跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/10 06:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李冠儀
研究生(外文):Guan-Yi Li
論文名稱:次微米幾丁聚醣對高脂飲食大白鼠醣類及脂質代謝 之影響
論文名稱(外文):Effects of Sub-micro Chitosan on Carbohydrate and Lipid Metabolism in Rats Fed High Fat Diet
指導教授:江孟燦江孟燦引用關係
指導教授(外文):Meng-Tsan Chiang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:89
中文關鍵詞:幾丁聚醣次微米高脂飲食血脂
外文關鍵詞:ChitosanSub-micro chitosanhigh fat dietplasma lipid
相關次數:
  • 被引用被引用:1
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
為比較幾丁聚醣和次微米幾丁聚醣 (380.9 nm) 之機能特性,以動物實驗探討其對高脂飲食大白鼠醣類及脂質代謝之影響。實驗共分為五組:正常組 (N)、高脂飲食組 (HF)、0.21% 次微米幾丁聚醣組 (LMC)、0.42% 次微米幾丁聚醣組 (HMC) 及 0.42% 幾丁聚醣組 (CTS),幾丁聚醣直接添加於飲食中,而次微米幾丁聚醣則以管餵方式給予,實驗共進行 4 週。在醣代謝方面,LMC、HMC 和 CTS 組的血糖、胰島素及小腸雙糖酶活性與 HF 組無顯著差異。脂質代謝方面,實驗 2 週後,LMC、HMC 和 CTS 組皆能降低血漿總膽固醇濃度 (TC),血漿三酸甘油酯 (TG) 方面則只有 CTS 組有顯著降低;餵食 4 週後,LMC、HMC 和 CTS 組血漿低密度脂蛋白及極低密度脂蛋白膽固醇濃度和血漿 AST 含量皆顯著低於 HF 組,但只有 HMC 組可以顯著降低血漿 TC 濃度。在肝臟方面,HMC 和 CTS 組皆能減少肝臟脂質合成酵素 acetyl CoA carboxylase (ACC) 活性,此外 HMC 組也能顯著降低高脂飲食大鼠肝臟 TC、TG 含量、肝臟 TBARS 值。在糞便方面,LMC、HMC 和 CTS 組皆能夠增加糞便膽酸量。在過敏免疫反應指標方面,給予幾丁聚醣及次微米幾丁聚醣並不會增加血漿 IgE 濃度,表示不會引起過敏反應。綜合上述結果,高低劑量次微米幾丁聚醣及幾丁聚醣皆能夠改善高脂飲食大鼠脂質代謝異常情形,但 0.42% 次微米幾丁聚醣組與幾丁聚醣組效果比較,並沒有太顯著差異。
The aims of this study was to compare the effects of chitosan and sub-micro chitosan (380.9 nm) on glucose and lipid metabolism in high fat diet rats. Forty male Sprague-Dawley (SD) rats were randomly divided into five groups, normal diet control (N), high fat diet control (HF), high fat diet fed low dose 210 mg/kg (0.21%) sub-micro chitosan (LMC), high fat diet fed high dose 420 mg/kg (0.42%) sub-micro chitosan (HMC) and high fat diet fed 420 mg/kg (0.42%) chitosan (CTS) for 4 weeks. Sub-micro chitosan suspension in distilled water by tube feeding and chitosan added in diet. In the aspect of carbonhydrate metabolism, LMC, HMC and CTS groups did not differ between HF group in plasma glucose, insulin concentration and small intestinal disaccharidase activity at end of study. In the aspect of lipid metabolism, LMC, HMC and CTS groups all could decrease the plasma total cholesterol (TC) concentration and that CTS group was also less the plasma triglyceride (TG) concentration at 2 weeks. After 4 weeks, LMC, HMC and CTS groups significantly reduce the LDL + VLDL- Cholesterol concentration and AST activity in plasma. Furthermore, only HMC group could significantly decrease the plasma TC concentratio. On the other hand, HMC and CTS groups could reduce the lipid synthetase acetyl CoA carboxylase (ACC) activity in liver. Moreover, HMC group also could significantly decrease the level of TC, TG and TBARS in liver. In addition, LMC, HMC and CTS groups could increase the level of bile acid in facal. Moreover, chitosan or sub-micro chitosan did not increase allergic reactions indicator plasma IgE concentration. Result from this study suggest that high and low doses sub-micro chitosan or chitosan are able to improve high fat diet rats lipid metabolism situation, but the effect between 0.42% sub-micro chitosan and chitosan in the high fat diet rats was not much difference.
