(3.235.11.178) 您好!臺灣時間:2021/03/05 14:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:繆佳曄
論文名稱:含十六族元素之異核金屬羰基團簇物:合成與電化學和電子吸收光譜以及理論計算探討
論文名稱(外文):Bimetallic Carbonyl Chalcogenide Clusters: Synthesis, Electrochemistry, Optical Properties, and Computational Studies
指導教授:謝明惠謝明惠引用關係
學位類別:博士
校院名稱:國立臺灣師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
論文頁數:83
中文關鍵詞:第十六族元素異核金屬團簇物電化學電子吸收光譜理論計算
外文關鍵詞:group 16 elementsheteronuclear metalsclusterselectrochemistryUV-vis spectracomputational studies
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
1. E/Mn/Cr/CO (E = S, Se) 系統之研究
當[PPN][E2Mn3(CO)9] (E = S, Se)、Cr(CO)6和PPNCl以莫耳比1:1:2或1:2:2於混合乙腈及甲醇之鹼性溶液(4M)中反應,可得到含hydride之混合錳鉻化合物[PPN]2[HE2Mn3Cr(CO)14] (E = S, [PPN]2[1a]; Se, [PPN]2[1b])。然而,起始物之陽離子來源為TMBA時,進而加入Cr(CO)6以莫耳比1:1於鹼性甲醇溶液(4M)中加熱迴流反應,可獲得八面體結構之混合錳鉻團簇物[TMBA]3[E2Mn3Cr(CO)12] (E = S, [TMBA]3[2a]; Se, [TMBA]3[2b])。化合物1a和1b亦可於鹼性甲醇溶液中加熱迴流並進行合環反應而轉變成化合物2a和2b。此外,若化合物1a和1b加入一或兩當量Cr(CO)6於二氯甲烷溶液中加熱迴流反應,則可進行擴核反應而得到含hydride之混合錳鉻化合物[HE2Mn3Cr2(CO)19]2─ (E = S, 3a; Se, 3b)。其化合物生成及相關性質、結構轉換以及電化學性質藉由理論計算進一步驗證。
2. E/Mn/Ru/CO (E = S, Se) 系統之研究
當[PPN][E2Mn3(CO)9] (E = S, Se)與Ru3(CO)12以莫耳比1:1於混合乙腈及甲醇溶液中加熱迴流反應,可得到八面體結構之同核含釕團簇物[HE2Ru4(CO)10]− (E = S, 3a; Se, 3b)和異核含混合錳釕團簇物[E2Mn2Ru2(CO)11]2− (E = S, 4a; Se, 4b)。此外,化合物4a和4b相較於等電子的八面體結構之同核含錳團簇物[E2Mn4(CO)12]2− (E = S, 1a; Se, 1b)和異核含混合錳鉻團簇物[E2Mn3Cr(CO)12]3− (E = S, 2a; Se, 2b)具有良好電子傳遞行為,其氧化位置發生在雙錳金屬羰基片段。紫外可見光吸收光譜顯示此系列同核及異核化合物之電子躍遷為MLCT (Mn→E or COs)或混合MLCT及MMCT (Mn→Cr or Ru)特性,並藉由反射光譜得知此系列化合物其能隙介於1.25至1.80 eV。其化合物生成及相關性質、電子吸收以及電化學性質藉由理論計算進一步驗證。
3. Te/Ru/Cu/CO 系統之研究
當[PPh4]2[TeRu5(CO)14]加入一當量[Cu(MeCN)4][BF4]於二氯甲烷溶液及低溫下反應,可得到三銅橋接之雙八面體結構的團簇物[PPh4]2[{TeRu5(CO)14}2Cu3Cl] ([PPh4]2[1])。若將上述反應之[Cu(MeCN)4][BF4]提高至兩當量,可獲得四銅橋接之雙八面體結構團簇物[PPh4]2[{TeRu5(CO)14}2Cu4Cl2]∙CH2Cl2 ([PPh4]2[2]∙CH2Cl2)和雙銅蓋接之八面體結構團簇物[TeRu5(-CO)2(CO)12Cu2(MeCN)2] (3a);然而,此反應若於室溫下進行,則可獲得化合物2以及化合物3a之結構異構物[TeRu5(-CO)3(CO)11Cu2(MeCN)2] (3b)。此外,化合物1和2的生成反應涉及二氯甲烷之碳氯鍵活化,而化合物3a和3b的生成是藉由反應溫度控制。化合物1─3的生成及相關性質、結構轉換、電子吸收以及電化學性質藉由理論計算進一步驗證。
4. Te/Fe/Cu/dipyridyl 系統之研究
當[TeFe3(CO)9{Cu(MeCN)}2]與不同有機含氮配子依劑量莫耳比於四氫呋喃溶液中反應,可獲得一維或二維含有機配子之混合鐵銅羰基的有機金屬-有機混合之配位聚合物1─4。此外,利用一鍋化方式將[TeFe3(CO)9]2─、[Cu(MeCN)4][BF4]與有機配子H2bpe or tmdpy於四氫呋喃溶液中反應,可得到聚合物3和4其結構中的陰離子之混合鐵銅團簇物[{TeFe3(CO)9Cu}2L]2─ (L = H2bpe, 5; tmdpy, 6)。化合物1─6之生成及相關性質、電子吸收以及導電性藉由理論計算進一步驗證。
關鍵字:第十六族元素、異核金屬、團簇物、電化學、電子吸收光譜、理論計算

1. E/Mn/Cr/CO (E = S, Se) System
When trigonal-bipyramidal clusters, [PPN][E2Mn3(CO)9] (E = S, Se), were treated with Cr(CO)6 and PPNCl in a molar ratio of 1: 1: 2 or 1: 2: 2 in 4 M KOH/MeCN/MeOH solutions, mono-Cr(CO)5-incorporated HE2Mn3-complexes [PPN]2[HE2Mn3Cr(CO)14] (E = S, [PPN]2[1a]; Se, [PPN]2[1b]), respectively, were formed. However, when the TMBA+ salts for [E2Mn3(CO)9]─ were mixed with Cr(CO)6 in a molar ratio of 1: 1 in 4 M KOH/MeOH solutions and refluxed at 60 oC, mono-Cr(CO)3-incorporated E2Mn3Cr octahedral clusters [TMBA]3[E2Mn3Cr(CO)12] (E = S, [TMBA]3[2a]; Se, [TMBA]3[2b]), respectively, were obtained. Clusters 1a and 1b (with [TMBA] salts) underwent metal core closure to form octahedral clusters 2a and 2b upon treatment