跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馮一郎
研究生(外文):Yi-Lang Feng
論文名稱:Pseudomonas vesicularis MA103 carIII 基因轉殖至 Lactococcus lactis NZ3900 中表現及其所產 k-紅藻膠酶水解 k-紅藻膠所得寡醣之生理活性探討
論文名稱(外文):Studies on Cloning and Expression of carIII Gene from Pseudomonas vesicularis MA103 to Lactococcus lactis NZ3900 and Bioactivities of k-Carrageenan Hydrolyzed by Cloned k-Carrageenase
指導教授:潘崇良
指導教授(外文):Chorng-Liang Pan
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:172
中文關鍵詞:轉殖Pseudomonas vesicularis MA103Lactococcus lactis NZ3900乳酸鏈球菌素調控表現系統k-紅藻膠k-紅藻膠酶
外文關鍵詞:TransformationPseudomonas vesicularis MA103Lactococcus lactis NZ3900Nisin Controlled Expression systemk-Carrageenank-Carrageenase
相關次數:
  • 被引用被引用:3
  • 點閱點閱:332
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的為將 Pseudomonas vesicularis MA103 所產紅藻膠酶 carIII 基因以食品級載體 pNZ8149 轉形至 Lactococcus lactis NZ3900 中表現,並探討轉殖株所產 k-Carrageenase (Pv-Car-C) 水解紅藻膠所得寡醣產物 (Car-F5) 之組成成分以及抗氧化與抗凝血生理活性。首先於引子對兩端分別加入 NcoI 與 PstI 限制酶切位,再以菌株 MA103 染色體 DNA 為模板進行聚合酶反應 (Polymerase chain reaction, PCR) 擴增 carIII 基因,將所得 carIII 基因以 TA-cloning 方式與 pGEM-TTM 載體製備成重組載體 I 並轉形至菌株 DH5a。再以三種限制酶將重組載體 I 進行剪切,再與 pNZ8149 載體進行連結反應 (Ligation) 形成重組載體 II 並轉形至菌株 NZ3900 中,篩選出 4 株 lac+ 轉殖株,以核苷酸序列定序經比對確認後,將轉殖株命名為 Lc. lactis NZ3900-rcarIII。將轉殖株 NZ3900-rcarIII 以 10 ng/mL Nisin 誘導 6 hr 後,而胞內 Pv-Car-C 可測得比活性 0.042 U/mg,且經 SDS-PAGE 試驗結果顯示,此 Pv-Car-C 之分子量約為 106 kDa,與自 carIII 基因序列所推估之分子質量 106 kDa 相近。胞外 Pv-Car-C 則以分子篩大小 10 kDa、30 kDa 與 100 kDa 進行區分並收集大於 100 kDa 之酵素液,可測得比活性 0.034 U/mg。在基質特異性測試中 Pv-Car-C 對於 k-Carrageenan 較具有專一性。而將 Pv-Car-C 水解 0.15% k-Carrageenan 96 hr 後之寡醣水解液進行 TLC 分析,可推測主要水解寡醣產物為聚合度 (Degree of polymerization, DP) DP5 之寡醣。而後將寡醣水解液利用超過濾系統區分出小於 3 kDa 分子量之寡醣,再經 Sephadex G-10 膠體過濾層析區分,並經 HPLC 分析比對標準品後,推測為聚合度 DP5 之寡醣。FT-IR 分析下可以發現於 1,066 cm-1 有明顯之吸收波峰,推測為 SO42- 基團,硫酸基含量為 17.70%,經計算後寡醣總分子量為 890 Da,將此寡醣命名為 Car-F5。測試 Car-F5 之抗氧化活性變化,發現因不具有可溶性多酚類含量,故對於 DPPH 自由基清除能力及螯合亞鐵離子能力無明顯活性,但在還原力方面則可測得 13.95 TE g/mL。在兔血漿抗凝血之凝血酶原時間 (Prothrombin time, PT) 實驗中,20 mg/mL Car-F5 可明顯增加兔血漿 PT 之延遲時間 132 sec,且延遲時間較低劑量 10 mg/mL 之 Heparin 長。而活化部分凝血活酶時間 (Activated partial thromboplastin time, APTT) 實驗中,只需以 5 mg/mL Car-F5 就可明顯增加兔血漿 APTT 之延遲時間 319 sec,且其凝集程度效果也較低劑量 10 mg/mL 之 Heparin 佳。而本研究主要建立食品級轉殖株 NZ3900-rcarIII 所產 Pv-Car-C 並用於製備 Car-F5 之生產技術,且在抗凝血實驗中顯示較佳的活性,未來可能有做為預防血栓性心血管疾病保健功能食品之發展潛力。