謝誌 I
摘要 I
Abstract II
目錄 III
表目錄 VI
詞彙縮寫表 VII
第一章、前言 1
第一節、脂質代謝異常 3
一、現況與定義 3
二、高脂血症與其他相關疾病 4
三、代謝症候群 5
第二節、高脂飲食 6
一、定義 6
二、高膽固醇飲食對脂質代謝之影響 7
三、體內脂質代謝相關酵素 8
第三節、脂肪組織 10
一、脂肪組織之介紹 10
二、脂肪組織與肥胖之相關性 11
第四節、幾丁聚醣 12
一、幾丁聚醣之介紹 12
二、影響生理活性之因子 14
第五節、奈米科技 18
一、定義 18
二、奈米科技之介紹 18
三、奈米食品之應用 18
四、奈米食品之疑慮與安全性 20
第六節、免疫球蛋白 21
第三章、實驗動機與目的 23
第一節、實驗架構 24
第二節、動物實驗流程 24
第三節、實驗材料 25
一、幾丁聚醣及次微米幾丁聚醣 25
二、實驗飼料 26
三、實驗動物 27
四、實驗儀器 27
第四節、動物分組 28
第五節、動物飼養、胃管灌食及樣品收集 28
一、動物飼養 28
二、胃管灌食 28
三、樣品收集 29
第六節、實驗方法 29
一、幾丁聚醣去乙醯度、黏度及平均分子量的測定 29
二、次微米幾丁聚醣粒徑的測定 31
三、膽固醇吸附能力試驗 31
四、血漿分析 32
五、肝臟分析 37
六、小腸黏膜分析 40
七、脂肪組織分析 41
八、糞便分析 44
九、統計分析 45
一、體外試驗中,不同實驗樣品對膽固醇的結合能力試驗 46
二、動物實驗中,不同實驗樣品對體重及組織臟器重量變化之影響 46
三、飼養期間,攝食、飲水、排尿、糞便重量、體重增加量及食物利用率之變化 46
四、實驗兩週後,各組空腹血糖血脂濃度之變化 47
五、實驗四週後,各組血漿醣類代謝相關參數之變化 47
六、實驗四週後,各組血漿脂質代謝相關參數之變化 47
七、實驗四週後,各組肝臟脂質代謝相關參數之變化 47
八、實驗四週後,各組糞便脂質代謝相關參數之變化 48
九、實驗四週後,各組肝功能指標之變化 48
十、實驗四週後,各組肝臟脂質合成相關酵素活性之變化 48
十一、實驗四週後,各組小腸雙糖酶活性之變化 48
十二、實驗四週後,各組脂肪組織型態之分析 48
十三、實驗四週後,各組脂肪組織 LPL 及 HSL 活性之影響 49
十四、實驗四週後,各組免疫及過敏反應指標之變化 49
一、次微米幾丁聚醣對於大白鼠體重、組織臟器、攝食量、體重增加量及食物利用率的影響 50
二、次微米幾丁聚醣對於大白鼠血液及臟器生化值的影響 51
1. 對血漿、肝臟、脂肪組織及糞便脂質代謝相關之影響 51
2. 對脂肪組織之影響 54
3. 對血糖及醣代謝相關酵素之影響 55
4. 對肝功能之影響 55
5. 對過敏免疫反應指標之影響 56
第八章、參考文獻 58
尤俊傑,2006。奈米化紅麴菌發酵產物之安全性試驗與保健成份之血脂調節評估,國立臺灣大學微生物與生化學研究所碩士論文。台北。臺灣。
古遠丰、張正昇與張克亮,2004。幾丁聚醣-紅麴奈米粒之製備及其特性之探討。臺灣保健食品學會第三屆第二次年會暨延緩衰老保健功能研討會。71頁。
行政院衛生署國民健康局,2006。2007 年公告成人 (20 歲以上) 代謝症候群之判定標準。http://www.bhp.doh.gov.tw/ 資料於2011 年 5 月 20 日下載。