with KOH/MeOH at 60 oC. In addition, 1a and 1b were found to undergo cluster expansion to form di-Cr(CO)5-incorporated HE2Mn3-clusters [HE2Mn3Cr2(CO)19]2─ (E = S, 3a; Se, 3b), respectively, upon the addition of 1 or 2 equiv of Cr(CO)6 heated in refluxing CH2Cl2. The nature, cluster transformation, and electrochemical properties of the mixed manganese─chromium carbonyl sulfides and selenides were systematically discussed in terms of the chalcogen elements, the introduced chromium carbonyl group, and the metal skeleton, with the aid of molecular calculations at the BP86 level of the density functional theory.
2. E/Mn/Ru/CO (E = S, Se) System
Heating trinuclear E2Mn3-trigonal-bipyramidal clusters, [E2Mn3(CO)9]− (E = S, Se) with Ru3(CO)12 in a molar ratio of 1: 1 in MeCN/MeOH solutions afforded two tetranuclear products, E2Ru4-octahedral clusters [HE2Ru4(CO)10]− (E = S, 3a; Se, 3b) and mixed-metal E2Mn2Ru2-octahedral clusters [E2Mn2Ru2(CO)11]2− (E = S, 4a; Se, 4b). In addition, 4a and 4b exhibited intense electronic communication through the M4 square during oxidation of Mn2(CO)6 fragment, which were compared to the analogous homonuclear group 7 clusters, [E2Mn4(CO)12]2− (E = S, 1a; Se, 1b) and the heteronuclear mixed-group 6/7 clusters, [E2Mn3Cr(CO)12]3− (E = S, 2a; Se, 2b). The electronic absorptions of [E2Mn3(CO)9]− and 1 were assigned as the MLCT (Mn→E or COs) transitions while those of 2 and 4 were attributed to the MLCT (Mn→E or COs) and MMCT (Mn→Cr or Ru) transitions. Moreover, these clusters also showed optical transitions with band gaps of 1.25 to 1.80 eV. Furthermore, the formation and electronic properties as well as electrochemical and optical properties of these E2M4-octahedral carbonyl sulfides and selenides were studied and elucidated with the aid of molecular calculations at the BP86 level of the density functional theory.
3. Te/Ru/Cu/CO System
When [PPh4]2[TeRu5(CO)14] was treated with 1 equiv. of [Cu(MeCN)4][BF4] in dichloromethane (CH2Cl2) at low temperature, the Cu3Cl-incorporated di-TeRu5 carbonyl cluster [PPh4]2[{TeRu5(CO)14}2Cu3Cl] ([PPh4]2[1]) was formed. When [PPh4]2[TeRu5(CO)14] reacted with 2 equiv. of [Cu(MeCN)4][BF4] in CH2Cl2 at low temperature, both Cu4Cl2-incorporated di-TeRu5 carbonyl clusters [PPh4]2[{TeRu5(CO)14}2Cu4Cl2]∙CH2Cl2 ([PPh4]2[2]∙CH2Cl2) and [TeRu5(-CO)2(CO)12Cu2(MeCN)2] (3a) were obtained. However, similar reaction of [PPh4]2[TeRu5(CO)14] with 2 equiv. of [Cu(MeCN)4][BF4] in CH2Cl2 at room temperature produced complexes 2 and [TeRu5(-CO)3(CO)11Cu2(MeCN)2] (3b). The formation of 1 and 2 involved the abstraction of chloride from dichloromethane while the formation of isomers 3a and 3b was governed by the reaction temperature. The nature, transformation, electrochemical, and optical properties of these CuX (X = MeCN or Cl)-incorporated mono- or di-TeRu5-based clusters were discussed in terms of the effects of copper, tellurium, temperature, and the size of the metal skeleton, which was elucidated in detail by DFT calculations at the MPW1PW91 level of the density function theory.
