(3.226.72.118) 您好!臺灣時間:2021/05/13 07:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳健恒
研究生(外文):Jian-Heng Chen
論文名稱:利用超音波降解幾丁聚醣:溫度效應和幾丁聚醣去乙醯程度的變化
論文名稱(外文):Ultrasonic degradation of chitosan: temperature effect and change of chitosan's degree of deacetylation
指導教授:蔡敏郎蔡敏郎引用關係
指導教授(外文):Min-Lang Tsai
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:67
中文關鍵詞:幾丁聚醣超音波溫度黏度去乙醯程度
外文關鍵詞:ChitosanUltrasoundTemperatureViscosityDeacetylation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:292
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為探討溫度和溶液黏度變化對超音波降解幾丁聚醣分子量的影響,以及超音波降解是否會對幾丁聚醣的去乙醯程度造成改變。將幾丁聚醣溶解於醋酸中得到1 % (w/v)的幾丁聚醣溶液,分別於30、40、50℃下進行超音波降解1-6小時後,檢測其分子量和黏度變化。結果顯示幾丁聚醣溶液於30℃下進行超音波降解,具有最佳的降解效果。隨著分子量的降低,幾丁聚醣溶液的黏度也隨之而下降。當幾丁聚醣溶液黏度低於一個範圍後,超音波降解的速率會明顯的提升,造成後期降解速率大於前期降解速率的情況。透過降低幾丁聚醣溶液濃度的方法來降低幾丁聚醣溶液黏度,發現在相同的降解條件下,當幾丁聚醣溶液濃度越低時,其降解效果越好。此外以降解公式預測超音波降解幾丁聚醣的降解曲線,將公式計算所得的預測降解曲線與實際實驗所測得的曲線做比較,可以發現黏度較低的組別所得到的降解曲線與預測的降解曲線較為接近,由此證實黏度確實是影響超音波降解幾丁聚醣的重要因素。此外,超音波作用時間越長則造成幾丁聚醣去乙醯程度增加的機率就越高。
This study was investigated the effect of temperature and solution viscosity on MW of ultrasonic degraded of chitosan and effect of recovery method on DD of degraded chitosan. Chitosan was dissolved in acetic acid to produce 1% (w/v) chitosan solution, then ultrasonic degraded at 30, 40, 50℃ for 1-6 h respectively, and then the molecular weights and viscosities were detected. The results showed there is best ultrasonic degradation rate of chitosan at 30℃. The viscosity of chitosan solution decreased with the molecular weight decreasing. As the viscosity of chitosan solution below the specific viscosity range, the ultrasonic degradation rate was increased significantly. This lead to degradation rate of later period than degradation of previous period. To reduce the viscosity of the solution by lowering the concentration of chitosan solution, we found the lower concentration of chitosan solution have the higher degradation rate in the same degradation conditions. In addition, the predictive degradation curve of chitosan were calculated by the k of degradation formula. Comparison with the predictive and the experimental degradation curve, finding the predictive degradation curves of chitosan solution with lower viscosity were more closed to the experimental degradation curve. Therefore, the viscosity of chitosan solution is indeed an important factor for the ultrasonic degradation of chitosan. Additional, the probability of higher degree of deacetylation of chitosan was prepared will be high due to ultrasonic degradation time be longer.