行政院衛生署,2011。民國 98 年及 99 年主要死因死亡人數。http://www.doh.gov.tw/ 資料於2012 年 5 月 16 日下載。
行政院衛生署食品藥物管理局,2011。每日飲食指南。http://consumer.fda.gov.tw/ 資料於2012 年 6 月 4 日下載。
何立凱,2004。Lovastatin之藥物動力學與藥效學的研究及其奈米微粒的製備。國立陽明大學藥理學研究所碩士論文。台北。臺灣。
何思頻,2011。幾丁聚醣對於高蔗糖飲食誘導耐糖不良大鼠餐後脂質代謝之影響。國立台灣海洋大學食品科學系研究所碩士論文。基隆。臺灣
李思瑩,2010。免疫系統疾病與護理。內外科護理學筆記。考用出版社,台灣。28 頁。
洪雅雯,2006。山苦瓜改善高油高糖餵食大鼠腹部體脂肪堆積及胰島素抗性。中國醫藥大學營養學系研究所碩士論文。台中。臺灣
姚賢宗,1998。短期或長期攝食幾丁聚醣對大白鼠脂質代謝的影響。國立台灣海洋大學食品科學系研究所碩士論文。基隆。臺灣
姚賢宗,2003。幾丁聚醣對大白鼠脂質代謝及腸道生理的影響。國立台灣海洋大學食品科學系研究所博士論文。基隆。臺灣
孫郁興,2005。奈米科技史及其展望。中華科技史學會會刊,8: 43-60。
島崎 弘幸,1990。身體內過酸化脂質之測定。過酸化脂質實驗法 (今田尚志、值田伸夫編著)。醫藥齒科出版社,東京。81-82頁。
許弘昇,2004。不同膽固醇添加量對倉鼠脂質代謝之影響。國立台灣海洋大學食品科學系研究所碩士論文。基隆。臺灣。
張碧姿,2004。奈米幾丁聚醣微粒對降血脂藥物包覆與釋放研究。雲林科技大學。工業化學與災害防治研究所碩士論文。雲林。臺灣。
陳汶佩,2007。開發不易形成體脂肪之紅麴保健食品。國立臺灣大學微生物與生化學研究所碩士論文。台北。臺灣。
陳廣麟,2002。高分子量幾丁聚醣對大白鼠營養素消化率及腸道生理功能之影響。靜宜大學食品營養研究所碩士論文。台中。臺灣。
曾憲鵬,2009。高與低分子量幾丁聚醣對 streptozotocin/nicotinamide 誘發之第 2 型糖尿病大白鼠糖代謝和脂質代謝之影響,國立臺灣海洋大學食品科學研究所碩士論文。基隆。臺灣。
葉安義,2004。奈米科技與食品。科學發展月刊,384: 45 – 49。
葉松鈴:心血管疾病之醫學營養治療。王耀章、李信昌、邱琬淳、胡雪萍、陳玉華、陳怡君、陳淑子、黃士懿、葉松鈴、楊素卿、楊淑惠、鄭心嫻、蔡雅惠、劉珍芳、謝榮鴻、簡怡雯、蘭淑貞合譯: Krause’s膳食療養學。藝軒圖書出版社,2006;522-561。
蔡冠儀,2007。奈米化異黃酮之生物利用率及其抗氧化能力之研究,輔仁大學營養科學研究所碩士論文。台北。臺灣。
蔡敏郎,1993。不同分子量、不同去乙醯程度的幾丁聚醣溶液的流變性質與膠囊物性的關係。國立臺灣海洋大學水產食品科學研究所碩士論文。基隆。臺灣。
謝侑霖,2010。幾丁聚醣影響 Streptozotocin-nicotinamide 誘發之耐糖不良大白鼠脂肪組織之研究,國立臺灣海洋大學食品科學研究所碩士論文。基隆。臺灣。
Action Group on Erosion, Technoloy and Concentration (2002) No Small Matter I: Nanotech Particles Penetrate Living Cells and Accumulate in Animal Organs. ETC Communique, Issue 76.
