(3.236.222.124) 您好!臺灣時間:2021/05/08 07:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳保慶
研究生(外文):Bao-Ching Chen
論文名稱:現地海床土壤抗液化門檻值與液化潛能評估之研究
論文名稱(外文):The study on resistance liquefaction threshold and liquefaction potential assessment in on-site seabed soil.
指導教授:簡連貴簡連貴引用關係
指導教授(外文):Prof.Lien-Kwei CHIEN
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:156
中文關鍵詞:動力三軸土壤液化
外文關鍵詞:Triaxial Testing SystemSoil Liquefaction
相關次數:
  • 被引用被引用:4
  • 點閱點閱:302
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用高雄港洲際貨櫃中心為研究區域,配合地震與海洋波浪條件進行探討。試驗砂樣以高雄港洲際貨櫃中心外海水深為23.5m之鑽探土樣為主,並利用地震力週期及實測颱風波浪資料進行試驗,以期了解現地海床土壤受地震與波浪作用下之穩定性。為瞭解不同外力作用下海床土壤強度變化之真實情形,本研究採用現地海床土壤進行試驗,並利用過水霣降法方式進行製作試體,以模擬海床土壤深度z=3 m沉積排列情形。本研究利用動力三軸模擬地震力以及波浪力結合扭剪應力進行試驗,研析孔隙水壓激發情形與現地海床土壤抗液化門檻值,並建立本研究之液化潛能評估方法。
本研究主要探討利用Stoke’s 二階波浪理論計算所得之波壓,在週期為12秒下進行三軸軸向結合扭剪應力試驗(模擬波浪力結合扭剪應力);以及利用週期為1秒條件下進行三軸軸向試驗(模擬地震力)。由不同試驗結果分析探討其孔隙水壓激發行為、現地土壤之抗液化門檻值,以及其土壤液化潛能之評估。
由地震力與波浪力結合扭剪試驗結果,以Seed (1976)及張志新(2004)孔隙水壓激發模式探討,發現在不同試驗下以Seed (1976)可較有效的預測孔隙水壓。而不同外力試驗下,因前人皆未考慮扭剪應力的施加的影響,故孔隙水壓激發初期兩預測模式皆有明顯落差。由抗液化曲線圖可得知在相同作用次數之下,相對於地震力而言,波浪力需要比較長的時間才會發生液化破壞。本研究建議地震力可以以反覆作用次數Nc=100(次)時之現地海床抗液化門檻值約0.19;波浪力以反覆作用時間1200秒時之現地海床抗液化門檻值約0.20,做為高雄海域現地海床抗液化門檻值。本研究利用營建署建築物基礎構造設計規範Seed et al(1971)簡化法與港灣構造物設計準則(2005)來估計地震力,建議採用地表加速度Amax減半後,則理論評估結果與本研究試驗之結果比較後皆為產生液化破壞,與本研究試驗所得結果相同。本研究以陳與楊 (1996)之評估方法為基礎,繪出之不同海床深度波浪作用下土壤剪應力比關係圖,求得此處最大可能液化深度為海床表面下4.57m,並建立海床土壤液化潛能評估方法,可評估不同海床之深度受波浪力作用下是否可能發生海床液化破壞。

In this study, the Kaohsiung Harbor Intercontinental Container Center for the study area with seismic and ocean wave conditions to explore. The testing sample to the center of the coast of Kaohsiung Intercontinental Container depth 23.5m drilling soil sample-based and seismic force cycle measured wave data to be tested in order to understand the sea-bed soil stability under seismic and wave action. In order to understand the different external force to the sea bed soil strength changes in the real situation, this study uses the seabed soil test and use the water rainstorm drop way for the production of specimens to simulate the deposition arranged in the case of sea-bed soil depth z = 3 m . In this study, cyclic triaxial analog seismic forces and wave forces, combined with the torsional shear stress test, the Research and Analysis of pore water pressure to stimulate the situation now to the seabed soil liquefaction resistance threshold, and the establishment of the liquefaction potential assessment methods of this study.