The purpose of this thesis is using carrageenase carIII gene from Pseudomonas vesicularis MA103 as a reporter gene combine with plasmid pNZ8149 from nisin-controlled expression system and transgenic to Lactococcus lactis NZ3900 host cells, then evaluate the characterization of nisin-induced k-carrageenase crude enzyme (PV-Car-C), the composition of oligosaccharide (Car-F5) from Pv-Car-C hydrolyzed k-carrageenan of the antioxidant bioactivity and anticoagnlant bioactivity. The carIII forward primer encode NcoI restriction site and the reverse primer encode PstI restriction site. Then using the gene of carrageenase carIII as a template for PCR reaction, and this PCR amplified product as ligated into pGEM-TTM vector, and then transformed into the competent cells of E. coli DH5α. Then pGEM-TTM vector, which carrying the cloned carIII gene, was digested with NcoI and PstI, and ligated into the LAB vector pNZ8149. The recombined vector II (pNZ8149-palIII) was electroporated into the Lc. lactis NZ3900. And the lac+ yellow colony was picked and the punified and examined it’s plasmid profile 4 successful transformed carIII cloned were identified by designated. It was proved that the sequence of the cloned DNA fragments was completely identical to the DNA sequence of the carIII gene, and the succeed clone was designated as cloned strain NZ3900-rcarIII. The clones induced by 10 ng/mL nisin for 6 hr could not obtain extracellular carrageenase activity. The intracellular crude enzyme solution could obtain higher carrageenase activity (0.042 U/mg), which revealed a 106 kDa protein band by SDS-PAGE. The extracellular crude enzyme solution with molecular mass > 10 kDa, > 30 kDa, and > 100 kDa were collected by UF system. It could obtain higher carrageenase activity (0.034 U/mg). On substrate specificity, Pv-Car-C can hydrolyze k-Carrageenan. Analyzing the hydrolysate of Pv-Car-C by TLC, compared to the standards, discovered that the main hydrolysate were assumed to be DP5 oligosaccharide. Oligosaccharides hydrolysates with molecular mass < 3 kDa were collected by a UF system, then though GPC and HPLC to obtain DP5 oligosaccharide (Car-F5). FTIR chromatograms showed that was obvious signal enhancement in wave numbers 1066 cm-1 resulted from sulfate contents, and the sulfate contents of Car-F5 was 17.70%. In the evaluation of the antioxidation effect of Car-F5, soluble total phenol, DPPH free radical scavenging, Fe2+ chelating effect and of Car-F5 did not increase, but the reducing power of Car-F5 had significant increase (13.95 TE mg/mL). In the experiment of anticoagulant activities of rabbit plasma, prothrombin time analysis of Car-F5 (20 mg/mL) was delayed to 132 sec, and activated partial thromboplastin time analysis of Car-F5 (5 mg/mL) was delayed to 319 sec, and it was tendency for reduction on absorbance. This study provides optimal parameters for the NICE system in cloned strain NZ3900-rcarIII as well as a means to produce functional Car-F5, and serving as the basis for development of health food for preventing the high risk of thrombotic cardiovascular disease in the future.