Aiba S (1992) Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans. Int J Biol Macromol 14: 225-228.
Berger JJ, Barnard RJ (1999) Effect of diet on fat cell size and hormone-sensitive lipase activity. J Appl Physiol. 87: 227-232.
Bergmeyer HU, Hørder M (1980) International federation of clinical chemistry. Scientific committee. Expert panel on enzymes. IFCC document stage 2, draft 1; 1979-11-19 with a view to an IFCC recommendation. IFCC methods for the measurement of catalytic concentration of enzymes. Part 3. IFCC method for alanine aminotransferase. J Clin Chem Clin Biochem 18: 521-534.
Bokura H, Kobayashi S (2003) Chitosan decreases total cholesterol in women: A randomized, double-blind, placebo-controlled trial. Eur J Clin Nutr 57: 721-725.
Brown MS, Goldstein JL (1975) A receptor-mediated pathway for cholesterol homeostasis. Science 232: 34-47.
Carlson SE, Goldfarb S (1977) A sensitive enzymatic method for determination of free and esterified tissue cholesterol. Clin Chim Acta 79: 575-582.
Carmen GY, Victor SM (2006) Signalling mechanisms regulating lipolysis. Cell Signal 18: 401-408.
Caro JF, Dohm LG, Pories WJ, Sinha MK (1989) Cellular alterations in liver, skeletal muscle, and adipose tissue responsible for insulin resistance in obesity and type II diabetes. Diabetes Metab Rev, 5: 665-689.
Carruthers M, Trinick TR, Jankowska E, Traish AM (2008) Are the adverse effects of glitazones linked to induced testosterone deficiency? Cardiovasc Diabetol 7: 30-36.
Chandy T, Sharma CP (1990) Chitosan--as a biomaterial. Biomater Artif Cells Artif Organs 18: 1-24.
Chen YD, Risser TR, Cully M, Reaven GM (1979) Is the hypertriglyceridemia associated with insulin deficiency caused by decreased lipoprotein lipase activity? Diabetes 28: 893-898.
Chiang MT, Yao HT, Chen HC (2000) Effect of dietary chitosan with different viscosity on plasma lipids and lipid peroxidation in rats fed on a diet enriched with cholesterol. Biosci Biotechnol Biochem 64: 965-971.
Cho EJ, Rahman MA, Kim SW, Baek YM, Hwang HJ, Oh JY, Hwang HS, Lee SH, Yun JW (2008) Chitosan oligosaccharides inhibit adipogenesis in 3T3-L1 adipocytes. J Microbiol Biotechnol 18: 80-87.
Choi HG, Kim JK, Kwak DH, Cho JR, Kim JY, Kim BJ, Jung KY, Choi BK, Shin MK, Choo YK (2002) Effects of high molecular weight water-soluble chitosan on in vitro fertilization and ovulation in mice fed a high-fat diet. Arch Pharm Res 25: 178-183.
Cleeman JI, Lenfant C (1998) The National Cholesterol Education Program: Progress and Prospects. JAMA 280: 2099-2104.Cruz WS, Kwon G, Marshall CA, McDaniel ML, Semenkovich CF (2001) Glucose and insulin stimulate heparin-releasable lipoprotein lipase activity in mouse islets and INS-1 cells. A potential link between insulin resistance and beta-cell dysfunction. J Biol Chem 276: 12162-12168.