This study investigates the use of Stoke's second-order wave theory calculation from wave pressure, triaxial axial combination of the torsional shear stress test (simulation of wave forces combined with the torsional shear stress); and the use of cycle 1 second under the conditions in the period of 12 seconds three-axis axial test (simulated seismic forces). By the different test results analysis to investigate the pore water pressure to stimulate the behavior, the existing soil liquefaction resistance threshold, as well as its assessment of soil liquefaction potential.
The combination of torsional shear test results by the seismic forces and wave forces, Seed (1976) and Chang (2004) pore water pressure excitation mode of, in different experimental Seed (1976) may be more effective prediction of pore water pressure. Under different external test due to previous not consider the influence exerted by the torsional shear stress, pore water pressure is to stimulate the first two forecasting models have obvious gap. Liquefaction damage occurs by the liquefaction resistance curve can be learned under the same role in the number, relative to the seismic force, wave force requires a long time. This study suggests that the seismic force can be repeatedly the role of the number Nc is = 100 (times) when the now to the sea bed, anti-liquefaction threshold value of about 0.19; wave forces repeated the role of time of 1200 seconds when the now to the sea bed, anti-liquefaction threshold value of about 0.20 as Kaohsiung waters, the seabed liquefaction resistance threshold. In this study, the Construction and Planning Agency building the basis of structural design specifications Seed et al (1971) simplified method and harbor structures design criteria (2005) to estimate the force of the earthquake, it is recommended that the ground acceleration Amax halved, the theoretical assessment of the results of the research trials liquefaction damage the results of the comparison are obtained with this study, test results are the same. In this study, Chen and Yang (1996) assessment methods, and draw the depth of the seabed under wave action soil shear stress diagram, obtained here for the greatest possible depth of liquefaction beneath the surface of the sea-bed 4.57m, and the establishment of the seabed soil liquefaction potential assessment methods to assess the depth of the seabed by the wave force under the seabed liquefaction damage may occur.

摘要 I
目錄 III
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1研究背景 1
1.2研究動機 1
1.3研究目的 4
1.4研究方法 6
1.5研究內容 8
第二章 文獻回顧 9
2.1 波浪相關理論探討 9
2.1.1 波浪力與地震力之比較 9
2.1.2 微小振幅波理論 12
2.1.3 有限振幅波理論 14
2.2 動態外力作用下之土壤動態強度 15
2.2.1 土壤動態特性評估與定義 15
2.2.2 土壤液化潛能之相關影響因素 17
2.3 波浪引致海床土壤破壞之研究回顧 24
2.3.1 海床破壞類型 24
2.3.2 海床土壤剪力破壞之文獻成果回顧 25
2.3.3 海床土壤液化破壞研究成果回顧 28
2.4 動力三軸在海床土壤研究說明回顧 32
2.5 剪應變相關原理介紹 33
2.5.1 剪應變應變範圍之分類與比較 33
2.5.2 剪應變之量測方式 36
2.6 綜合論述 40
第三章 結合扭剪應力之動力三軸試驗系統 41
3.1結合波浪力與地震力之動力三軸系統規劃 41
3.1.1動力三軸之改良系統 41
3.2 動力三軸試壓力與扭力供給系統 44
3.2.1 動力三軸壓力供給系統 44
3.2.2 動力三軸扭剪應力供給系統 46
3.3 動力三軸試驗與量測系統設備說明 49
3.3.1 動力三軸試驗系統設備 49
3.3.2 動力三軸量測系統設備 50
3.4 動力三軸自動控制系統設備說明 52
