Miao, M., “Substrate-triggered GGNMOS in 65 nm CMOS process for ESD application,” IEEE Electron Device Lett., vol. 46, no. 7, pp. 518 – 520, Apr. 2010.
[48]Ming-Dou Ker, Jeng-Jie Peng and Hsin-Chin Jiang, “ESD TEST METHODS ON INTEGRATED CIRCUITS: AN OVERVIEW,” The 8th IEEE International Conference on Electronics, Circuits and Systems, ICECS, vol. 2, pp. 1011 – 1014, 2001.
[49]Hong Xiao, Introduction to Semiconductor Manufacturing Technology. Prentice Hall, 2000.
[50]JEDEC Standard JESD22-A114D, “Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM),” JEDEC, 2006.
[51]X. F. Gao, J. J. Liou, J. Bernier, G. Croft, and A. Ortiz-Conde, “Implementation of a Comprehensive and Robust MOSFET Model in Cadence SPICE for ESD Applications,” IEEE Transactions on Computer-Aided Design of Integrated Circuitsand Systems, vol. 21, no. 12, pp. 1497 – 1502, Dec. 2002.
[52]Yuanzhong Zhou, Connerney D., Carroll R. and Luk T., “Modeling MOS Snapback for Circuit-Level ESD Simulation Using BSIM3 and VBIC Models,” Sixth International Symposium on Quality of Electronic Design, ISQED, pp. 476 – 481, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top