跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/18 11:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃證宇
研究生(外文):Jheng-Yu Huang
論文名稱:三元材料(鋯、釔、氧)閘極介電層效應之研究
論文名稱(外文):The Effect of Ternary Material (Zr, Y, and O) High-k Gate Dielectrics
指導教授:劉傳璽劉傳璽引用關係程金保程金保引用關係
指導教授(外文):Chuan-Hsi LiuChin-Pao Cheng
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:90
中文關鍵詞:氧化釔漏電流蕭基發射能障
外文關鍵詞:Y2O3leakage currentSchottky emissionbarrier height
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用共濺鍍的方式將鋯摻雜於氧化釔層,並且進行550 ℃、700 ℃和850 ℃的快速熱退火,接著將鋁電極沉積上去就會形成Al/ZrN/Y2O3/Y2O3+Zr/p-Si和Al/ZrN/Y2O3+Zr/Y2O3/p-Si兩種結構,所沉積的氧化層厚度為7 nm。
研究結果指出,當摻雜Zr在上層的時候,透過XRD圖看出結晶的程度要來的比Zr在下層要來的嚴重,代表Zr有抑制氧原子擴散的效果,從AFM也顯出出Zr在上層的面粗糙度也較差。在電性部分,Zr在上層者造成整體的漏電流會較大。最後在蕭基發射漏電流機制方面,透過相同直流濺鍍瓦數以及相同退火溫度的試片作比較分析,發現當Zr摻雜在下層時有較高的能障。顯示出造成較低漏電流的結果有可能之主要因素是由於有較高的能障。

In this study, zirconium (Zr) was doped into the Y2O3 layer through co-sputtering before rapid thermal annealing (RTA) at 550 ℃, 700 ℃, and 850 ℃and Al electrode formation. Two structures were formed: Al/ZrN/Y2O3/Y2O3+Zr/p-Si and Al/ZrN/Y2O3+Zr/Y2O3/p-Si.
When Zr was doped on the upper layer, the crystallization was more significant than when Zr was doped on the bottom layer, as shown in the X-ray diffraction (XRD) diagram. This result showed that Zr can suppress oxygen diffusion. Additionally, the atomic force microscopy (AFM) data also showed that the surface roughness was worse when Zr was doped on the upper layer. With regard to electrical properties, the overall leakage increased when Zr was doped on the upper layer (i.e. Al/ZrN/Y2O3+Zr/Y2O3/p-Si).
Finally, regarding the Schottky emission mechanism, we compared and analyzed the samples of the same DC power and same annealing temperature. We found that the barrier height was higher when Zr was doped on the bottom layer (i.e. Al/ZrN/Y2O3/Y2O3+Zr/p-Si). The higher barrier height may be the dominant factor to result in a lower leakage current.
中文摘要 Ⅰ
Abstract Ⅱ
致謝 Ⅲ
目錄 Ⅳ
表目錄 Ⅶ
圖目錄 Ⅷ
第一章 緒論 1
1.1研究背景 1
1.2研究動機 2
1.3論文架構 2
第二章 文獻探討 3
2.1 MOS(金氧半)電容器簡介 3
2.2金氧半場效電晶體(MOSFET) 3
2.3理想MOS(金氧半)電容器 5
2.4 MOS(金氧半)電容器的運作 6
2.5 MOS電容器中主要的氧化層電荷 8
2.5.1界面陷阱電荷 (interface trapped charge, Qit) 8
2.5.2固定氧化層電荷 (fixed oxide charge, Qf) 8
2.5.3氧化層陷阱電荷 (oxide trapped charge, Qot) 9
2.5.4移動離子電荷 (mobile ionic charge, Qm) 9
2.6高介電係數氧化層材料 10
2.6.1高介電係數氧化層材料HfO2 11
2.6.2高介電係數氧化層材料La2O3 15
2.6.3高介電係數氧化層材料CeO2 19
2.6.4高介電係數氧化層材料ZrO2 21
2.6.5高介電係數氧化層材料Al2O3 24
2.6.6高介電係數氧化層材料Y2O3 25
2.7 MOS電容器的漏電流機制 34
2.7.1直接穿隧(Direct tunneling) 34
2.7.2傅勒-諾德翰穿隧(F-N tunneling) 34
2.7.3蕭基發射(Schottky emission) 36
2.7.4普爾-夫倫克爾發射(Poole-Frenkel emission) 36
第三章 實驗設計 38
3.1實驗儀器和原理簡介 38
3.1.1 X光繞射原理(XRD) 38
3.1.2直流濺鍍原理 39
3.1.3射頻濺鍍原理 40
3.1.4直流濺鍍系統 (DC sputtering system) 40