Cuero RG (1999) Antimicrobial action of exogenous chitosan. EXS 87:315-333.
Dahlqvist A (1968) Assay of intestinal disaccharidases. Anal Biochem 22: 99-107.
Dalwoo C (1999) Preparation of chitin and chitosan. Available at: http://dalwoo.tripod.com/preparation.htm. Accessed March 17, 2011.
Darlington GJ, Ross SE, MacDougald OA (1998) The role of C/EBP gene in adipocyte differentiation. J Biol Chem 273: 30057-30060.
Deuchi K, Kanauchi O, Imasato Y, Kobayashi E (1995) Effect of the viscosity or deacetylation degree of chitosan on fecal fat excreted from rats fed on a high-fat diet. Biosci Biotechnol Biochem 59: 781-785.
Deuchi K, Kanauchi O, Imasato Y, Kobayshi E (1994) Decreasing effect of chitosan on the apparent fat digestibility by rats fed on a high-fat diet. Biosci Biotechnol Biochem 58: 1613-1616.
Doi K (1995) Effect of konjac fibre (glucomannan) on glucose and lipids. Eur J Clin Nutr 49: S190-197.
Erickson RH, Zakim D, Vessey DA (1978) Preparation and properties of a phospholipid-free form of microsomal UDP-glucuronyltransferase. Biochemistry 17: 3706-3711.
ETH Zurich (2011) Adipocyte Function. Available at: http://www.ifnh.ethz.ch/ftn/research/AdipFunct Accessed May 14, 2012.
Faust IM, Miller WH, Sclafani PF, Aravich PF, Triscari J, Sullivan AC (1984) Diet-dependent hyperplastic growth of adipose tissue in hypothalamic obese rats. Am J Physiol 247: 1038-1046.
Fielding CJ, Fielding PE (1976) Mechanism of salt-mediated inhibition of lipoprotein lipase. J Lipid Res 17: 248-256.
Fisher RM, Coppack SW, Humphreys SM, Gibbons GF, Frayn KN (1995) Human triacylglycerol-rich lipoprotein subfractions as substrates for lipoprotein lipase. Clin Chim Acta 236: 7-17.
Folch J, Lees M, Solane GM (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-509.
Fowkes FG, Pell JP, Donnan PT, Housley E, Lowe GD, Riemersma RA, Prescott RJ (1994) Sex differences in susceptibility to etiologic factors for peripheral atherosclerosis. Importance of plasma fibrinogen and blood viscosity. Arterioscler Thromb 14: 862-868.
Fredrickson DS, Lees RS (1965) A System for Phenotyping Hyperlipoproteinemia. Circulation 31: 321-327.
Fungwe TV, Cagen LM, Wilcox HG, Heimberg M (1992) Regulation of hepatic secretion of very low density lipoprotein by dietary cholesterol. J Lipid Res 33: 179-191.
Furda I (1983) Aminopolysaccharides-their potential as dietary fiber: Unconventional Sources of Dietary Fiber. ACS symposium series, 214: 105-122.
Han LK, Kimura Y, Okuda H (1999) Reduction in fat storage during chitin-chitosan treatment in mice fed a high-fat diet. Int J Obes Relat Metab Disord 23: 174-179.
Hara H, Saito Y, Nagata M, Tsuji M, Yamamoto K, Kiriyama S (1994) Artificial fiber complexes composed of cellulose and guar gum or psyllium may be better sources of soluble fiber for rats than comparable fiber mixtures. J Nutr 124: 1238-1247.
Helmuth Kaiser Consultancy (2004) Nanotechnology in Food and Food Processing Industry Worldwide. Available at: http://www.hkc22.com/nanofood.html Accessed May 14, 2012.