4. Te/Fe/Cu/dipyridyl System
Four new mixed-metal cluster-based 1D or 2D organometallic-organic hybrid polymers 1─4 were synthesized from the reactions of the neutral heterometallic cluster [TeFe3(CO)9{Cu(MeCN)}2] with various ditopic organic linkers such as 1,2-bis(4-pyridine)ethene (bpe), 1,2-bis(4-pyridine)ethane (H2bpe), and 4,4′-trimethylene-dipyridine (tmdpy) in the stoichiometric molar ratios in THF. Besides, the corresponding anionic clusters in 3 and 4, [{TeFe3(CO)9Cu}2L]2─ (L = H2bpe, 5; tmdpy, 6), could be isolated from a one-pot reaction of [TeFe3(CO)9]2─, [Cu(MeCN)4][BF4], and H2bpe or tmdpy. The ternary Te─Fe─Cu─dipyridyl complexes 1─6 were characterized spectroscopically and their nature, formation, and semiconducting properties were discussed systematically in terms of the nature of N-donor dipyridyl linkers, the dimensionalities, and the intermolecular hydrogen interactions with the aid of molecular calculations at the B3LYP level of the density functional theory.
Keywords: group 16 elements, heteronuclear metals, clusters, electrochemistry, UV-vis spectra, computational studies.

Contents
Abstract (Chinese)……… I
Abstract (English)…… III
Chapter 1 Introduction
1.1. Background 1
1.2. Objectives 4
Reference 5

Chapter 2 Stepwise Construction of Manganese─Chromium Carbonyl Chalcogenide Complexes: Synthesis, Electrochemical Properties, and Computational Studies (Inorg. Chem. 2011, 50, 7735─7748.) 7
Abstract 7
2.1. Introduction 8
2.2. Results and Discussion 9
2.3. Conclusion 21
2.4. Experimental Section 21
References 29
Supporting Information 50

Chapter 3 Insight to Mixed-Metal Chemistry of Mn─Ru Carbonyl Chalcogenide Clusters and Comparison of Their Corrosponding Homo- or Hetero-nuclear Octahedral Clusters: Synthesis, Electrochemistry, Optical Properties, and Computational Studies 75
Abstract 75

Chapter 4 Reactivity of [TeRu5(CO)14]2− Toward Copper Salts: Synthesis, Transformations, Electrochemistry, Optical Properties, and Computational Studies 77
Abstract 77

Chapter 5 Semiconducting Te─Fe─Cu─Dipyridyl Carbonyl Polymers: Controlled Synthesis, Optical Properties, and Computational Studies 79
Abstract 79

Appendix A Experimental Section 80
References 81

Appendix B Publications 82

References:

Chapter 1
(1) (a) Bertrand, J. A.; Cotton, F. A.; Dollase, W. A. J. Am. Chem. Soc. 1963, 85, 1349─1350. (b) Cotton, F. A. Inorg. Chem. 1964, 3, 1217─1220. (c) Cotton, F. A. Q. Rev. Chem. Soc. 1966, 20, 389─401.
(2) (a) Shriver, D. F., Kaesz, H. D., Adams, R. D. The Chemistry of Metal Cluster Complexes; Wiley-VCH, Weinheim, 1990. (b) Braunstein, P., Rosé, J. Metal Clusters in Chemistry; Braunstein, P., Oro, L. A., Raithby, P. R., Eds.; Wiley-VCH: Weinheim, 1999; Vol. 2, Chapter 2.2, pp 616─677. (c) Braunstein, P., Rosé, J. In Catalysis by Di- and Polynuclear Metal Cluster Complexes; Adams, R. D., Cotton, F. A., Eds.; Wiley-VCH: New York, 1998; Chapter 13. pp 443─508. (d) Schmid, G. Clusters and Colloids. From Theory to Applications; Wiley-VCH, Weinheim, 1964. (e) Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Heteronuclear Metal─Metal Bonds, Vol. 10; Adams, R. D., Ed.; Elsevier: Oxford, 1995. (f) Metal Clusters in Catalysis; Gates, B. C., Guczi, L., Knözinger, H., Eds.; Studies in Surface Science and Catalysis Series; Elsevier: Amsterdam, 1986; Vol. 29. (g) Hermans, S., Khimyak, T., Raja, R., Sankar, G., Thomas, J. M., Johnson, B. F. G. in Nanotechnology in Catalysis; Zhou, B., Hermans, S., Somorjai, G. A., Eds.; Kluwer Academic, Plenum Publishers: New York, 2004.
(3) (a) Hieber, V. W.; Gruber, J. Z. Anorg. Allg. Chem. 1958, 296, 91─103. (b) Hieber, V. W.; Gruber, J.; Lux, F. Z. Anorg. Allg. Chem. 1959, 300, 275─287. (c) Hieber, V. W.; Beck, W. Z. Anorg. Allg. Chem. 1960, 305, 265─273. (d) Herrmann, W. A. J. Organomet. Chem. 1990, 383, 21─44.
(4) Shieh, M.; Miu, C.-Y.; Chu, Y.-Y.; Lin, C.-N. Coord. Chem. Rev. 2012, 256, 637─694.
(5) Femoni, C.; Iapalucci, M. C.; Kaswalder, F.; Longoni, G.; Zacchini, S. Coord. Chem. Rev. 2006, 250, 1580─1604.