3.1.5射頻濺鍍系統 (RF sputtering system) 40
3.1.6快速熱退火 (RTA) 42
3.1.7原子力電子顯微鏡 (Atomic force microscopy, AFM) 43
3.1.8橢圓儀 (ellipsometry) 43
3.1.9電容器的電性量測 43
3.2實驗過程 44
3.2.1電容器製備過程 44
3.2.2研究流程 48
第四章 結果與討論 49
4.1 X光繞射分析 49
4.2 AFM表面粗糙度分析 59
4.3 I-V(電流-電壓) 特性與累積分佈函數(Cumulative Distribution
Function, CDF)分析 63
4.4 C-V(電流-電壓) 特性與累積分佈函數(Cumulative Distribution
Function, CDF)分析 70
4.5蕭基發射(Schottky emission)漏電流機制 76
第五章 結論與未來展望 81
5.1 結論 81
5.2 未來展望 82
參考文獻 83
[1] S. M. Sze and K. K. Ng, “Physics of semiconductor devices”, 3rd ed. (Wiley, New York, 2007).
[2] 劉傳璽、陳進來,“半導體物理元件與製程-理論與實務”,五南文化出版 社,(2008)。
[3] B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon”, IEEE Transactions on Electron Devices 27, pp. 606-608, (1980).
[4] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristics of the surface-state charge”, Journal of the Electrochemical Society 114, pp. 266-274, (1967).
[5] J. Robertson, “Electronic structure and band offsets of high-dielectric-constant
gate oxides”, Materials Research Society, pp. 217-221, (2002).
[6] X. Cheng, Z. Song, J. Jiang and Y. Yu, “Characteristics of sandwich-structured Al2O3/HfO2/Al2O3 gate dielectric films on ultra-thin silicon-on-insulator substrates”, Applied Surface Science 252, pp. 1876-1882, (2005).
[7] C. H. An, M. S. Lee, J. Y. Choi, and H. Kim, “Change of the trap energy levels of the atomic layer deposited HfLaOx films with different La concentration”, Applied Physics Letters 94, pp. 262901-1-6, (2009).
[8] B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi, and J. C. Lee, “Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application”, Electron Devices Meeting, pp. 133-136, (1999).
[9] C. H. Liu, P. C. Juan, and J. Y. Lin, “The influence of lanthanum doping position in ultra-thin HfO2 films for high-k gate dielectrics”, Thin Solid Films 518, pp. 7455-7459, (2010).
[10] T. Yamamoto, N. Morita, N. Sugiyama, A. Karen, and K. Okuno, “Characterization of high-k gate dielectric films using SIMS”, Applied Surface Science, 203-204, pp. 516-519, (2003).
[11] G. He, Q. Fang, b, M. Liu, L. Q. Zhu, and L. D. Zhang, “The structural and interfacial properties of HfO2/Si by the plasma oxidation of sputtered metallic Hf thin films”, Journal of Crystal Growth 268, pp. 155-162, (2004).
[12] B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi, and J. C. Lee,“Ultrathin hafnium oxide with low leakage and excellent reliability foralternative gate dielectric application”, IEDM Technical Digest. International, pp. 133-136, (1999).
[13] W. J. Zhu, T. Tamagawa, M. Gibson, T. Furukawa, and T. P. Ma, “Effect of Al inclusion in HfO2 on the physical and electrical properties of the dielectrics”, IEEE Electron Device Letters 23, pp. 649-651, (2001).