目錄˙˙˙I
摘要˙˙˙VIII
1. 前言˙˙˙1
2. 文獻回顧˙˙˙3
2.1. 幾丁質與幾丁聚醣簡介˙˙˙3
2.1.1. 幾丁質與幾丁聚醣的發展˙˙˙3
2.1.2. 幾丁質的結構˙˙˙3
2.1.3. 幾丁聚醣的結構˙˙˙5
2.1.4. 幾丁質與幾丁聚醣之製備˙˙˙5
2.1.4.1. 化學法˙˙˙6
2.1.4.2. 酵素法˙˙˙6
2.1.5. 幾丁質與幾丁聚醣特性˙˙˙6
2.1.6. 幾丁聚醣的應用˙˙˙7
2.1.6.1. 食品營養上的應用˙˙˙8
2.1.6.2. 生醫材料上的應用˙˙˙8
2.1.7. 幾丁聚醣的降解˙˙˙9
2.2. 超音波簡介˙˙˙10
2.2.1. 超音波應用˙˙˙11
2.2.2. 超音波降解幾丁聚醣˙˙˙11
2.2.2.1影響超音波降解幾丁聚醣的因素˙˙˙12
2.2.2.1.1. 溫度˙˙˙13
2.2.3. 超音波降解對幾丁聚醣去乙醯度的影響˙˙˙14
2.2.4. 超音波降解公式˙˙˙15
3. 實驗架構˙˙˙18
4. 實驗材料與方法˙˙˙19
4.1. 實驗材料˙˙˙19
4.2. 藥品˙˙˙19
4.3. 儀器設備˙˙˙19
4.4. 實驗方法˙˙˙20
4.4.1. 幾丁聚醣之製備˙˙˙20
4.4.2. 幾丁聚醣之去乙醯度檢測˙˙˙20
4.4.3. 幾丁聚醣之分子量檢測˙˙˙21
4.4.4. 超音波降解流程˙˙˙22
4.4.4.1. 降解後之幾丁聚醣回收˙˙˙23
4.4.5. 黏度檢測˙˙˙23
4.4.6. 降解模式˙˙˙24
4.4.7. 統計分析˙˙˙24
5. 結果討論˙˙˙26
5.1. 影響超音波降解的因素˙˙˙26
5.2. 超音波降解模式˙˙˙32
5.3. 幾丁聚醣去乙醯程度之變化˙˙˙33
6. 結論˙˙˙36
7. 參考文獻˙˙˙37
8. 表˙˙˙43
9. 圖˙˙˙49
10. 附圖˙˙˙65
11. 附表˙˙˙67
表目錄
表一、 於30、40、50℃ 下,以功率300 W超音波降解濃度1%的幾丁聚醣溶液1-6小時之分子量(kDa)。˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙43
表二、 30、40、50℃ 下,超音波降解幾丁聚醣在不同降解時段之降解速率與黏度。˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙44
表三、 30℃ 下,以300W超音波降解濃度1%、0.5% 、0.25%的幾丁聚醣溶液1-6小時之分子量(kDa)。˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙45
表四、 不同超音波降解條件對於降解常數之變異係數的影響。˙˙˙ ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙46
表五、 不同回收方法對於超音波降解(30℃, 超音波功率300 W, 濃度1%, 6 hr)之幾丁聚醣去乙醯程度的影響。˙˙˙˙˙˙˙˙˙˙˙˙˙˙47
表六、 不同超音波降解條件對幾丁聚醣去乙醯程度的影響的文獻整理。˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙48
圖目錄
圖一、 30℃下,功率300W超音波降解濃度1%幾丁聚醣溶液1-6小時之分子量和黏度變化。˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙49
圖二、 40℃ 下,功率300W超音波降解濃度1%幾丁聚醣溶液1-6小時之分子量和黏度變化。˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙50
圖三、 50℃ 下,功率300W超音波降解濃度1%幾丁聚醣溶液1-6小時之分子量和黏度變化。˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙51
圖四、 30℃ 下,功率300W超音波降解濃度0.5%幾丁聚醣溶液1-6小時之分子量和黏度變化。˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙52
圖五、 30℃ 下,功率300W超音波降解濃度0.25%幾丁聚醣溶液1-6小時之分子量和黏度變化。˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙53
圖六、 30℃下,以功率300 W超音波降解濃度1%的幾丁聚醣溶液
1-6小時之分子量與由k1-k6預測的降解曲線之比較。˙˙˙˙˙˙˙54
圖七、 30℃下,以功率300 W超音波降解濃度0.5%的幾丁聚醣溶液1-6小時之分子量與由k1-k6預測的降解曲線之比較。˙˙˙˙˙55
圖八、 30℃下,以功率300 W超音波降解濃度0.25%的幾丁聚醣溶液1-6小時之分子量與由k1-k6預測的降解曲線之比較。˙˙˙˙˙56
圖九、 30℃ 下,以功率300W超音波降解幾丁聚醣溶液,其降解常數與黏度之關係圖。˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙57
圖十、 30℃下,功率150 W超音波降解濃度0.25%幾丁聚醣溶液1-6小時之分子量和黏度變化。˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙58
圖十一、 於30℃下,1%幾丁聚醣溶液受300 W超音波降解0hr、 3hr、6hr之高效能斥濾層析圖。˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙59
圖十二、於30℃下,0.25%幾丁聚醣溶液受300 W超音波降解0hr、 3hr、6hr之高效能斥濾層析圖。˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙60
圖十三、 30℃下,以功率300 W超音波降解濃度1%的幾丁聚醣溶液1-6小時之分子量與由隨機降解公式的k1-k6預測的降解曲線之比較。˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙61
圖十四、 30℃下,以功率300 W超音波降解濃度0.25%的幾丁聚醣溶液1-6小時之分子量與由隨機降解公式的k1-k6預測的降解曲線之比較。˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙62