(6) (a) Kambe, T.; Tsukada, S.; Sakamoto, R.; Nishihara, H. Inorg. Chem. 2011, 50, 6856─6858. (b) Tsukada, S.; Shibata, Y.; Sakamoto, R.; Kambe, T.; Ozeki, T.; Nishihara, H. Inorg. Chem. 2012, 51, 1228─1230.
(7) (a) Batten, S. R., Neville, S. M., Turner, D. R. Coordination Polymer: Design, Analysis and Application; RSC: Cambridge, U.K., 2009. (b) Steed, J. W., Atwood, J. L. Supramolecular Chemistry, 2nd ed.; Wiley: Chichester, U.K., 2009.
(8) Givaja, G.; Amo-Ochoa, P.; Gómez-García, C. J.; Zamora, F. Chem. Soc. Rev. 2012, 41, 115─147.
(9) (a) Carne, A.; Carbonell, C.; Imaz, I.; Maspoch, D. Chem. Soc. Rev. 2011, 40, 291─305. (b) Mas-Balleste, R.; Gomez-Herrero, J.; Zamora, F. Chem. Soc. Rev. 2010, 39, 4220─4233. (c) Mas-Balleste, R.; Gomez-Navarro, G.; Gomez-Herrero, J.; Zamora, F. Nanoscale, 2011, 3, 20─30.
(10) Attenberger, B.; Welsch, S.; Zabel, M.; Peresypkina, E.; Scheer, M. Angew. Chem. Int. Ed. Engl. 2011, 50, 11516─11519.

Chapter 2
(1) (a) Braunstein, P., Rosé, J. In Catalysis by Di- and Polynuclear Metal Cluster Complexes; Adams, R. D., Cotton, F. A., Eds.; Wiley-VCH: New York, 1998; Chapter 13. pp 443─508. (b) Braunstein, P., Rosé, J. Metal Clusters in Chemistry; Braunstein, P., Oro, L. A., Raithby, P. R., Eds.; Wiley-VCH: Weinheim, 1999; Vol. 2, Chapter 2.2, pp 616─677. (c) Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Heteronuclear Metal─Metal Bonds, Vol. 10; Adams, R. D., Ed.; Elsevier: Oxford, 1995. (d) Sinfelt, J. H. Bimetallic Catalysts. Discoveries, Concepts and Applications; Wiley: New York, 1983. (e) Metal Clusters in Catalysis; Gates, B. C., Guczi, L., Knözinger, H., Eds.; Studies in Surface Science and Catalysis Series; Elsevier: Amsterdam, 1986; Vol. 29. (f) Hermans, S., Khimyak, T., Raja, R., Sankar, G., Thomas, J. M., Johnson, B. F. G. in Nanotechnology in Catalysis; Zhou, B., Hermans, S., Somorjai, G. A., Eds.; Kluwer Academic, Plenum Publishers: New York, 2004.
(2) (a) Thomas, J. M.; Johnson, B. F. G.; Raja, R.; Sankar, G.; Midgley, P. A. Acc. Chem. Res. 2003, 36, 20─30. (b) Sivaramakrishna, A.; Clayton, H. S.; Makhubela, B. C. E.; Moss, J. R. Coord. Chem. Rev. 2008, 252, 1460─1485. (c) Adams, R. D.; Captain, B. Acc. Chem. Res. 2009, 42, 409─418. (d) Adams, R. D.; Captain, B. Angew. Chem., Int. Ed. 2008, 47, 252─257. (e) Braunschweig, H.; Cogswell, P.; Schwab, K. Coord. Chem. Rev. 2011, 255, 101─117.
(3) (a) Kahn, O. Molecular Magnetism; VCH: Weinheim, 1993. (b) Mathonière, C., Sutter, J.-P., Yakhmi, J. V. Bimetallic magnets: Present and perspectives. In Magnetism: molecules to materials; Miller, J. S., Drillon, M., Eds.; Wiley-VCH: Weinheim, 2002; Vol. 4.
(4) (a) Robinson, I.; Zacchini, S.; Tung, L. D.; Maenosono, S.; Thanh, N. T. K. Chem. Mater. 2009, 21, 3021─3026. (b) Femoni, C.; Iapalucci, M. C.; Longoni, G.; Wolowska, J.; Zacchini, S.; Zanello, P.; Fedi, S.; Riccò, M.; Pontiroli, D.; Mazzani, M. J. Am. Chem. Soc. 2010, 132, 2919─2927. (c) Riccò, M.; Shiroka, T.; Carretta, S.; Bolzoni, F.; Femoni, C.; Iapalucci, M. C.; Longoni, G. Chem.─Eur. J. 2005, 11, 2856─2861. (d) Eichhöfer, A.; Olkowska-Oetzel, J.; Fenske, D.; Fink, K.; Mereacre, V.; Powell, A. K.; Buth, G. Inorg. Chem. 2009, 48, 8977─8984. (e) Muratsugu, S.; Sodeyama, K.; Kitamura, F.; Sugimoto, M.; Tsuneyuki, S.; Miyashita, S.; Kato, T.; Nishihara, H. J. Am. Chem. Soc. 2009, 131, 1388─1389. (f) Costa, M.; Della Pergola, R.; Fumagalli, A.; Laschi, F.; Losi, S.; Macchi, P.; Sironi, A.; Zanello, P. Inorg. Chem. 2007, 46, 552─560. (g) Prinz, M.; Kuepper, K.; Taubitz, C.; Raekers, M.; Khanra, S.; Biswas, B.; Weyhermüller, T.; Uhlarz, M.; Wosnitza, J.; Schnack, J.; Postnikov, A. V.; Schröder, C.; George, S. J.; Neumann, M.; Chaudhuri, P. Inorg. Chem. 2010, 49, 2093─2102. (h) Bechlars, B.; Issac, I.; Feuerhake, R.; Clérac, R.; Fuhr, O.; Fenske, D. Eur. J. Inorg. Chem. 2008, 1632─1644. (i) Shieh, M.; Chung, R.-L.; Yu, C.-H.; Hsu, M.-H.; Ho, C.-H.; Peng, S.-M.; Liu, Y.-H. Inorg. Chem. 2003, 42, 5477─5479.