3.4.1 動力三軸自動控制系統硬體 52
3.4.2 動力三軸自動控制系統介面 53
3.4.3 試驗儀器校正 74
3.5 本研究之動力三軸特性 76
第四章 海床現地土壤三軸動態試驗規劃 78
4.1 波浪條件與海床土壤之選定 78
4.1.1 模擬之波浪與現地的條件設定 80
4.1.2 決定碎波水深與碎波波高 81
4.1.3 波浪外力之計算 84
4.2 動態試驗 87
4.2.1 海床現地應力 87
4.2.2 海床土壤動態試驗規劃 88
4.3 試體之準備 90
4.3.1 試驗砂樣之基本性質 90
4.3.2 動力三軸試體準備方式 91
4.4 試驗組數規劃 95
第五章 三軸動態試驗與海床土壤液化潛能評估探討與分析 97
5.1 地震力及波浪力結合扭剪三軸動態試驗分析結果 97
5.1.1 地震力三軸動態試驗結果 97
5.1.2 波浪力結合扭剪應力三軸動態試驗結果 101
5.2 地震力與波浪力結合扭剪試驗之孔隙水壓激發模式比較 105
5.2.1 Seed(1976)孔隙水壓激發模式探討 106
5.2.2 張志新(2004)孔隙水壓激發模式探討 111
5.2.3 孔隙水壓激發模式結果探討比較 116
5.3 海床現地土樣之抗液化門檻值 118
5.3.1 反覆地震力作用下抗液化門檻值 119
5.3.2 反覆波浪力結合扭剪應力作用下抗液化門檻值 120
5.3.3 抗液化門檻值綜合探討 121
5.4 海床現地土樣之液化潛能評估 124
5.4.1 地震力之液化潛能評估方法 124
5.4.2 波浪結合扭剪之液化潛能評估方法 127
5.4.3 液化潛能評估結果探討 134
第六章 結論與建議 136
6.1 結論 136
6.2 建議 139
參考文獻 141
附錄一、 三軸地震力試驗結果整理
附錄二、 三軸波浪力結合扭剪應力試驗結果整理

1. Barends, F. B. J. and Spierenburg, S.E.J. (1991), “Interaction between ocean waves andseabed”, Proceedings of the International Conference on Geotechnical Engineering for Coastal Development –Theory and Practice on Soft Ground (Geot-Coastal’91), Yokohama, Japan, 2, pp.1091-1108.
2. Bea, R. G., Wright, S. G., Sircar, P., and Niedoroda, A. W. (1983), “Wave-induced slides in South Pass Block 70, Mississippi Delta”, J.Geotech. Engng, ASCE Vol.109, No.4, pp.619-644.
3. Biot, M. A. (1941), “General theory of three-dimensional consolidation”, J. Appl. Phys. 12, pp.155-165.
4. Bjerrum, L. (1973), “Geotechnical Problems in Foundations of Structures in the North Sea”, Geotechnique, Vol.23, No.3, pp.319-358.
5. Bouckovalas, G., Stamatopoulos, C.A. , and Whitman, R.V. (1991), “Analysis of Seismic Settlements and Pore Pressures in Centrifuge Tests”, Journal of the Geotechnical Engineering Division, ASCE, Vol.117,10, pp.1492-1508.
6. Bretch, H. & Schwab, H. H. (1977), “Liquefaction of a Fully Saturated Sand under Anisotropic Initial State of Stress in a Controlled Drainage System”, Proceedings of DMSR 77, Vol.2, pp.149-159.
7. Castro, G.C., and Poulos, S.J. (1977), “Factors Affecting Liquefaction and Cyclic Mobility”, Journal of the Geotechnical Engineering Division, ASCE, Vol.103,No.GT6, pp.501-516.
8. Chang S. C., L. K. Chien, J. G. Lin and Y. F. Chiu (2004),“An Experimental Study on Wave-induced Dynamic Stresses in Seabed”.
9. Chern, S.G. (1991) “Cyclic Shear Strength of Sand in Offshore Environment”, The Chinese Journal of Mechanics, Vol. 7, No. 2, pp. 77-86.
10. Dean, R. G. & Dalrymple R. A. (1993), “Water Wave Mechanics for Engineers and Scientists”, World Scientific, pp.353.
11. Hsin Chu (2007),” Quadruple LVDT local rotational displacement measurement in torsional shear tests”, Geomechanics and Geoengineering: An International Journal Vol. 2, No. 2, June 2007, 109--115.
12. Ishibashi, I., Sherif, M. A., and Cheng, W. L. (1982), “The Effects of Soil Parameters on Pore-Pressure-Rise and Liquefaction Prediction”, Soils and Foundations, Vol.22, No.1, pp.39-48.
13. Ishihara, K. (1984), “Soil Response in Cyclic Loading Induced by Earthquakes,Traffic and Waves”, Proc. 7th Asian Regional Conference on Soil Mechanics and Foundation Engineering, Haifa, Israel, Vol. 2, pp.42-66.
