(3.238.130.97) 您好!臺灣時間:2021/05/18 18:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張祐朧
研究生(外文):Yu-Lung Chang
論文名稱:以幾丁聚醣/三聚磷酸鹽/genipin共交聯圓珠選擇性吸附豆清中胰蛋白酶抑制劑、紅血球凝集素及植酸之研究
論文名稱(外文):Selective adsorption of trypsin inhibitor, lectin and phytic acid from soybean whey by chitosan/tripolyphosphate/genipin co-crosslinked beads
指導教授:蔡敏郎蔡敏郎引用關係
指導教授(外文):Min-Lang Tsai
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:86
中文關鍵詞:幾丁聚醣三聚磷酸鹽胰蛋白酶抑制劑紅血球凝集素植酸
外文關鍵詞:chitosanTPPtrypsin inhibitorlectinphytic acid
相關次數:
  • 被引用被引用:2
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究目的為利用幾丁聚醣/三聚磷酸鹽(TPP)/genipin共交聯圓珠,進行選擇性吸附豆清溶液中的胰蛋白酶抑制劑、紅血球凝集素和植酸,達到純化上述成分的目的。幾丁聚醣圓珠分別於pH 5.0、7.0、9.0的溶液中進行共交聯化,製得幾丁聚醣/TPP/genipin共交聯圓珠(CB5、CB7、CB9),再以這些圓珠在5、15和25℃,於不同pH值(2.0-6.0) 下進行吸附豆清溶液中胰蛋白酶抑制劑、紅血球凝集素和植酸。結果發現三種幾丁聚醣共交聯圓珠分別都於pH 4.4及pH 5.4時,胰蛋白酶抑制劑和紅血球凝集素有最大的吸附率,而植酸則於pH 2.2時有最佳的吸附率。CB9的胰蛋白酶抑制劑和紅血球凝集素的最大吸附率較CB7和CB5高,並且此三種幾丁聚醣交聯圓珠於25℃時的胰蛋白酶抑制劑和紅血球凝集素的最大吸附率皆大於15℃與5℃時的最大吸附率。分別在pH 2.2、4.4和5.4吸附後的CB7,都於pH 9.0下有最大的植酸、胰蛋白酶抑制劑和紅血球凝集素的脫附率,分別為43.6%、73.14%和65.81%。由以上結果可知,幾丁聚醣/TPP/genipin共交聯圓珠於適當的溶液環境下,可選擇性吸附豆清中的胰蛋白酶抑制劑和紅血球凝集素和植酸。
vii
Abstract
The purpose of this study is selectively adsorbed trypsin inhibitor, lectin and phytic acid form soybean whey by chitosan/tripolyphosphate (TPP)/genipin co-crosslinked beads. The chitosan beads (CB5, CB7, CB9) were co-crosslinked with TPP/genipin solution at pH 5.0, 7.0 and 9.0, respectively. At 5, 15 and 25℃,these co-crosslinked chitosan beads were adsorbed trypsin inhibitor, lectin and phytic acid from soybean whey solutions in pH 2.0-6.0 solutions, respectively. The results showed that all the co-crosslinked chitosan beads had the maximum adsorption ratio of trypsin inhibitor, lectin and phytic acid at pH 4.4, 5.4 and 2.2, respectively. The maximum adsorption ratios of trypsin inhibitors and lectin for were higher than that of CB7 and CB5. The maximum adsorption ratios of trypsin inhibitors and lectin for these beads adsorbing at 25℃were higher than that of 15℃ and 5℃. In pH 9.0 soltuion, the desorption ratios of phytic, trypsin inhibitors and lectin for adsorbed CB7 under pH 2.2, 4.4 and 5.4 were 43.6%, 73.14% and 65.81%, respectively. In short, the selective adsorption for trypsin inhibitor, lectin and phytic acid from soybean whey could be processed by chitosan/TPP/genipin co-crosslinked beads in appropriate conditions.