(5) (a) Kong, X.-J.; Long, L.-S.; Zheng, Z.; Huang, R.-B.; Zheng, L.-S. Acc. Chem. Res. 2010, 43, 201─209. (b) Femoni, C.; Iapalucci, M. C.; Kaswalder, F.; Longoni, G.; Zacchini, S. Coord. Chem. Rev. 2006, 250, 1580─1604. (c) Welsch, S.; Gröger, C.; Sierka, M.; Scheer, M. Angew. Chem. Int. Ed. 2011, 50, 1435─1438. (d) de Silva, N.; Dahl, L. F. Inorg. Chem. 2006, 45, 8814─8816. (e) Scheer, M.; Schindler, A.; Merkle, R.; Johnson, B. P.; Linseis, M.; Winter, R.; Anson, C. E.; Virovets, A. V. J. Am. Chem. Soc. 2007, 129, 13386─13387. (f) Femoni, C.; Iapalucci, M. C.; Longoni, G.; Zacchini, S.; Zarra, S. J. Am. Chem. Soc. 2011, 133, 2406─2409.
(6) (a) Ferrando, R.; Jellinek, J.; Johnston, R. L. Chem. Rev. 2008, 108, 845─910. (b) Femoni, C.; Iapalucci, M. C.; Longoni, G.; Tiozzo, C.; Zacchini, S. Angew. Chem. Int. Ed. 2008, 47, 6666─6669. (c) Naitabdi, A.; Toulemonde, O.; Bucher, J. P.; Rosé, J.; Braunstein, P. ; Welter, R.; Drillon, M. Chem.─Eur. J. 2008, 14, 2355─2362. (d) Schweyer-Tihay, F.; Estournès, C.; Braunstein, P.; Guille, J.; Paillaud, J.-L.; Richard-Plouet, M.; Rosé, J. Phys. Chem. Chem. Phys. 2006, 8, 4018─4028.
(7) (a) Adams, R. D. In The Chemistry of Metal Cluster Complexes; Shriver, D. F., Kaesz, H. D.; Adams, R. D., Eds.; VCH: New York, 1990; Chapter 3, p 121. (b) Roberts, D. A., Geoffroy, G. L. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, 1982; Vol. 6, Chapter 40, p 763.
(8) (a) Wadepohl, H. Coord. Chem. Rev. 1999, 185─186, 551─568. (b) Cador, O.; Cattey, H.; Halet, J.-F.; Meier, W.; Mugnier, Y.; Wachter, J.; Saillard, J.-Y.; Zouchoune, B.; Zabel, M. Inorg. Chem. 2007, 46, 501─509.
(9) (a) Whitmire, K. H. J. Coord. Chem. 1988, 17, 95─204. (b) Roof, L. C.; Kolis, J. W. Chem. Rev. 1993, 93, 1037─1080. (c) Mathur, P. Adv. Organomet. Chem. 1997, 41, 243─314. (d) Ogino, H.; Inomata, S.; Tobiya, H. Chem. Rev. 1988, 98, 2093─2021. (e) King, R. B.; Bitterwolf, T. E. Coord. Chem. Rev. 2000, 206─207, 563─579.
(10) (a) Lesch, D. A.; Rauchfuss, T. B. Inorg. Chem. 1981, 20, 3583─3585. (b) Holliday, R. L.; Roof, L. C.; Hargus, B.; Smith, D. M.; Wood, P. T.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1995, 34, 4392─4401. (c) Drake, G. W.; Schimek, G. L.; Kolis, J. W. Inorg. Chim. Acta 1995, 240, 63─69. (d) Calderoni, F.; Demartin, F.; Iapalucci, M. C.; Laschi, F.; Longoni, G.; Zanello, P. Inorg. Chem. 1996, 35, 898─905. (e) Hecht, C.; Herdtweck, E.; Rohrmann, J.; Hermann, W. A.; Beck, W.; Fritz, P. M. J. Organomet. Chem. 1987, 330, 389─396. (f) Imhof, W.; Huttner, G.; Eber, B.; Günauer, D. J. Organomet. Chem. 1992, 428, 379─400. (g) Bachman, R. E.; Whitmire, K. H. Organometallics 1993, 12, 1988─1992. (h) Bachman, R. E.; Whitmire, K. H. Inorg. Chem. 1994, 33, 2527─2533.