14. Ishihara, K. and Yamazaki, A. (1984), “Analysis of wave-induced liquefaction in seabed deposits of sand”, Soils and Foundations, Vol.24, No.3, pp.85-100, Japanese Society of Soil Mechanics and Foundation Engineering.
15. Ishihara, K. (1993), “Liquefaction and flow failure during earthquakes”, Geotechnique, Vol.43, No.3, pp.351-415.
16. Jeng, D. S. (2001), “Mechanism of the wave-induced seabed instability in the vicinity of a breakwater: a review”, Ocean Engineering, Vol.28, pp.537-570.
17. Jeng, D. S. (2003), “Wave-induced sea floor dynamics”, American Society of Mechanical Engineers, Vol.56, No.4, pp.537-570.
18. Lee & Fitton (1969), “Factors Affecting The Cyclic Loading Strength of Soil”, Vibration Effects of Earthquakes on Soils and Foundations, ASTM, STP 450, pp71-96.
19. Lee, K.L. & Focht, J.A. (1975), “Liquefaction Potential of Ekofisk Tank in North Sea”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 100, No. GT1, pp.1-18.
20. Lin Main and Li Jia-chun (2001), “Effects of surface waves and marine soil parameters on seabed stability”, Applied Mathematics and Mechanics, Vol.22, No.8, pp.904-916.
21. Liu, P. L. F. (1973), “Damping of water waves over porous bed”, J. Hydraul.Div., Am. Soc. Civ. Eng., Vol.99, No.12, pp.2263–2271.
22. Mitchell, J.K., Tsui, K.K., Sangrey, D.A. (1972), “Failure of submarine slopes under wave action”, Proceeding 13th International Conference on Coastal Engineering, ASCE, 2, pp.1515-1539.
23. Mitchell, R. J. and Dubin, B. I. (1982), “Pore Pressure Generation and Dissipation in Dense Sands under Cyclic Loading”, Journal of the Canada Geotechnics, Vol.108, No.GT7, pp935-952.174
24. Mulilis, J.P., C. K. Chan, and Seed H.B. (1975), “The Effect of Method of Sample Preparation on The Cyclic Stress-Strain Behavior of Sand”, Report No. EERC 75-18, U.C.Berkeley Earthquake Engineering Research Center.
25. Mulilis, J. P., Seed, H. B., and Chan, C. K. (1977), “Resistance to Liquefaction Due to Sustained Pressure”, Journal of Geotechnical Engineering Division, ASCE, Vol.103, No.GT7, July, pp.793-797.
26. Mulilis, J. P., et al. (1978), “Triaxial Testing Techniques and Sand Liquefaction”, Dynamic Geotechnical Testing, ASTM, STP 654, pp.265-279.
27. Nguyen HongNam, Takeshi Sato and Junichi Koseki, (2001) “Development of Triangular Pin-typed LDTs for Hollow Cylindrical Specimen” University of Tokyo.
28. Peacock, W.H. and Seed, H.B. (1968), “Sand Liquefaction under Cyclic Loading Simple Shear Conditions”, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.94, No.SM3, pp.689-708.
29. Putnam, J. A. (1949), “Loss of wave energy due to percolation in a permeable sea bottom”, Transactions, American Geophysical Union, Vol.30, No.3, pp.349-356.
30. Rahman, M. S. (1991), “Wave-induced Instability of Seabed: Mechanism and Condition”, Marine Geotechnology, Vol.10, pp.277-299.
31. Rahman, M. S. (1997), “Instability and Movement of Oceanfloor Sediments: A Review”, International Journal of Offshore and Polar Engineering, Vol.7, No.3,pp.220-225.175
32. Rahman, M.S. & Jaber, W.Y. (1986), “A simplified drained analysis for wave-induced liquefaction in ocean floor sands”, Soils and Foundations Vol.26, No.1, pp.57-68.
33. Seed, H. (1979), “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquakes”, Journal of the Geotechnical Engineering Division,ASCE, Vol.105, No.GT2, Proc. Paper 14380, pp.201-255.
34. Seed, H.B. and Idriss, I.M. (1971), “Simplified Procedure for Evaluating Soil Liquefaction Potential”, Journal of the Soil Mechanics and Foundation Division,ASCE, Vol. 97, No. SM9, pp.1249-1273.
