(18.206.238.77) 您好!臺灣時間:2021/05/18 07:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李美慧
研究生(外文):Mei-Hui Lee
論文名稱:利用生物陰電極改進無膜微生物燃料電池之績效
論文名稱(外文):Improved performance using biocathode in membrane-less microbial fuel cells
指導教授:李志源李志源引用關係
指導教授(外文):Chi-Yuan Lee
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:117
中文關鍵詞:無膜微生物燃料電池小球藻外電阻水力停留時間最大功率密度
外文關鍵詞:microbial fuel cellChlorella vulgarisexternal resistancehydraulic residence timemaximum power density
相關次數:
  • 被引用被引用:2
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討無膜微生物燃料電池 (Membrane less Microbial fuel cell,MLMFC) 在陰極槽植生植物與藻類對產電績效的影響。測試條件包括改變陰極電極面積(184、368 cm2)、外電阻(10 Ω、1000 Ω、10 kΩ)以及水力停留時間(1 day、2 days)。實驗操作期間進流燃料固定為100 mg COD/L的乙酸鈉溶液。
實驗結果顯示,在外部電阻為10 Ω下,當陰極板面積為184、368 cm2時,植物MFC(陰極槽種植黃金葛)之產電績效皆小於無植物MFC (陰極槽無植物),表示種植植物後並未使陰極槽的溶氧量增加,故產電效能不理想。
其次,藻類MFC (陰極槽佈滿小球藻)在外部電阻為1000 Ω、10 kΩ下,水力停留時間為1、2 days,產電績效皆高於無藻類MFC(陰極槽無藻類),表示在陰極槽之小球藻可助於增加產電效能及去除效果,也可降低內電阻的影響。另外,藻類MFC之總電壓、溶氧量及陰極電壓會隨著日夜而變化。而無藻類MFC皆無明顯變化。
未來須深入探討生物陰極中藻類之反應機制,進一步澄清藻類生長與產電間之關係,期能提升微生物燃料電池之操作與設計水準。

In this study, we examine the effects on the electricity production of using higher plant (Epipremnum pinnatum) and the algae (Chlorella vulgaris) in the cathode chamber of membrane-less microbial fuel cells (MFC). The MFC performance was tested with two cathode electrode areas of 184 and 368 cm2 , and loaded with three external resistances of 10 Ω, 1000 Ω, and 10 kΩ, respectively. During the experimentation, the MFC was operated at hydraulic residence times of 1 and 2 days and discharged with fuel concentration of acetate of 100 mg COD / L.
Results showed that under 10 Ω the MFC with the higher plants produced less electricity than that MFC without plants, implying that the plants did not improve MFC performance. Under 1000 Ω and 10 kΩ, the MFC with the algae exhibited higher power production in contrast to MFC without algae. These results suggested that Chlorella vulgaris in the cathode chamber increased the electricity production, the removal efficiency, and reduce the internal resistance. In addition, the MFC with algae had significant variations in dissolved oxygen and potentials during day and night, as compared to the MFC without algae has negligible change.
Subsequent research is needed to the get more understanding into reaction mechanism of algae in cathode, as well as to clarify the relationship between algae growth and electricity, facilitating to improve the operation and design of microbial fuel cells.

摘要…………………………………………………………………………i
Abstract……………………………………………………………………iii
目錄………………..………………………………………………………v
表錄………………..………………………………………………………ix
圖錄………………………………………………….……………………xi
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究內容 2
第二章 文獻回顧 3
2.1 微生物燃料電池演變 3
2.2 微生物燃料電池之原理 4
2.3 微生物燃料電池構造 5
2.4 無膜型微生物燃料電池 6
2.5 生物陰極MFC 8
2.5.1 生物介紹 8
2.5.2 植物在MFC之功能 9
2.5.3 藻類MFC 11
第三章 實驗材料與方法 15
3.1 實驗材料 15
3.1.1 微生物燃料電池反應槽 15
3.1.2 電極材料 18
3.1.3 石墨顆粒 18
3.1.4 微生物來源 18
3.1.5 燃料 18
3.1.6 陽極槽磷酸鹽緩衝溶液 19
3.2 實驗方法 19
3.2.1 組裝步驟 19
3.2.2 操作方法 20
3.3 實驗內容 20
3.4 分析原理與儀器設備 23
3.4.1 電壓 23
3.4.2 產電分析 23
3.4.2 分析儀器 29
第四章 研究結果與討論 30
4.1 植物陰電極MFC 30
4.1.1 穩態下之產電效能及水質分析 30
4.1.2 極化曲線之實驗結果 33
4.2 無植物MFC 43
4.2.1 穩態下之產電效能及水質分析 43
4.2.2 極化曲線之實驗結果 45
4.3 綜合討論 56
4.4 藻類MFC負載1000 Ω外電阻 63
4.4.1 穩態下之產電效能及水質分析 63
4.4.2 極化曲線之實驗結果 65
4.5 無藻類MFC負載1000 Ω外電阻 73
4.5.1 穩態下之產電效能及水質分析 73
4.5.2 極化曲線之實驗結果 74
4.6 綜合討論 82
4.7 藻類MFC負載10 kΩ外電阻 87
4.7.1 穩態下之產電效能及水質分析 87
4.7.2 極化曲線之實驗結果 88
4.8 無藻類MFC負載10 kΩ外電阻 92
4.8.1 穩態下之產電效能及水質分析 92
4.8.2 極化曲線之實驗結果 92
4.9 綜合討論 97
4.10 藻類對陰極槽之影響 101
第五章 結論與建議 113
參考文獻 115