圖十五、30℃下,以功率300 W超音波降解濃度1%的幾丁聚醣溶液1-6小時之分子量與由中點切割公式的k1-k6預測的降解曲線之比較。˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙63
圖十六、 30℃下,以功率300 W超音波降解濃度0.25%的幾丁聚醣溶液1-6小時之分子量與由中點切割公式的k1-k6預測的降解曲線之比較。˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙64
鄭良益,2006,超音波降解製備不同分子膠蒟蒻對大鼠腸道生理及血脂質之影響,靜宜大學食品營養學系碩士論文,台中,台灣。
Basedow, M. A., Ebert, H. K. (1977). Ultrasonic degradation of polymers in solution. Advances in Polymer Science. 22: 83-148.
Baxter, A., Dillon, M., Anthony, K. D. (1992). Improved method for determination of the degree of N-acetylation of chitosan. International Journal of Biological Macromolecules. 14: 166-169.
Baxter, S., Zivanovic, S., Weiss, J. (2005). Molecular weight and degree of acetylation of high-intensity ultrasonicated chitosan. Food Hrdrocolloids. 19: 821-813.
Blackewell, J., Gardner, K. H., Kolpak, F. J., Minke, R., Classey, W. B. (1980). Refinent of cellulose and chitin structures. ACS Symposium Series. 141: 315-334.
Brito, D., Campana-Filho, S. P. (2004). A kinetic study on the thermal degradation of N, N, N-trimethylchitosan. Polymer Degradation and Stability. 8: 353-361.
Chen, R. H., Huang, J. R., Tsai, M. L., Tseng, L. Z., Hsu, C. H. (2011). Differences in degradation kinetics for sonolysis,microfluidization and shearing treatments of chitosan. Polymer International. 60: 897-920.
Crum, L. A. (1995). Comments on the evolving field of sonochemistry by a cavitation physicist. Ultrasonics Sonochemisty. 2: 147-152.
Czechowska-Biskup, R., Rokita, B., Lotfy, S., Ulanski, P., Rosika, J. M. (2005). Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydrate Polymers. 60: 175-184.
Delezuk, J. A. D., Cardoso, M. B., Domard, A., Campana, S. P. (2011). Ultrasound-assisted deacetylation of beta-chitin: influence of processing parameters. Polymer International. 60: 903-909.
Dodane, V., Vilivalam, V. D. (1998). Pharmaceutical applications of chitosan. Pharmaceutical Science and Technology Today. 1: 246-253.
Duvillard, C., Romanet, P., Cosmidis, A. Beaudouin, N., Chauffert, B. (2004). Phase 2 study of itnratumoral cisplatin and epinephrine treatment for locally recurrent head and neck tumors. The Annals of Otology, Rhinol, and Laryngology. 113: 229-233.
Fuciarelli, A. F., Sisk, E. C., Thomas, R. M., Miller, D. L. (1995). Induction of base damage in dna solutions by ultrasonic cavitation. Free Radical Biology and Medicine . 18: 231-238.
Gronroos, A., Pirkonen, P., Heikkinen, J., Ihalainen, J., Mursunen, H., Sekki, H. (2001). Ultrasonic depolymerization of aqueous polyvinyl alcohol. Ultrasonics Sonochemistry. 8: 259-264.
Gronroos, A., Pirkonen, P., Ruppert, O. (2004). Ultrasonic epolymerization of aqueous carboxymethylcellulose. Ultrasonic Sonochemistry. 11: 9-12.
Hoffman, A. S. (2002). Hydrogels for biomedical applications. Adavanced Drug Delivery Reviews. 54: 3-12.