35. Seed, H. B., Martin, P. P., and Lysmer, J. (1976), “Pore-Water Pressure Changes During Soil Liquefaction”, Journal of the Geotechnical Engineering Division, ASCE, Vol.102, No.GT4, Proc. Paper 12074, Apr., pp.323-346.
36. Seed, H.B. (1979), “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquakes”, Journal of The Geotechnical Engineering Division, ASCE, Vol.105, No.GT2, Feb., pp.201-255.
37. Sharma, S. S., and Fahey, M. (2003), “Evaluation of Cyclic Shear Strength of TwoCemented Calcareous Soils”, Journal of Geotechnical and eoenvironmental Engineering, ASCE, Vol. 129, No. 7, pp.608-618.
38. Shen, C.K., J.L. Yrymoed and C.K. Uyeno (1977) “The Effects of Fines on Liquefaction of Sands”, Proceeding of the 9th International Conference on Soil Mechanics and Foundations Engineering, Tokyo, Vol. 2, pp. 381-385.176
39. Townsend, F.C. (1978) “Soil Mechanics in Engineering Practice”, 2nd Ed., Jone Wiley & Sons.
40. Tzang S.Y., 1992, “ Water wave-induced Soil Fluidization in a Cohesionless Fine-grained Seabed”, PhD Dissertation, University of California at Berkeley.
41. Umehara, Y., Zen, K. , and Hamada, K. (1985), “Evaluation of soil Liquefaction Potentials in Partially Drained Conditions”, Soils and Foundations, Vo1.25, No.2, pp.57-72.
42. Vaid, Y. P. & Chern, J.C. (1985), “Cyclic and monotonic undrained response of saturated sands”, Advances in the art of testing soils under cyclic condition, ASCE,pp.120-147.
43. Vaid, Y. P. et al. (1990), “Particle Gradation and Liquefaction”, Journal of Geotechnical Engineering, ASCE, Vol.116, No.4, April, pp.698-703.
44. Xia, H. & Hu, T. (1991), “Effects of Saturation and Back Pressure on Sand Liquefaction”, Journal of Geotechnical Engineering, ASCE, Vol.117, No.9, pp.1347-1362
45. Wong, R.T., Seed H. B., and Chan, C. K. (1975), “Cyclic Loading Liquefaction of Gravelly Soils”, Journal of The Soil Mechanics and Foundations Division, ASCE, Vol.101, No.GT6, pp.571-583.
46. Yamamoto, T., H. L. Koning, H. Sellmeijer, and E. V. Hijum (1978), “On the reponse of a pore-elastic bed to water waves”, J. Fluid Mech., Vol.87, Part 1, pp.193-206, Printed in Great Britain.
47. Yoshimi, Y. and H. Oh-oka (1975) “Influence of Degree of Shear Stress Reversal on the Liquefaction Potential of Saturayed Sands”, Soils and Foundations, Vol. 15, No. 3, pp. 27-40.177
48. Yoshiaki Yoshimi, Kohji Tokimatsu, Osamu Kaneko, and Yorio Makihara. (1984), “Undrained Cyclic Shear Strength of A Dense Niigata Sand”, Soils and Foundations,Vol.24,No.4,Dec,Pp.131-145.
49. Yoshimi, Y. K. Tokimatsu K. and Y. Hosaka (1989) “Evaluation of Liquefaction Resistance of Clean Sands Based in High-quality Undisturbed Samples”, Soils and Foundations, Vol. 29, No. 1, pp. 93-104.
50. Yuhi Masatoshi and H. Ishida, “ Simplified Solutions for Wave-indueced Response of Anisotropic Seabed”, Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 128, No. 1, pp. 46-50.
51. Zen, K. and Yamazaki, H. (1990(a)), “Mechanism of wave-induced liquefaction and densification in seabed”, Japanese Society of Soil Mechanics and Foundation Engineering, Vol.30, No.4, pp.90-104,.
52. Zen, K. and Yamazaki, H. (1990(b)), “Oscillatory pore pressure and liquefaction in seabed induced by ocean wave”, Japanese Society of Soil Mechanics and Foundation Engineering, Vol.30, No.4, pp.147-161.