(11) (a) Shieh, M. J. Cluster Sci. 1999, 10, 3─36. (b) Shieh, M.; Ho, C.-H. C. R. Chimie 2005, 8, 1838─1849. (c) Lai, Y.-W.; Cherng, J.-J.; Sheu, W.-S.; Lee, G.-A.; Shieh, M. Organometallics 2006, 25, 184─190.
(12) (a) Adams, R. D.; Kwon, O.-S.; Miao, S. Acc. Chem. Res. 2005, 38, 183─190. (b) Adams, R. D.; Miao, S. J. Organomet. Chem. 2003, 665, 43─47. (c) Huang, S. D.; Lai, C. P.; Barnes, C. L. Angew. Chem. Int. Ed. Engl. 1997, 36, 1854─1856. (d) Fang, Z.-G.; Hor, T. S. A.; Mok, K. F.; Ng, S.-C.; Liu, L.-K.; Wen, Y.-S. Organometallics 1993, 12, 1009─1011. (e) Alper, H.; Sibtain, F.; Einstein, F. W. B.; Willis, A. C. Organometallics 1985, 4, 604─606. (f) Ruiz, J.; Ceroni, M.; Quinzani, O. V.; Riera, V.; Vivanco, M.; García-Granda, S.; Van der Maelen, F.; Lanfranchi, M.; Tiripicchio, A. Chem.─Eur. J. 2001, 7, 4422─4430. (g) Yao, W.-R.; Guo, D.-S.; Liu, Z.-H.; Zhang, Q.-F. J. Mol. Struct. 2003, 657, 165─175.
(13) (a) Seidel, R.; Schnautz, B.; Henkel, G. Angew. Chem. Int. Ed. Engl. 1996, 35, 1710─1712. (b) Hermann, W. A.; Hecht, C.; Ziegler, M. L.; Balbach, B. J. Chem. Soc., Chem. Commun. 1984, 686─687. (c) Belletti, D.; Graiff, C.; Pattacini, R.; Predieri, G.; Tiripicchio, A. Eur. J. Inorg. Chem. 2004, 3564─3569. (d) Ruiz, J.; Araúz, R.; Ceroni, M.; Vivanco, M.; Van der Maelen, F.; García-Granda, S. Organometallics 2010, 29, 3058─3061.
(14) (a) Huang, K.-C.; Tsai, Y.-C.; Lee, G.-H.; Peng, S.-M.; Shieh, M. Inorg. Chem. 1997, 36, 4421─4425. (b) Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Ueng, C.-H. Angew. Chem., Int. Ed. 1999, 38, 1252─1254. (c) Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Lin, S.-F.; Ueng, C.-H. Chem.−Eur. J. 2001, 7, 3152─3158. (d) Shieh, M.; Ho, C.-H.; Sheu, W.-S.; Chen, H.-W. J. Am. Chem. Soc. 2010, 131, 4032─4033. (e) Ho, C.-H.; Chu, Y.-Y.; Lin, C.-N.; Chen, H.-W.; Huang, C.-Y.; Shieh, M. Organometallics 2010, 29, 4396─4405.
(15) (a) Hoefler, M.; Tebbe, K.-F.; Veit, H.; Weiler, N. E. J. Am. Chem. Soc. 1983, 105, 6338─6339. (b) Darensbourg, D. J.; Zalewski, D. J. Organometallics 1984, 3, 1598─1600. (c) Fischer, R. A.; Kneuper, H.-J.; Herrmann, W. A. J. Organomet. Chem. 1987, 330, 365─376.
(16) (a) Goh, L. Y. Coord. Chem. Rev. 1999, 185─186, 257─276. (b) Hausmann, H.; Höfler, M.; Kruck, T.; Zimmermann, H. W. Chem. Ber. 1981, 114, 975─981. (c) Rohrmann, J.; Herrmann, W. A.; Herdtweck, E.; Riede, J.; Ziegler, M.; Sergeson, G. Chem. Ber. 1986, 119, 3544─3557. (d) Blacque, O.; Brunner, H.; Kubicki, M. M.; Nuber, B.; Stubenhofer, B.; Watchter, J.; Wrackmeyer, B. Angew. Chem., Int. Ed. 1997, 36, 351─353. (e) Stauf, S.; Reisner, C.; Tremel, W. Chem. Commun. 1996, 1749─1750. (f) Song, L.-C.; Cheng, H.-W.; Hu, Q.-M. Organometallics 2004, 23, 1072─1080.
(17) (a) Shieh, M.; Ho, L.-F.; Guo, Y.-W.; Lin, S.-F.; Lin, Y.-C.; Peng, S.-M.; Liu, Y.-H. Organometallics 2003, 22, 5020─5026. (b) Shieh, M.; Ho, L.-F.; Chen, P.-C.; Hsu, M.-H.; Chen, H.-L.; Guo, Y.-W.; Pan, Y.-W.; Lin, Y.-C. Organometallics 2007, 26, 6184─6196. (c) Shieh, M. Miu, C.-Y. J. Chin. Chem. Soc. 2010, 57, 956─966.