Huang, Q. Z., Zhuo, L. H., Guo, Y. C. (2008). Heterogeneous degradation of chitosan with H2O2 catalysed by phosphotugstate. Carbohydrate Polymers. 72: 500-505.
Ian, R. W., Stephen, J. P., Constantin-C, C. (2011). The effect of temperature and viscoelasticity on cavitation dynamics during ultrasonic ablation. Acoustical Society of America. 150: 3458-3466.
Jang, M. K., Kong, B. G., Jeong, Y. I., Lee, C. H., Nah, J. W. (2004). Phsicochemical characterization of α-chitin, β-chitin and γ-chitin separated from natural resources. Journal of Polymer Science: Part A: Polymer Chemistry. 42: 3423-3432.
Katsuyoshi, S., Minoru, Y., Takashi, Y., Kazutaka, H., Toshikiro, K. (1998). Evaluation of poly(vinyl alchohol)-gel sphere containing chitosan as dosage form to control gastrointestinal transit time of drug. Biological and Pharmaceutical Bulletin. 21: 1202-1206.
Knorr, D. (1984). Use of chitinous polymer in food. Food Technology. 38: 85-96.
Kurita, K. (1998). Chemistry and application of chitin and chitosan. Polymer Degradation and Stability. 59 : 117-120.
Ravi Kumar, M. N. V. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymer. 46: 1-27.
Li, J., Cai, J., Fan, L. (2008). Effect of sonolysis on kinetics and physicochemical properties of treated chitosan. Journal of Applied Polymer Science. 109: 2417-2425.
Lii, C. Y., Chen, C. H., Yeh, A. I., Lai, V. M. F. (1999). Preliminary study on the degradation kinetics of agarose and carrageenans by ultrasound. Food Hydrocolloids. 13: 477-481.
Liu, H., Bao, J., Du, Y., Zhou, X., Kennedy, L. F. (2006). Effect of ultrasonic treatment on the biochemphysical properties of chitosan. Carbohydrate Polymers, 64: 553-559.
Liu, H., Du, M., Kennedy, L. F. (2007). Hydration energy of the 1,4-bonds of chitosan and their breakdown by ultrasonic treatment. Carbohydrate Polymers, 68: 598-600.
Lower, S. E. (1984). Polymers from the sea chitin and chitosan I. Manufacturing Chemist. 55: 73-75.
Mark, G., Tauber, A., L Aupert, R., Schuchmann, H. P., Schulz, D., Mues, A. V., Sonntag, C. (1988). OH-radical formation by ultrasound in aqueous solution--Part II: Terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield. Ultrasonics Sonochemistry. 5: 41-52.
Marra, K. G., Tan, H., Chu, C. R., Payne, K. A. (2009). Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials. 30: 2499-2506.
Mason, T. J., Cordemans, E. D. (1996). Ultrasonic intensification of chemical processing and related operations: A review. Chemical Engineering Research and Desing. 74 : 511-516.
Muzzarelli, R. A. A., Rocchetti, R. (1985). Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectraphotometry. Carbohydrate Polymers. 5 : 461-472.
Muzzarelli, R. A. A., Xia, W., Tomasetti, M., Ilari, P. (1995). Depolymerization of chitosan and substituted chitosans with the aid of a wheat germ lipase prepartion. Enzyme and Microbial Technology. 17: 541-545.
Muzzarelli, R. A. A. (1996). Chitosan-based dietary food. Carbohydrate Polymers. 29: 309-316.
Nil. (1989). Biological. Industry. 6: 456-468.
Olivera, B. M., Hillyard, D. R., Marsh, M., Yoshikami, D. (1995). Combinatorial peptide libraries in drug design: lesson from venomous cone snails. Trends in Biotechnology. 13: 422-426.
Popa-Nita, S., Lucas, J. M., Ladaviere, C., David, L., Domard, A. (2009). Mechanisms involved during the ultrasonically induced depolymerization of chitosan: characterization and control. Biomacromolecules. 10: 1203-1211.
Prashanth, K. V. H., Tharanathan, R. N. (2007). Chitin/chitosan: modifications and their unlimited application potentialdan overview. Trends in Food Sciencec and Technology. 18: 117-131.
Qin, C., Zhou, B., Zeng, L., Zang, Z., Liu, Y., Du, Y., Xiao, L. (2004). The physicochemical properties and antitumor activity of cellilase-treated chitosan. Food Chemistry. 84: 107-115.