黃雅妮 (2008). "電極板間距離對微生物燃料電池績效之影響." 國立臺灣海洋大學 河海工程研究所 碩士論文.
陳美惠 (2001). "食品工業." 33(9): 48-56.
薛聰賢 (1997). "台灣花卉實用圖鑑." 台灣普綠有限公司出版部 4: 50-51.
Fu, C.-C., Su, C.-H., Hung, T.-C., Hsieh, C.-H., Suryani, D., & Wu, W.-T. (2009). "Effects of biomass weight and light intensity on the performance of photosynthetic microbial fuel cells with Spirulina platensis." Bioresource Technology 100: 4183-4186.
Geisler, G. (1964). "The Morphogenetic Effect of Oxygen on Roots." Horticultural Research Section.
Helder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., Kuijken, R. C. P., & Buisman, C. J. N. (2012). "New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell." Bioresource Technology 104: 417-423.
Jang, J. K., Phama, T. H., Changa, I. S., Kanga, K. H., Moona, H., Chob, K. S., & Kima, B. H. (2004). "Construction and operation of a novel mediator- and membrane-less microbial fuel cell." Process Biochemistry 39: 1007-1012.
Jeon, H. J., Seo, K.-w., Lee, S. H., Yang, Y.-H., Kumaran, R. S., Kim, S., & Kim, H. J. (2011). "Production of algal biomass (Chlorella vulgaris) using sediment microbial fuel cells." Bioresource Technology.
Jeremiasse, A. W., Hamelers, H. V. M., & Buisman, C. J. N. (2009). "Microbial electrolysis cell with a microbial biocathode." Bioelectrochemistry.
Kima, H. J., Parka, H. S., Hyun, M. S., Chang, I. S., Kim, M., & Kim, B. H. (2002). "A mediator – less microbial fuel cell using a metal reducing bacterium." Microbiology Technology.(30): 145-152.
Kimura, M., Murase, J., & Lu, Y. (2004). "Carboncy cling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4)." Soil Biology and Biochemistry 36(9): 1399-1416.
Li Z., Zhoua, S., Wanga, Y., Liua, C., & Geng, S. (2009). "Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells." Biosensors and Bioelectronics 24(12): 3652-3656.
Schamphelalre, L. D., Bossche, L. V. D., Dang, H. S. Hofte, M., Boon, N., Rabaey, K., & Verstraete, W. (2008). "Microbial Fuel Cells Generating Electricity from Rhizodeposits of Rice Plants." Environmental Science & Technology (42): 3053–3058.
Liu, H., & .Logan, B. (2004). "Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane." Environmental Science & Technology 38: 4040-4046.
Liu, H., Thanramnarayanan, R., & Logan, B. (2004). "Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell." Environmental Science & Technology (38): 2281-2285.
Lu, Y., Watanabe, A., & Kimura, M. (2003). "Carbon dynamics of rhizodeposits, root- and shoot-residues in a rice soil." Soil Biology and Biochemistry 35(9): 1223-1230.
Shukla, A. K., Surwsh, P., Berchmans, S., & Rajendran, A. (2004). "Biological fuel cells and their applications." Current Science 87: 455-468.
Xiaoxin Cao, Xia Huang, Peng Liang, Nico Boon, Mingzhi Fan, Lin Zhang, & Zhang, X. (2009). "A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction." Energy&Environmental Science(2): 498-501.
Yuana, Y., Chena, Q., Zhoua, S., Zhuang, L., & Hub, P. (2011). "Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell." Journal of Hazardous Materials 187: 591-595.
Zhao, F., Slade, R. C. T., & Varcoe, J. R. (2009). "Techniques for the study and development of microbial fuel cells: an electrochemical perspective." Chemical Sciences 38: 1926-1939.
Zhu, F., Wang, W., Zhang, X., & Tao, G. (2011). "Electricity generation in a membrane-lessmicrobialfuelcell with down-flow feeding onto the cathode." Bioresource Technology 102(15): 7324-7328.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top