[14] X. P. Wang, M. F. Li, A. Chin, C. X. Zhu, J. Shao, W. Lu, X. C. Shen , X. F. Yu, Ren Chi, C. Shen, A. C. H. Huan, J. S. Pan, A. Y. Du, P. Lo, D. S. H. Chan, and D. L. Kwong , “Physical and electrical characteristics of high-k gate dielectric Hf(1-x)LaxOy”, Solid-State Electronics 50, pp. 986-991, (2006).
[15] A. V. Prokofiev, A. I. Shelykh, and B. T. Melekh, “Periodicity in the band gap variation of Ln2X3 (X=O, S, Se) in the lanthanide series”, Journal of Alloys and Compounds 242, pp. 41-44, (1996).
[16] J. Robertson, “High dielectric constant oxides”, The European Physical Journal Applied Physics 28, pp. 265-291, (2004).
[17] Y. H. Wu, M. Y. Yang, A. Chin ,W. J. Chen, and C. M. Kwei, “Electrical Characteristics of high quality La2O3 gate dielectric with equivalent oxide thickness of 5 Å”, IEEE Electron Device Letters 21, pp. 341-343, (2000).
[18] E. Miranda and H. Iwai, “Modeling of the leakage current in ultrathin La2O3 films using a generalized power law equation”, Physical and Failure Analysis of Integrated Circuits, pp. 306-310, (2006).
[19] L. G. Gao, K. B. Yin, L. Chen, H. X. Guo, Y. D. Xia, J. Yin, and Z. G. Liu, “The effect of Si surface nitridation on the interfacial structure and electrical properties of (La2O3)0.5(SiO2)0.5 high-k gate dielectric films”, Applied Surface Science 256, pp. 90-95, (2009).
[20] H. X. Xu, J. P. Xu, C. X. Li, and P. T. Lai, “Electrical properties of Ge metal-oxide-semiconductor capacitors with La2O3 gate dielectric annealed in different ambient”, Thin Solid Films 518, pp. 6962-6965, (2010).
[21] L. Shi, Y. Yuan, X. F. Liang, Y. D. Xia, J. Yin, and Z. G. Liu, “Microstructure and dielectric properties of La2O3 doped amorphous SiO2 films as gatedielectric material”, Applied Surface Science 253, pp. 3731-3735, (2007).
[22] V. Capodieci, F. Wiest, T. Sulima, J. Schulze, and I. Eisele, “Examination and evaluation of La2O3 as gate dielectric for sub-100nm CMOS and DRAM technology”, Microelectronics Reliability 45, pp. 937-940, (2005).
[23] B. Sen, H. Wong, P. K. Chu, K. Kakushima, and H. Iwai, “Characteristics of La2O3 gate dielectric film with Al implantation using plasma immersion ion implantation”, Electron Devices and Solid-State Circuits, pp. 1-4, (2008).
[24] J. Lappalainen, H. L. Tuller and V. Lantto, “Electronic conductivity and dielectric properties of nanocrystalline CeO2 films”, Journal of Electroceramics 13, pp. 129-133, (2004).
[25] M. Y. Li, Z. L. Wang, S. S. Fan, Q. T. Zhao, and G. C. Xiong, “Structural characteristics and the control of crystallographic orientation of CeO2 thin flms prepared by laser ablation”, Nuclear Instruments and Methods in Physics Research B 135, pp. 535-539, (1998).
[26] A. Pfau, K. D. Schierbaum, and W. Gopel, “The electronic structure of CeO2 thin films: the influence of Rh surface dopants”, Surface Science 331-333, pp. 1479-1485, (1995).
[27] H. J. Quah, K. Y. Cheong, Z. Hassan, and Z. Lockman, “Investigation of forming-gas annealed CeO2 thin film on GaN”, Journal of Materials Science: Materials in Electronics 22, pp. 583–591, (2011).
[28] J. Lappalainen, D. K.Harry, and L. Tuller, “High carrier density CeO2 dielectrics—implications for MOS devices”, Journal of the European Ceramic Society 24, pp. 1459-1462, (2004).