53. Zen, K. and Yamazaki, H. (1991), “Field observation and analysis of wave-induced liquefaction in seabed”, Soils and Foundations, Vol.30, No.4, pp.90-104.
54. Zen, K. and Yamazaki, H. (1993), “Wave-induced liquefaction in a permeable seabed”, Report, Port and Harbour Research Institite., Japan, Vol.31, No.5, pp.155-192.
55. 劉上聰(1995),「材料力學」,全華書局。
56. 黃安斌(1998),「大地工程原理」,東華書局。
57. 施國欽(2000),「大地工程學(一)–土壤力學篇」,文笙書局。
58. 沈茂松(2001),「實用土壤力學試驗」,文笙書局。
59. 郭ㄧ羽(2001),「海岸工程學」,文山書局。
60. 許泰文(2003),「近岸水動力學」,中國土木水利工程學會。
61. 楊騰芳(1986),“細料在過壓密及前期微震作用下對飽和砂性土壤液化潛能之影響”,碩士論文,國立台灣大學土木工程研究所,台北台灣。
62. 陳景文、楊朝景(1996),“高雄附近沿海砂質海床之液化潛能評估”,中國土木水利工程學刊,第八卷,第一期,第1-12 頁。
63. 交通部(1996),”港灣構造物設計基準-防波堤設計基準及說明”。
64. 營建署(2001),”建築物基礎構造設計規範10.3節土壤液化評估”。
65. 陳致銘(2007),” 動力三軸試驗應用於評估土壤液化潛能之適用性研究”,碩士論文,國立成功大學土木工程學系,台南台灣。
66. 賴聖耀、李豐博、蘇吉立、陳志芳(2002) ”港灣地區地震監測與土壤液化潛能評估之研究”, 交通部港灣研究所。
67. 張燿顯(2002),“波浪作用對海床砂土動態特性與液化行為之研究”,碩士論文,國立台灣海洋大學河海工程學系,基隆台灣。
68. 陳亞嵐(2004),”近岸風浪推算資料同化之研究,碩士論文”,成功大學,台南。
69. 張志新(2004),“波浪作用下海床砂土液化機制與評估模式之研究”,博士論文,國立台灣海洋大學河海工程學系,基隆台灣。
70. 張竣閔(2005),”小應變中空扭剪試驗局部變形監測”,碩士論文,國立交通大學土木工程研究所,新竹台灣。
71. 許師瑜(2005),”改良式動力三軸系統模擬波浪力作用下海床土壤動態強度之研究”,碩士論文,國立台灣海洋大學河海工程學系,基隆台灣。
72. 張上君(2006),”波浪作用下直立堤附近海床土壤動態行為之研究”,博士論文,國立台灣海洋大學河海工程學系,基隆台灣。
73. 曾文謙(2007),”現地波浪與海床孔隙水壓監測之研究”,碩士論文,國立台灣海洋大學河海工程學系,基隆台灣。
74. 鄭美惠(2007),”模擬近岸氣象樁傾倒之試驗研究”,碩士論文,中山大學,高雄。
75. 詹賀傑(2008),”颱風波浪作用下海床土壤受扭剪應力之動態行為研究”,碩士論文,國立台灣海洋大學河海工程學系,基隆台灣。
76. 楊麒陵(2008),”波浪作用下不同排水情形對海床穩定影響之研究”,碩士論文,國立台灣海洋大學河海工程學系,基隆台灣。
77. 曾文謙 簡連貴 莊昇澤 蔡培祺 許雅婷 呂婷婷 林俶寬 (2009),”海底輸氣管線穩定分析及影響評估”第11屆水下技術研討會暨國科會成果發表會。
78. 楊政嘉(2010),” 港區細粒土壤物理與力學性質相關性之研究-以高雄內港東西側為例”。
79. 台灣世曦(2010),”高雄港洲際貨櫃中心第二期工程計畫委託技術服務工作-海上料源調查成果報告書”。
80. 陳韋廷(2011),”以動力三軸扭剪應力系統模擬颱風波浪作用下海床土壤動態行為之研究”,碩士論文,國立台灣海洋大學河海工程學系,基隆台灣。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