(18) (a) Pasynskii, A. A.; Eremenko, I. L.; Orazsakhatov, B.; Kalinnikov, V. T.; Aleksandrov, G. G.; Struchkov, Y. T. J. Organomet. Chem. 1981, 216, 211─221. (b) Pasynskii, A. A.; Eremenko, I. L.; Orazsakhatov, B.; Gasanov, G. S.; Novotortsev, V. M.; Ellert, O. G.; Seifulina, Z. M.; Shklover, V. E.; Struchkov, Y. T. J. Organomet. Chem. 1984, 270, 53─64. (c) Pasynskii, A. A.; Eremenko, I. L.; Orazsakhatov, B.; Rakitin, Y. V.; Novotortsev, V. M.; Ellert, O. G.; Kalinnikov, V. T.; Aleksandrov, G. G.; Struchkov, Y. T. J. Organomet. Chem. 1981, 214, 351─365. (d) Pasynskii, A. A.; Skabitski, I. V.; Torubaev, Y. V.; Semenova, N. I.; Novotortsev, V. M.; Ellert, O. G.; Lyssenko, K. A. J. Organomet. Chem. 2003, 671, 91─100.
(19) (a) Pasynskii, A. A.; Grigoriev, V. N.; Torubaev, Y. V.; Blokhin, A. I.; Shapovalov, S. S.; Dobrokhotova, Z. V.; Novotortsev, V. M. Russ. Chem. Bull. 2003, 52, 2689─2700. (b) Pasynskii, A. A.; Torubaev, Y. V.; Grigoriev, V. N.; Blokhin, A. I.; Herberhold, M.; Mathur, P. J. Cluster Sci. 2009, 20, 193─204. (c) Shieh, M.; Lin, C.-N.; Miu, C.-Y.; Hsu, M.-H.; Pan, Y.-W.; Ho, L.-F. Inorg. Chem. 2010, 49, 8056─8066.
(20) (a) Ma, Y. Q.; Yu, L.; Hu, C. S.; Chen, X.; Li, J.; Wang, H. G.; Miguel, D. J. Mol. Struct. 2003, 650, 45─48. (b) Ma, Y.-Q.; Yin, N.; Li, J.; Xie, Q.-L.; Miguel, D. J. Organomet. Chem. 2004, 689, 1949─1955. (c) Alvarez, B.; García-Granda, S.; Jeannin, Y.; Miguel, D.; Miguel, J. A.; Riera, V. Organometallics 1991, 10, 3005─3007.
(21) (a) Behrens, H.; Weber, R. Z. Anorg. Allg. Chem. 1957, 291, 122─130. (b) Behrens, H.; Vogl, J. Chem. Ber. 1963, 96, 2220─2229. (c) Darensbourg, D. J.; Rokicki, A.; Darensbourg, M. Y. J. Am. Chem. Soc. 1981, 103, 3223─3224. (d) Darensbourg, M. Y.; Slater, S. J. Am. Chem. Soc. 1981, 103, 5914─5915. (e) Darensbourg, M. Y.; Deaton, J. C. Inorg. Chem. 1981, 20, 1644─1646. (f) Darensbourg, M. Y.; Bau, R.; Marks, M. W.; Burch, R. R.; Deaton, J. C. Jr.; Slater, S. J. Am. Chem. Soc. 1982, 104, 6961─6969.
(22) Cauzzi, D.; Graiff, C.; Pattacini, R.; Predieri, G.; Tiripicchio, A.; Kahlal, S.; Saillard, J.-Y. Eur. J. Inorg. Chem. 2004, 1063─1072.
(23) (a) Vergamini, P. J.; Vahrenkamp, H.; Dahl, L. F. J. Am. Chem. Soc. 1971, 93, 6326─6327. (b) Seyferth, D.; Henderson, R. S.; Fackler, J. P. Jr.; Mazany, A. M. J. Organomet. Chem. 1981, 213, C21─C25. (c) Adams, R. D.; Captain, B.; Kwon, O.-S.; Miao, S. Inorg. Chem. 2003, 42, 3356─3365. (d) Adams, R. D.; Horváth, I. T.; Wang, S. Inorg. Chem. 1985, 24, 1728─1730. (e) Adams, R. D.; Babin, J. E.; Wang, J.-G.; Wu, W. Inorg. Chem. 1989, 28, 703─709. (f) Brunner, H.; Lucas, D.; Monzon, T.; Mugnier, Y.; Nuber, B.; Stubenhofer, B.; Stückl, A. C.; Wachter, J. Wanninger, R.; Zabel, M. Chem.−Eur. J. 2000, 6, 493─503.
(24) (a) Adams, R. D.; Wolfe, T. A.; Wu, W. Polyhedron, 1991, 10, 447─454. (b) Mathur, P.; Hossain, M. M.; Rashid, R. S. J. Organomet. Chem. 1994, 467, 245─249. (c) Fong, S.-W. A.; Vittal, J. J.; Hor, T. S. A. Organometallics 2000, 19, 918─924. (d) Belletti, D.; Graiff, C.; Pattacini, R.; Predieri, G.; Tiripicchio, A.; de Biani, F. F.; Zanello, P. Inorg. Chim. Acta 2005, 358, 161─172.