[29] H. J. Quah, K. Y. Cheong, Z. Hassan, and Z. Lockman, “MOS Characteristics of metallorganic-decomposed CeO2 spin-coated on GaN”, Electrochemical and Solid-State Letters 13, pp. H116-H118, (2010).
[30] J. Lappalainen, D. Kek, and H. L. Tuller, “High carrier density CeO2 dielectrics—implications for MOS devices”, Journal of the European Ceramic Society 24, pp. 1459-1462, (2004).
[31] F. C. Chiu, S. Y. Chen, C. H. Chen, H. W. Chen, H. S. Huang, and H. L. Hwang, “Interfacial and electrical characterization in Metal–oxide–semiconductor field-effect transistors with CeO2 gate dielectric”, Japanese Journal of Applied Physics 48, pp. 100-102, (2009).
[32] L. Yan, L. B. Kong, J. S. Pan, and C. K. Ong, “Role of oxygen pressure in growth of CeAlOx thin films on Si by pulsed laser deposition”, Journal of Applied Physics 94, pp. 594 -597, (2003).
[33] C. H. Liu and F. C. Chiu, “Electrical characterization of ZrO2/Si interfaceproperties in MOSFETs with ZrO2 gate dielectrics”, IEEE Electron Device Letters 26, pp. 62-64, (2007).
[34] H. S. Choi, K. S. Seol, D. Y. Kim, J. S. Kwak, C. S. Son, and I. H. Choi, “Thermal treatment effects on interfacial layer formation between ZrO2 thin films and Si substrates”, Vacuum 80, pp. 310-316, (2005).
[35] W. J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, Ka. Onishi, T. Ngai, S. Banerjee, and J. C. Lee, “MOSCAP and MOSFET characteristics using ZrO2 gate dielectric deposited directly on Si”, IEDM Technical Digest, pp. 145-148, (1999).
[36] K. Yim, Y. Park, A. Park, N. Cho, and C. Lee, “Electrical properties of sputter-deposited ZrO2-based Pt/ZrO2/Si capacitors”, Journal Material Science Technical 22, pp. 807-810, (2006).
[37] M. Dong, H. Wang, C. Ye, L. Shen, Y. Wang, J. Zhang, and Y. Ye, “Structure and electrical properties of sputtered TiO2/ZrO2 bilayer composite dielectrics upon annealing in nitrogen”, Nanoscale Research Letters 7, pp. 1-5, (2012).
[38] D. Tsoutsou, L. Lamagna, S. N. Volkos, A. Molle, and S. Baldovino, “Atomic layer deposition of LaxZr1-xO2-δ (x = 0.25) high-k dielectrics for advanced gate stacks”, Applied Physics Letters 94, pp. 053504-1-3, (2009).
[39] J. L. Cantin and H. J. von Bardeleben, “An electron paramagnetic resonance study of the Sie100T/Al2O3 interface defects”, Journal of Non-Crystalline Solids 303, pp. 175-178, (2002).
[40] E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol, C. Krug, and M. A. Gribelyuk, “High-resolution depth profiling in ultrathin Al2O3 films on Si”, Applied Physics Letters 76, pp. 176-178, (2000).
[41] 鄭晃忠、劉傳璽,“新世代積體電路製程技術”,東華書局,2011年。
[42] Y. Li, J. Zhu, H. Liu, and Z. Liu, “Fabrication and characterization of Zr-rich Zr-aluminate films for high-k gate dielectric applications”, Microelectronic Engineering 83, pp. 1905-1911, (2006).
[43] S. Abdi-Ben Nasrallah , A. Bouazra , A. Poncet, and M. Said, “Gate leakage properties in (Al2O3/HfO2/Al2O3) dielectric of MOS devices”, Thin Solid Films 517, pp. 456-458, (2008).
[44] F. Paumier, R. J. Gaboriaud, and A. R. Kaul, “Yttrium oxide thin films: chemistrystoichiometry-strain and microstructure”, Crystal Engineering 5, pp. 169-175, (2002).