目錄
目錄................................................................................................................................ i
圖目錄........................................................................................................................... iii
附圖目錄....................................................................................................................... iv
附表目錄........................................................................................................................ v
摘要............................................................................................................................... vi
Abstract ....................................................................................................................... vii
1. 前言........................................................................................................................... 1
2.文獻整理..................................................................................................................... 4
2.1. 幾丁質與幾丁聚醣 ....................................................................................... 4
2.1.1. 幾丁質簡介 ........................................................................................ 4
2.1.2. 幾丁聚醣簡介 .................................................................................... 5
2.1.3. 幾丁質、幾丁聚醣的製備 ................................................................ 7
2.1.3.1. 幾丁質製備 ............................................................................. 7
2.1.3.2. 幾丁聚醣製備 ......................................................................... 8
2.1.3.3. 幾丁質與幾丁聚醣的特性 ..................................................... 8
2.2. 幾丁聚醣的應用 ........................................................................................... 9
2.2.1. 食品營養上的應用 ............................................................................ 9
2.2.2. 生醫材料上的應用 ............................................................................ 9
2.3. 大豆蛋白簡介 ............................................................................................. 10
2.3.1. 豆清蛋白質 ...................................................................................... 12
2.3.2. 胰蛋白酶抑制劑 .............................................................................. 14
2.3.3. 紅血球凝集素 .................................................................................. 15
2.4. 吸附理論...................................................................................................... 17
2.4.1 . 吸附劑的特性 ................................................................................. 18
2.4.2. 溫度................................................................................................... 18
2.4.3. pH值 ................................................................................................. 19
3. 實驗架構................................................................................................................. 20
4. 實驗材料與方法 .................................................................................................... 23
4.1. 實驗材料...................................................................................................... 23
4.2. 藥品.............................................................................................................. 23
4.3. 儀器設備...................................................................................................... 24
4.4. 實驗方法...................................................................................................... 25
4.4.1. 幾丁聚醣的製備 .............................................................................. 25
4.4.1.1. 幾丁質之製備 ....................................................................... 25
4.4.1.2. 幾丁聚醣之製備 ................................................................... 25
4.4.1.3. 幾丁聚醣之去乙醯度測定 ................................................... 26
4.4.1.4. 幾丁聚醣分子量之測定 ....................................................... 26
4.4.2. 製備TPP/genipin交聯化幾丁聚醣圓珠 ....................................... 27
4.4.3. 豆清溶液的製備 .............................................................................. 28
4.4.4. 幾丁聚醣圓珠的選擇性吸附 .......................................................... 28
4.4.4.1. 幾丁聚醣圓珠吸附 ............................................................... 29
4.4.4.2. CB脫附之研究 ...................................................................... 29
4.4.5. 胰蛋白酶抑制劑和紅血球凝集素的定性及定量 .......................... 30
4.4.6. 植酸分析........................................................................................... 30
4.4.7. 統計分析........................................................................................... 31
5. 結果與討論 ............................................................................................................ 32
5.1. 幾丁聚醣之原料製備及去乙醯程度與分子量之測定 ............................. 32
5.2. 幾丁聚醣圓珠的交聯型態與特性 ............................................................. 32
5.3. 豆清溶液之製備與檢測 ............................................................................. 33
5.4. 胰蛋白酶抑制劑與紅血球凝集素吸附劑選擇 ......................................... 33
5.5. 不同pH下進行幾丁聚醣圓珠選擇性吸附能力探討 .............................. 34
5.6 溫度對幾丁聚醣圓珠吸附之影響 .............................................................. 35
5.7 CB5、CB7與CB9 吸附率探討 .............................................................. 36
5.8 幾丁聚醣圓珠吸附植酸之研究 .................................................................. 37
5.9 幾丁聚醣的脫附研究 .................................................................................. 37
6. 結論......................................................................................................................... 39
7. 參考文獻................................................................................................................. 40
8. 圖............................................................................................................................. 50
9. 附圖......................................................................................................................... 68
10. 附表....................................................................................................................... 74
7. 參考文獻
江龍,2001,膠體化學概論,科學出版社,北京,中國。
錢明賽,水產廢棄物蝦蟹外殼利用之研究,食品工業發展研究所報告118號,1978。
梁智維,2009,以幾丁聚醣選擇性分離豆清中胰蛋白酶抑制劑及紅血
球凝集素之研究,國立臺灣海洋大學食品科學系碩士論文,基隆,台灣。
李勳宜,1988,草蝦幾丁聚醣之製備及其應用研究,國立台灣大學食
品科技研究所碩士論文,台北,台灣。
楊進有,2010,以TPP/genipin共交聯化幾丁聚醣圓珠吸附豆清溶液中植酸之研究,國立臺灣海洋大學食品科學系碩士論文,基隆,台灣。
Brown, W. E. and Ryan, C. A. 1984. Isolation and characterization of a wound-induced trypsin inhibitor from alfalfa leaves. Biochemistry, 23: 3418-3422.
Clawson, G. A. 1996. Protease inhibitors and carcinogenesis: a review. Cancer Investigation, 14: 597-608.
Castro-Rubio, F., Marina, M. L. and García, M. C. 2007. Perfusion reversed-phase high-performance liquid chromatography/mass spectrometry analysis of intact soybean proteins for the characterization of soybean cultivars. Journal of Chromatography A,1170: 34-43.