Hoffler U, Hobbie K, Wilson R, Bai R, Rahman A, Malarkey D, Travlos G, Ghanayem BI (2009) Diet-induced obesity is associated with hyperleptinemia, hyperinsulinemia, hepatic steatosis, and glomerulopathy in C57Bl/6J mice. Endocrine 36: 311-325.
Holm C (2003) Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem Soc Trans 31: 1120-1124.
Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109: 1125-1131.
Hossain S, Rahman A, Kabir Y, Shams AA, Afros F, Hashimoto M (2007) Effects of shrimp (Macrobracium rosenbergii)-derived chitosan on plasma lipid profile and liver lipid peroxide levels in normo- and hypercholesterolaemic rats. Clin Exp Pharmacol Physiol 34: 170-176.
Huang B, Zhang J, Hou J, Chen C (2003) Free radical scavenging efficiency of Nano-Se in vitro. Free Radic Biol Med 35: 805-813.
Ichimura M (2010) Certificate of Analysis. Lot No.0623-22. Koyo chemical CO., LTD., Tokyo, Japan.
Joseph T, Morrison M (2006) Nanotechnology in Agriculture and Food. Institute of Nanotechnology Nanoform Report. Available at: http://www.nanoforum.org/dateien/temp/nanotechnology%20in%20agriculture%20and%20food.pdf Accessed May 14, 2012.
Kato Y, Onishi H, Machida Y (2005) Contribution of chitosan and its derivatives to cancer chemotherapy. In Vivo 19: 301-310.
Kimura F, Hasegawa G, Obayashi H, Adachi T, Hara H, Ohta M, Fukui M, Kitagawa Y, Park H, Nakamura N, Nakano K, Yoshikawa T (2003) Serum extracellular superoxide dismutase in patients with type 2 diabetes: Relationship to the development of micro- and macrovascular complications. Diabetes Care 26: 1246-1250.
Knorr D (1984) Use of chitinous polymers in food: A challenge for food research and development. Food Technology 38: 85-97.
Kumar M (2000) A review of chitin and chitosan applications. React Funct Polym 46: 1-27.
Kuo PC, Rudd MA, Nicolosi R, Loscalzo J (1989) Effect of dietary fat saturation and cholesterol on low density lipoprotein degradation by mononuclear cells of Cebus monkeys. Arteriosclerosis 23: 187-191.
Laurent C, Patrice T, Fabienne N, Stephanie Z, Alain M, Eric B, Chapman MJ (2002) LDL particle subclasses in hypercholesteroliemia: Molecular determinants of reduced lipid hydroperoxide stability. J Lipid Res 43: 453-462.
LeHoux JG, Grondin F (1993) Some effects of chitosan on liver function in the rat. Endocrinology 132: 1078-1084.
Lim BO, Yamada K, Nonaka M, Kuramoto Y, Hung P, Sugano M (1997) Dietary fiber modulates indices of intestinal immune function in rats. J Nutr 127: 663-667.
Lin ECK, Fernandez ML, Mcnamara DJ (1992) Dietary fat type and cholesterol quantity interact to affect cholesterol metabolism in guinea pigs. J Nutr 122: 2019-2029.
Liu J, Zhang J, Xia W (2008) Hypocholesterolaemic effects of different chitosan samples in vitro and in vivo. Food Chem 107: 419-425.
Lu YF, Chiang, CF (2001) Effect of dietary cholesterol and fat levels on lipid peroxidation and the activities of antioxidant enzymes in rats. Int J Vitam Nutr Res 71: 339-346.
Maroni BJ, Haesemeyer R, Wilson LK, DiGirolamo M (1990) Electronic determination of size and number in isolated unfixed adipocyte populations. J Lipid Res 31: 1703-1709.
Mashige F, Tanaka N, Maki A, Kamei S, Yamanaka M (1981) Direct spectrophotometry of total bile acids in serum. Clin Chem 27: 1352-1356.
McCarthy DM, Nicholson JA, Kim YS (1980) Intestinal enzyme adaptation to normal diets of different composition.The American journal of physiology, 239: G445-451.