[45] R. J. Gaboriaud, F. Paumier, F. Pailloux, and P. Guerin, “Y2O3 thin films: internal stress and microstructure”, Materials Science and Engineering B 109, pp. 34-38, (2004).
[46] V. H. Mudavakkat, V. V. Atuchin, V. N. Kruchinin, A. Kayani, and C. V. Ramana, “Structure, morphology and optical properties of nanocrystalline yttrium oxide (Y2O3) thin films”, Optical Materials 34, pp. 893-900, (2012).
[47] S. Y. Wang and Z. H. Lu, “Preparation of Y2O3 thin films deposited by pulse ultrasonic spray pyrolysis”, Materials Chemistry and Physics 78, pp. 542-545, (2002).
[48] M. H. Tang, Y. C. Zhou, X. J. Zheng, Z. Yan, C. P. Cheng, Z. Ye, and Z. S. Hu, “Characterization of ultra-thin Y2O3 films as insulator of MFISFET structure”, Transactions of Nonferrous Metals Society of China 16, pp. 63-66, (2006).
[49] M. H. Cho, D. H. Ko, Y. K. Choi, I. W. Lyo, and K. Jeong, “Structural characteristics of Y2O3 films grown on oxidized Si(111) surface”, Journal of Applied Physics 89, pp. 1946-1652, (2001).
[50] R. H. Horng, D. S. Wu, J. W. Yu, and C. Y. Kung, “Effects of rapid thermal process on structural and electrical characteristics of Y2O3 thin films by r.f.-magnetron sputtering”, Thin Solid Films 289, pp. 234-237, (1996).
[51] K. Nakagawa, K. Miyauchi, K. Kakushima, T. Hattori, K. Tsutsui, and H. Iwai, “The effect of Y2O3 buffer layer for La2O3 gate dielectric film”, Proceedings of ESSDERC, pp. 387-390, (2005).
[52] F. Paumier and R. J. Gaboriaud, “Interfacial reactions in Y2O3 thin films deposited on Si(100) ”, Thin Solid Films 441, pp. 307-310, (2003).
[53] B. E. Park, S. Shouriki, E. Tokumitsu, and H. Ishiwara, “Fabrication of PbZrxTi1-xO3 films on Si structures usibg Y2O3 buffer layers”, Japanese Journal of Applied Physics 37, pp. 5145-5149, (1998).
[54] L. Manchanda and M. Gurvitch, “Yttrium Oxide/Silicon Dioxide: A new dielectric structure for VLSI/ULSI circuits”, IEEE Electron Device Letters 9, pp. 180-182, (1988).
[55] L. K. Chu, W. C. Lee, M. L. Huang, Y. H. Chang, L. T. Tung, C. C. Chang, Y. J. Lee, J. Kwo, and M. Hong, “Metal-oxide-semiconductor devices with molecular beam epitaxy-grown Y2O3 on Ge”, Journal of Crystal Growth 311, pp. 2195-2198, (2009).
[56] F. C. Chiu, Z. H. Lin, C. W. Chang, C. C. Wang, K. F. Chuang, C. Y. Huang, Y. M. Lee, and H. L. Hwang, “Electron conduction mechanism and band diagram of sputter-deposited Al/ZrO2/Si structure”, Journal of Applied Physics 97, pp. 034506-1-4, (2005).
[57] 汪建民,“材料分析” ,中國材料科學學會,(1998)。
[58] 行政院國家科學委員會, “真空技術與應用”,儀器科技研究中心,(2008)。
[59] 羅正忠、張鼎張,“半導體製程技術導論”,歐亞書局,(2007)。
[60] H. J. Ramos and N. B. Valmoria, “Thin-filmdeposition of ZrN using a plasma sputter-type negative ion source”, Vacuum 73, pp. 549-554, (2004).
[61] M. Nose, M. Zhou, E. Honbo, M. Yokota, and S. Saji, “Colorimetric properties of ZrN and TiN coatings prepared by DC reactive sputtering”, Surface and Coatings Technology 142-144, pp. 211-217, (2001).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top