(25) Ghosh, S.; Kabir, S. E.; Pervin, S.; Hossain, G. M. G.; Haworth, D. T.; Lindeman, S. V.; Siddiquee, T. A.; Bennett, D. W.; Roesky, H. W. Z. Anorg. Allg. Chem. 2009, 635, 76─87.
(26) Becke, A. D. Phys. Rev. A 1988, 38, 3098─3100.
(27) Perdew, J. P. Phys. Rev. B 1986, 33, 8822─8824.
(28) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648─5652. (b) Becke, A. D. J. Chem. Phys. 1992, 96, 2155─2160. (c) Becke, A. D. J. Chem. Phys. 1992, 97, 9173─9177.
(29) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785─789.
(30) Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829─5835.
(31) See especially: Furche, F.; Perdew, J. P. J. Chem. Phys. 2006, 124, 044103─044127.
(32) Wang, H. Y.; Xie, Y.; King, R. B.; Schaefer, H. F. J. Am. Chem. Soc. 2005, 127, 11646─11651.
(33) Wang, H. Y.; Xie, Y.; King, R. B.; Schaefer, H. F. J. Am. Chem. Soc. 2006, 128, 11376─11384.
(34) Wiberg, K. B. Tetrahedron 1968, 24, 1083─1096.
(35) (a) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066─4073. (b) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735─746.
(36) Bard, A. J., Faulkner, L. R. Electrochemical Methods; Fundamentals and Applications, 2nd ed.; John Wiley & Sons: New York, 2001; p 291.
(37) Nakanishi, T.; Murakami, H.; Sagara, T.; Nakashima, N. J. Phy. Chem. B 1999, 103, 304─308.
(38) Shriver, D. F., Drezdon, M. A. The Manipulation of Air-Sensitive Compounds; Wiley-VCH Publishers: New York, 1986.
(39) Blessing, R. H. Acta Crystallogr. Sect. A 1995, 51, 33─38.
(40) Sheldrick, G. M. SHELXL97, version 97-2; University of Göttingen, Germany, 1997
(41) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision E.04; Gaussian, Inc.: Wallingford, CT, 2004
(42) Reed, A. E.; Curtiss L. A.; Weinhold F. Chem. Rev. 1988, 88, 899─926.
(43) Gorelsky, S. I. AOMix program, http://www.sg-chem.net/.

Appendix A
(1) Shriver, D. F., Drezdon, M. A. The Manipulation of Air-Sensitive Compounds; Wiley-VCH Publishers: New York, 1986.
(2) (a) Kubas, G. J. Inorg. Synth. 1979, 19, 90─92. (b) Simmons, M. G.; Merrill, C. L.; Wilson, L. J.; Bottomley, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827─1837.
(3) Shieh, M.; Kung, C.-H. Unpublished results.
(4) Shieh, M.; Miu, C.-Y.; Huang, K.-H.; Lee, C.-F.; Chen, B.-G. Inorg. Chem. 2011, 50, 7735─7748.
(5) Blessing, R. H. Acta Crystallogr. Sect. A 1995, 51, 33─38.
(6) (a) Sheldrick, G. M. SHELXL97, version 97-2; University of Göttingen, Germany, 1997. (b) Sheldrick, G. M. Acta Crystallogr. Sect. A 2008, 64, 112─122

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 主族 (S, Se, Te) 三鐵羰基化合物與過渡金屬 (VIIB, VIIIB, IB, IIB) 或主族試劑 (IIIA, VA) 之團簇化合物合成暨其電化學、電子吸收光譜與理論計算
2. 網際網路空間之權力圖像探究——以國立臺灣師範大學Moodle數位學習平台及其運用為例
3. 含主族元素(硒、鍗)混合錳或鐵之金屬團簇羰機化合物:合成、反應性、物理性質及理論計算
4. 以理論計算探討:I.氮氧化物在鎳(111)表面的反應機構II.一氧化氮在鎳-鉑雙金屬的分解反應III.二氧化碳在碳化鎢與碳化鎢-鈷合金表面反應探討
5. 含十六族 (S, Se, Te) 三鐵羰基化合物與銅 (I) 及含氮、碳烯試劑的團簇物合成與其化性和物性探討
6. 含主族元素 (Se、Bi) 與過渡金屬 (Mn、Ru、Mo) 團簇化合物的合成與其反應探討及化性與物性研究
7. 含主族(S、Se、Te)與過渡金屬(Mn、Fe)團簇化合物之合成與其磁性、電化學、電子吸收光譜及理論計算
8. 碲三鐵羰基化合物與無機及有機試劑之反應、理論計算、導電度和紫外/可見光譜探討
9. 含主族(鉛、硒、硫)與第六/八族羰基團簇化合物之合成、反應性及理論計算探討
10. 含硒之過渡金屬團簇化合物的合成及化性研究
11. 以基因體學探討蝴蝶蘭B群花器決定基因啟動子及花色調控轉錄因子之研究
12. 從知覺利益與知覺成本觀點探討旅遊網站購買意圖之研究
13. 良言一句三冬暖:網路口碑評論決定性因素對消費者購買決策影響之實證研究
14. 探究領導風格、工作滿意度和工作特性對組織承諾之影響—以越南公職人員為例
15. 以工作滿意與組織承諾為中介變項探討領導行為對離職意圖之研究:以蒙古政府部門為例
 
系統版面圖檔 系統版面圖檔