Miao MS (1997) Experimental animals and the technique. China Renmin Press. 127-132.
Miyazaki S, Ishii K, Nadai T (1981) The use of chitin and chitosan as drug carriers. Chem Pharm Bull (Tokyo) 10: 3067-3069.
Moon MS, Lee MS, Kim CT, Kim Y (2007) Dietary chitosan enhances hepatic CYP7A1 activity and reduces plasma and liver cholesterol concentrations in diet-induced hypercholesterolemia in rats. Nutr Res Pract 1: 175-179.
Murase T, Yamada N, Matsuzaki F (1981) The in vitro effect of growth hormone on adipose tissue lipoprotein lipase in rats. Life Sci 28: 199-201.
Muzzarelli AAA (1977) Enzymatic synthesis of chitin and chitosan, occurrence of chitin. In: Muzzarelli AAA, editor. Chitin, Pergamon press , New York. 5-17.
National Heart Lung and Blood Institute (2001) Third report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Available at: www.nhlbi.nih.gov/guidelines/cholesterol/atp3_rpt.htm Accessed May 11, 2012.
Nepokroeff CM, Lakshmanan MR, Porter JW (1975) Fatty-acid synthase from rat liver. Methods Enzymol 35:37-44.
Ni Mhurchu C, Dunshea-Mooij CAE, Bennett D, Rodgers A (2005) Chitosan for overweight or obesity. Cochrane Database Syst Rev DOI: 10.1002/14651858.CD003892.pub2.
Numa S, Ringelmann E, Lynen F (1965) On inhibition of acetyl-CoA-carboxylase by fatty acid-coenzyme A compounds. Biochem Z 343:243-257.
Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2: 1-35.
Quinn DM (1985) Diethyl-p-nitrophenyl phosphate: an active site titrant for lipoprotein lipase. Biochim Biophys Acta 834: 267-271.
Quinn DM, Shirai K, Jackson RL, Harmony JA (1982) Lipoprotein lipase catalyzed hydrolysis of water-soluble p-nitrophenyl esters. Inhibition by apolipoprotein C-II. Biochemistry 21: 6872-6879.
Quintao ECR, Sperotto G (1987) The role of dietary cholesterol in the regulation of human body cholesterol metabolism. Adv Lipid Res 22: 173-188.
Razdan A, Pettersson D (1996) Hypolipidaemic, gastrointestinal and related responses of broiler chickens to chitosans of different viscosity. Br J Nutr 76: 387-397.
Rekha MR, Sharma CP (2009) Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. J Control Release 135: 144-151.
Yip RG, Wolfe MM (2000) GIP biolgy and fat metabolism. Life Sci 66: 91-103.
Sandford PA (1989) Chitosan: Commercial uses and potential applications. In: Skjak-Braek G, Anthonsen T, Sandford P, editors. Chitin and chitosan, Elsevier Applied Science, London. 52-69.
Sandford PA (2002) Commercial sources of chitin and chitosan and their utilization. In: Va°rum KM, Domard A, Smidsrød O, editors. Advances in chitin science, Trondheim, Norway. 6: 35-42.
Sarmento B, Ferreira DC, Jorgensen L, van de Weert M (2007) Probing insulin's secondary structure after entrapment into alginate/chitosan nanoparticles. Eur J Pharm Biopharm 65: 10-17.
Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, Staels B, Auwerx J (1996) PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 15: 5336-5348.
Sell H, Deshaies Y, Richard D (2004) The brown adipocyte: Update on its metabolic role. Int J Biochem Cell Biol 36: 2098-2104.
Sessions VA, Salter AM (1994) The effects of different dietary fats and cholesterol on serum lipoprotein concentrations in hamsters. Biochim Biophys Acta 1211: 207-214.
Shirai K, Jackson RL (1982) Lipoprotein lipase-catalyzed hydrolysis of p-nitrophenyl butyrate. Interfacial activation by phospholipid vesicles. J Biol Chem 257: 1253-1258.