Duan, W., Kuo, I. C., Selvarajan, S., Chua, K. Y., Bay, B. H. and Wong, W. S. F. 2003. Antiinflammatory effects of genistein, a tyrosine kinase inhibitor, on a guinea pig model of asthma. American Journal of Respiratory and Critical Care Medicine, 167: 185-192.
Feng, Z., Shao, Z., Yao, J., Huang, Y., Chen. J. 2009. Protein adsorption and separation with chitosan-based amphoteric membranes. Polymer, 50; 1257-1263.
Friedman, L. and Brandon, D. L. 2001. Nutrition and health benefits of soy proteins. Journal of Agricultural and Food Chemistry, 49: 1069-1086.
Golbitz, P. 1995. Traditional soyfoods: processing and products. Journal of Nutrition, 125: 570-572.
Gowda, L. R., Savithri, H. S. and Rao, D. R. 1994. The complete primary structure of a unique mannose/glucose-secific lectin from field bean. Journal of Biological Chemistry, 269: 789-793.
Hackman, R. H. 1954. Studies on chitin. I. Enzymatic degradation of chitin and chitin esters. Australian Journal of Biological Sciences, 7: 168-178.
Hackman, R. H. and Goldberg, M. 1965. Studies on chitin VI. The nature of α and β-chitin. Australian Journal of Biological Sciences, 18: 935-946.
Hwang, K. M., Murphree, S. A. and Sartorelli, A. C. 1974. A quantitative spectrophotometric method to measure plant lectin-induced cell agglutination. Cancer Research, 34: 3396-3402.
Ho, K. C., Kuo, D. C., and Chang, C. N. 2003. Biphasic modulation of mouse macrophage cell growth by the Salmonella choleraesuis cytotoxin P56. Taiwania, 48: 224-231.
Johnson, E., and Peniston, Q. P. 1982. Utilization of shellfish waste for chitin and chitosan production. In: Chemistry and Biochemistry of Marine Food Products. Martin, R. E., Flick, G. J., Hebard, C. E., Ward, D. R.(Eds) , pp.415-428, AVI Publishing Co, Westport, CT, USA.
Jayakumar, R., Menon, D., Manzoor, K., Nair, S. V. and Tamura, H. 2010. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydrate Polymers, 82: 227-232.
Kawagishi, H., Nomura, A., Mizuno, T., Kimura, A. and Chiba, S.1989. Isolation and characterization of a lectin from Grifola frondosa fruiting bodies. Biochimica et Biophysica Acta, 1034: 247-252.
Krajewska, B. 2004. Application of chitin- and chitosan-based materials for enzyme immobilizations: A review. Enzyme and Microbial Technology, 35: 126-139.
Knorr, D. 1984. Use of chitinous polymers in food-a challenge for food research and development. Food Technology, 38: 85-97.
Kennedy, A. R. 1993. Cancer prevention by protease inhibitors. Preventive Medicine, 22: 796-811.
Kennedy, A. R. 1998. Chemopreventive agents: protease inhibitors. Pharmacology & Therapeutics, 78: 167-209.
Koshiyama, Y., Kikuchi, M. and Fucushima, D. 1981 2S globulins ofsoybean seeds. 2. Physicochemical and biological properties of protease inhibitors in 2S globulins. Journal of Agricultural and Food Chemistry, 29: 340-343.
Kunitz, M. 1945. Crystallization of a soybean trypsin inhibitor from soybean. Science, 101: 668-669.
Kohle, H. and Kauss, H. 1980. Improved analysis of hemagglutination assays for quantitation of lectin activity. Analytical Biochemistry, 103: 227-229.
Kurita, K. 1998. Chemistry and application of chitin and chitosan. Polymer Degradation and Stability, 59: 117-120.
Lee, B. J. and Hendricks, D. G. 1995. Phytic acid protective effect against beef round muscle lipid peroxidation. Journal of Food Science, 60: 241-244.
Lotan, R., Skuteisky, E., Danon, D. and Sharon, N. 1975. The purification, composition, and sepecificity of the anti-T lectin from peanut (Arachis hypogaea). Journal of Biological Chemistry, 250: 8518-8523.
Liner, I. E., Sharon, N. and Goldstein, I. J. 1986. The Lectins. Academic Press. Inc., New York, U.S.A.
Liener, I. E. 1955. The photometric determination of the hemagglutinating activity of soybean and crude soybean extracts. Archives of Biochemistry, 54: 223-231.