Ravi Kumar, M. N. V., Kashyap, N., Viswanad, B., Sharma, G., Bhardwaj, V., Ramarao, P. (2007). Design and evaluation of biodegradable, biosensitive in situ gelling system for pulsatile delivery of insulin. Biomaterials. 28: 2051-2060.
Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science. 31: 603-632.
Rinaudo, M. (2008). Main properties and current applications of some polysaccharides as biomaterials. Polymer International. 57: 397-430.
Rudall, K. M., Kenchington, W. (1973). The chitin system. Biological Reviews. 40: 597-636.
Ruiz-Herrera, J., Sing, V. O., ven der Woude, W. J., Bartnicki-Garcia, S. (1975). Microfibril assembly by granules of chitin synthetase. Proceedings of the National Academy of Science of the USA. 72: 2706-2710.
Sakamoto, J., Sugiyama, J., Kimura, S., Imai, T., Itoh, T., Watanabe, T., Kobayashi, S. (2000). Artificial chitin spherulites composed of single crystalline ribbons of α-chitin via enzymatic polymerization. Macromolecules. 33: 4155-4160.
Satos, J. E., Dockal, E. R., Cavalheiro, E. T. G. (2005). Synthesis and characterization of Schiff bases from chitosan and salicylaldechyde derivatives. Carbohydrate Polymer. 60: 277-282.
Shahidi, F., Arachchi, K. V., Jen, Y. J. (1999). Food applications of chitin and chitosans. Trends in Food Science Technology. 10: 37-51.
Tan, W., Krishnaraj, R., Desai, T. A. (2001). Evaluation of nanostructured composite collagen-chitosan martices for tissue engineering. Tissue Engineering. 7: 203-210.
Tang, E. S. K., Huang, M., Lim, L. Y. (2003). Ultrasonication of chitosan and chitosan nanoparticles. International Journal of Pharmaceutics. 265: 103-114.
Tharanathan, R. N., Kittur, F. S. (2003). Chitin: The undisputed biomolecule of great potential. Critical Reviews in Food Science and Nutrition. 43: 61-87.
Torzsas, T. L., Kendall, C. W. C., Sugano, M., Lwamoto, Y., Rao, A.V. (1996). The influence of high and low molecular weight chitosan on colonic cell proliferation and aberrant crypt foci development in CF1 mice. Food and Chemical Toxicology. 34: 73-77.
Tsaih, M. L., Chen, R. H. (1999). Molecular weight determination of 83% degree of decetylation chitosan with non-gaussian and wide range distribution by high-performance size exclusion chromatography and capillary viscometry. Journal of Applied Polymer Science. 71: 1905-1913.
Tsaih, M. L., Chen, R. H. (2003). The effect of reaction time and temparature during heterogenous alkali deacetylation on degree of deacetylation and molecular weight of resulting chitosan. Journal of Applied Polymer Science. 88: 2917-2923.
Tsaih, M. L., Chen, R. H. (2003). Effect of degree of deacetylation of chitosan on the kinetics of ultrasonic degradation of chitosan. Journal of Applied Polymer Science. 90: 3526-3531.
Wood, W. A., Kellogg, S. T. (1988). Biomass part b lignin, pectin, and chitin. Methods in Enzymol. 161: 435-422.
Wu, T., Svetlana, Z., Douglas, D. H., Jochen, W. (2008). Efficient reduction of chitosan molecular weight by high-intensity ultrasound: underlying mechanism and effect of process parameters. Journal of Agricultural and Food Chemistry . 56: 5112–5119.
Xu, Y., Du, Y. (2003). Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. International Journal of Pharmaceutics. 250: 115-118.
Yao, H. T., Hwang, S. Y., Chiang, M. T. (2006). Effect of chitosan on plasma cholesterol and glucose concentraion in streptozotocininduced diabetic rats. Journal of the Science of Food and Agriculture. 44: 122-132.
Yao, H. T., Hwang, S. Y., Chiang, M. T. (2008). A comparative study on hypoglycemic and hypocholesterolemic effects of high and low molecular weight chitosan in strepozotocin-induced diabetic rats. Food and Chemical Toxicology. 46: 1525-1534.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