Stryer L (1988) Biochemistry, 3rd edn. Academic press, U.S. 390.
Sugano M, Fujikawa T, Hiratsuji Y, Nakashima K, Fukuda N, Hasegawa Y (1980) A novel use of chitosan as a hypocholesterolemic agent in rats. Am J Clin Nutr 33: 787-793.
Sugano M, Watanabe S, Kishi A, Izume M, Ohtakara A (1988) Hypocholesterolemic action of chitosans with different viscosity in rats. Lipids 9: 919-927.
Sumiyoshi M, Kimura Y (2006) Low molecular weight chitosan inhibits obesity induced by feeding a high-fat diet long-term in mice. J Pharm Pharmacol 58: 201-207.
Tai TS, Sheu WHH, Lee WJ, Yao HT, Chiang MT (2000) Effect of chitosan on plasma lipoprotein concentrations in type 2 diabetic subjects with hypercholesterolemia. Diabetes Care 11: 1703-1704.
Takehisa F, Suzuki Y (1990) Effect of guar gum and cholestyramine on plasma lipoprotein cholesterol in rats. Nihon Eiyo Shokuryo Gakkai Shi 43: 269-274.
Thomas MJ, Thornburg T, Manning J, Hooper K, Rudel LL (1994) Fatty acid composition of low-density lipoprotein influences its susceptibility to autoxidation. Biochemistry 33: 1828-1834.
Tontonoz P, Spiegelman BM (2008) Fat and beyond: The diverse biology of PPARgamma. Annu Rev Biochem 77: 289-312.
Trayhurn P, Beattie JH (2001) Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 60: 329-339.
Tsujita T, Takaichi H, Takaku T, Sawai T, Yoshida N, Hiraki J (2007) Inhibition of lipase activities by basic polysaccharide. J Lipid Res 48: 358-365.
Turley SD, Dietschy JM (1988) The metabolism and excretion of cholesterol by the liver. In The liver: Biology and Pathobiology. Raven Press, New York. USA. 617-639.
Uchiyama M, Mihara M (1978) Determination of malonaldehyde precursor in tissue by thiobarbituric acid test. Anal Biochem 86: 271-278.
Ventura P (1996) Lipid lowering activity of chitosan, a new dietary integrator. In: Muzzarelli, R. A. A., editor. Chitin Enzymology, Atec Edizioni, Italy. 2: 55-62.
Wang W, Qin W, Bo S (1991) Influence of the degree of deacetylation of chitosan on its Mark-Houwink equation parameters. Rapid communications 12: 559-561.
Wickelgren I (1988) Obesity how big problem. Science 280:1364-1367.
Windberger U, Bartholovitsch A, Plasenzotti R, Korak KJ, Heinze G (2003) Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: Reference values and comparison of data. Exp Physiol 88: 431-440.
World Health Organization (2008) Health topics, diabetes, fact sheet: diabetes. Available at: http://www.who.int/mediacentre/factsheets/fs312/en/index.html. Accessed August 22, 2009.
Xu G, Huang X, Qiu L, Wu J, Hu Y (2007) Mechanism study of chitosan on lipid metabolism in hyperlipidemic rats. Asia Pac J Clin Nutr 16: 313-317.
Yao HT, Huang SY, Chiang MT (2008) A comparative study on hypoglycemic and hypocholesterolemic effects of high and low molecular weight chitosan in streptozotocin-induced diabetic rats. Food Chem Toxicol 46: 1525-1534.
Zhang HL, Tao Y, Guo J, Hu YM, Su ZQ (2011) Hypolipidemic effects of chitosan nanoparticles in hyperlipidemia rats induced by high fat diet. Int Immunopharmacol 11: 457-461.
Zhou S, Ackman RG, Morrison C (1996) Adipocytes and lipid distribution in the mucle tissue of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 53: 326-332.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top