Madihally, S. V. and Mathew, W. T. 1999. Porous chitosan scaffolds for tissue engineering. Biomaterials, 20: 1133-1142.
Matsuda, K., Suzuki, S., Isshiki, N., Yoshioka, K., Wada, R., Hyon, S. H.and Ikada, Y. 1992. Evaluation of a bilayer artificial skin capable of sustained release of an antibiotic. Biomaterials, 13(2): 119-122.
McKay, G. and Ho, Y. S. 1999a. The sorption of lead (II) on peat. Water Research, 33: 578-584.
McKay, G. and Ho, Y. S. 1999b. Pseudo-second order model for sorption processes. Process Biochemistry, 34: 451-465.
Messina, M., Messina, V. and Setchell, K. D. 1994. The simple soybean and your health. Garden City Park, NY. Avery Publishing Group.
Mellado, M., Rodriguez-Frade, J. M., Manes, S. and Martinez, A. C. 2001. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annual Review of Immunology, 19: 397-421.
Mi, F. L., Tan, Y. C., Liang, H. C., Huang, R. N. and Sung, H. W. 2001. In vitro evaluation of a chitosan membrane cross-linked with genipin. Journal of Biomaterials Science Polymer Edition, 12: 835-850.
Mi, F. L., Sung, H. W., Shyu, S. S., Su, C. C. and Peng, C. K. 2003. Synthesis and characterization of biodegradable TPP/genipin cocrosslinked chitosan gel beads. Polymer, 24: 6521-6530.
Muzzarelli, R. A. A., and Rocchetti, R. 1985. Determination of the degree of acetylation of chitosan of first derivative ultraviolet spectrophotometry. Carbohydrate Polymers, 5: 461-427.
Muzzarelli, R. A. A., Tomasetto, M., and Ilari, P. 1995. Depolymerization of chitosan and substituted chitosan with the aid of a wheat germ lipase preparation. Enzyme and Microbial Technology, 17: 541-545.
Nagler, A., Morecki, S. and Slavin, S. 1999. The use of soybean agglutinin (SBA) for bone marrow (BM) purging and hematopoietic progenitor cell enrichment in clinical bone-marrow transplantation. Molecular Biotechnology, 11: 181-194.
Onishi, H., and Machida, Y. 1999. Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials, 20: 175-182.
Oliveira, S. R. M., Nascimento, A. E., Lima, M. E. P., Leite, Y. F. M. M. and Benevides, N. M. B. 2002. Purification and characterization of a lectin from the red marine alga Pterocladiella capillacea (S.G. Gmel.) Santel and Hommers. Revista Brasileira de Botanica, 25: 397-403.
Ovalle, R., Keyes, A. C., Ewing, E. E., and Quimby, F. W. 1995. Acid-stable hemagglutinin proteins co-purifying with potato invertase inhibitor. Plant Science, 108: 133-141.
Poulick, M., Voss-Foucart, M. F., and Jeuniaux, C. 1986. Chitinoprotein complexes and mineralization in Mollusk skeletal structures. In Proceeding of the Third International Conference on Chitin and Chitosan. Plenum Press, New York. p. 7-12.
Prashanth, K. V. H. and Tharanathan, R. N. 2007. Chitin/chitosan: modifications and their unlimited application potentialan overview. Trends in Food Science & Technology, 18: 117-131.
Qin, C., Zhou, B., Zeng, L., Zhang, Z., Liu, Y., Du, Y. and Xiao, L. 2004. The physicochemical properties and antitumor activity of cellulose treated chitosan. Food Chemistry, 84: 107-115.
Rackis, J. J., Sasame, H. A., Mann, R. K., Anderson, R. L. and Smith, A. K. 1962. Soybean trypsin inhibitors: isolation, purification and physical properties. Archives of Biochemistry and Biophysics, 98:471-478.
Rackis, J. J., Honig, D. H., Sessa, D. J. and Steggerda, F. R. 1970. Flavor and flatulence factors in soybean protein products. Journal of Agricultural and Food Chemistry, 18: 977-982.
Rackis, J. J., Honig, D. H., Sessa, D. J. and Cavins, J. F. 1971. Soybean whey proteins-recovery and amino acid analysis. Journal of Food Science, 36: 10-13.
Ramesh, A., Hasegawa, H., Sugimoto, W., Maki, T. and Ueda, K. 2008. Adsorption of gold(III), platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin. Bioresource Technology, 99: 3801-3809.
Rinaudo, M. 2008. Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 57: 397-430. 99:3801-3809.
Rinaudo, M. 2006. Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31: 603-632.
Rodde, R. H., Einbu. A., and Va˚rum. K. M. 2008. A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydrate Polymers, 71: 388-393.
Schaafsma, G. 2000. The protein digestibility corrected amino acid score. Journal of Nutrition, 130: 1865-1867.
Sharon, N. and Lis, H. 1972. Lectins: cell-agglutinating and sugar-specific proteins. Science, 177: 949-959.
Sorgentini, D. A., and Wanger, J. R. 1999. Comparative study of structural characteristics and thermal behavior of whey and isolate soybean proteins. Journal of Food Biochemistry, 23: 489-507.
Sumner, J. B. and Howell, S. F. 1936. The role of divalent metals in the reversible inactivation of jack bean hemagglutinin. The Journal of Biological Chemistry, 115: 583-588.
Tangpasuthadol, V., Pongchaisirikul, N., and Hoven, V. P. 2003. Surface modification of chitosan films. Effects of hydrophobicity on protein adsorption. Carbohydrate Research, 338: 937–942.
Tsaih, M. L. and Chen, R. H. 1999. Molecular weight determination of 83% degree of deacetylation chitosan with non-gaussian and wide range distribution by high-performance size exclusion chromatography and capillary viscometry. Journal of Applied Polymer Science, 71: 1905-1913.
Tsaih, M. L. and Chen, R. H. 2003. The effect of reaction time and temperature during heterogeneous alkali deacetylation on degree of deacetylation and molecular weight of resulted chitosan. Journal of Applied Polymer Science, 88: 2917-2923.
Tsaih, M. L., Tseng, L. Z. and Chen, R. H. 2004. Effects of removing small fragment with ultrafiltration treatment and ultrasonic conditions on degradation kinetics of chitosan. Polymer Degradation and Stability, 86: 25-32.
Tripathi, S., Mehrotra, G. K., Dutta. P. K. 2010. Preparation and physicochemical evaluation of chitosan/poly(vinyl alcohol)/pectin ternary film for food-packaging applications. Carbohydrate Polymers, 79: 711-716.
Troll, W., Wiesner, R. and Frenkel, K. 1987.Anticarcinogenic action of protease inhibitors. Advances in Cancer Research, 49: 265-83.
Torun, B., Vitery, F. E. and Young, V. R. 1981. Nutritional role of soya protein for humans. Journal of the American Oil Chemists Society, 58: 400-406.
Tan, W., Krishnaraj, R. and Desai, T. A. 2001. Evaluation of nanostructured composite collagen–chitosan matrices for tissue engineering. Tissue Engineering, 7: 203-210.
Utarabhand, P. and Akkayanont, P. 1995. Purification of a lectin from parkia javanica beans. Phytochemistry, 38: 281-285.
Wang, S. G., Sun, X. F., Liu, X. W., Gong, W. X., Gao, B. Y. and Bao, N. 2008. Chitosan hydrogel beads for fulvic acid adsorption: Behaviors and mechanisms. Chemical Engineering Journal, 142: 239-247.
Yang, C. Y., Hsu, C. H. and Tsai, M. L. 2011. Effect of crosslinked condition on characteristics of chitosan/tripolyphosphate/genipin beads and their application in the selective adsorption of phytic acid from soybean whey. Carbohydrate Polymers, 86: 650-665.
Yao, H. T., Huang, S. Y. and Chiang, M. T. 2008. A comparative study on hypoglycemic and hypocholesterolemic effects of high and low molecular weight chitosan in streptozotocin-induced diabetic rats. Food and Chemical Toxicology, 46: 1525-1534.
Yao, H.T., Hwang, S.Y., Chiang, M.T., 2006. Effect of chitosan on plasma cholesterol and glucose concentration in streptozotocininduced diabetic rats. Taiwanese Journal of Agricultural Chemistry and Food Science. 44: 122–132.
Yagasaki, K., Toshio, T., Miyo, S. and Keisuke. K. 1997. Biochemical characterization of soybean protein consisting of different subunits of glycinin. Journal of Agricultural and Food Chemistry, 45: 656-660.
Young, V. R. 1991. Soy protein in relation to human protein and amino acid nutrition. Journal of the American Dietetic Association, 91: 828-835.
Zarkadas, C. G., Yu, Z., Voldengm, H. D. and Minero-Amador, A. 1993. Assessment of the protein quality of a new high protein soybean cultivar by amino acid analysis. Journal of Agricultural and Food Chemistry, 41: 616-623.
Zezulka, A. Y. and Calloway, D. H. 1976. Nitrogen retention in men fed varying levels of amino acids from soy protein with or without added L-methionine. Journal of Nutrition, 106: 212-221.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