目錄 i
表目錄 vii
圖目錄 viii
附錄目錄 x
中文摘要 xi
英文摘要 (Abstract) xiii
壹、前言 1
貳、文獻整理 3
一、紅藻膠 (Carrageenan) 3
1-1. 來源 3
1-2. 成分及化學結構 3
1-3. 黏度特性及安定性 4
1-4. 成膠機制 4
1-5. 與蛋白質的交互作用 5
1-6. 紅藻膠之應用 6
二、紅藻膠酶 (Carrageenase) 6
三、紅藻膠酶之生化特性與純化 7
3-1. 溫度與 pH 值對 Carrageenase 之影響 7
3-2. 金屬離子對 Carrageenase 之影響 8
3-3. Carrageenase 之分子量變化 9
3-4. 紅藻膠酶之純化 10
四、乳酸菌 (Lactic acid bacteria) 10
4-1. 乳酸菌演化的起源 10
4-2. 乳酸菌之定義 11
4-3. 乳酸菌之特性與對碳水化合物之代謝途徑 12
4-4. 乳酸菌做為益生菌 (Probiotic) 之應用 12
4-5. 乳酸菌於遺傳工程上之應用價值 16
4-6. 乳酸菌基因轉殖之相關方法 17
4-7. 乳酸鏈球菌素調控表現系統 20
4-8. 乳酸菌宿主細胞、乳酸菌質體、及乳酸鏈球菌素 22
4-9. 乳酸菌轉殖株胞內外蛋白質之表現與胞內物萃取方法 23
五、紅藻膠酶之基因選殖 26
5-1. 紅藻膠酶基因以 E. coli 做為宿主之轉殖系統 26
5-2. 紅藻膠酶基因以 B. subtilis 做為宿主之轉殖系統 26
六、紅藻膠寡醣之製備生產 26
七、紅藻寡醣組成成分之分析與鑑定 27
7-1. 薄層層析法 (Thin-layer chromatography, TLC) 27
7-2. 高效能液相層析法 (High performance liquid
chromatography, HPLC) 28
7-3. 傅立葉轉換紅外線光譜法 [Fourier-transform infrared
(FTIR) spectroscopy] 29
7-4. 核磁共振光譜法 (Neuclear magnetic resonance, NMR) 30
八、紅藻膠酶水解產物之生理活性 31
8-1. 抗氧化 31
8-2. 抗凝血 32
8-3. 抗病毒 32
參、實驗設計 34
肆、實驗材料與方法 35
一、實驗材料 35
1-1. 實驗菌株 35
1-2. 試驗藥品 35
1-2-A. 藥品 35
1-2-B. 載體 38
1-2-C. 引子 38
1-2-D. 聚合酶鏈鎖反應試劑 38
1-2-E. 限制酶及蛋白酶抑制劑 39
1-2-F. 蛋白質及 DNA 萃取純化套裝試劑 39
1-2-G. 電泳標準品 39
1-2-H. 培養基組成 40
1-2-I. 紅藻膠酶反應基質 42
1-2-J. DNS 溶液 42
1-2-K. 電泳膠片配製 42
1-2-L. 電泳溶液 43
1-2-M. 除菌過濾 44
1-2-N. 薄層層析矽膠片 (TLC silica gel) 44
1-2-O. 離心式超過濾濾膜 44
1-3. 儀器設備 44
二、實驗方法 46
2-1. 菌種保存與活化 46
2-1-A. 菌株保存 46
2-1-B. 菌株活化 47
2-2. P. vesicularis MA103 之紅藻膠酶基因選殖至 Lc. lactis NZ3900 47
2-2-A. 菌株 MA103 染色體 DNA 之萃取純化 47
2-2-B. 引子對之設計 48
2-2-C. 聚合酶鏈鎖反應擴增 carIII 基因 48
2-2-D. 重組載體 I (pGEM-TTM vector-carIII) 之製備 49
2-2-E. E. coli DH5a 勝任細胞之製備 50
2-2-F. E. coli DH5a 之電穿孔轉形 50
2-2-G. 貝爾塔尼 (Luria-Bertani, LB-ampicillin) 鑑別培養基初次確認轉殖株 DH5a-rcarIII 51
2-2-H. PCR 擴增反應二度確認轉殖株 DH5a-rcarIII 51
2-2-I. 限制酶剪切三度確認轉殖株 DH5a-rcarIII 51
2-2-J. 轉殖株 DH5-rcarIII 核苷酸序列定序比對 52
2-2-K. 重組載體 II 之製備 (pNZ8149 vector-rcarIII) 52
2-2-L. Lc. lactis NZ3900 接受細胞之製備 53
2-2-M. Lc. lactis NZ3900 之電穿孔轉形 54
2-2-N. 溴甲酚紫 (Brom cresol purple-lactose, BCP-L)
鑑定培養基初次確認轉殖株 NZ3900-rcarIII 54
2-2-O. PCR 擴增反應二度確認轉殖株 NZ3900-rcarIII 54
2-2-P. 限制酶剪切三度確認轉殖株 NZ3900-rcarIII 55
2-2-Q. 轉殖株 NZ3900-rcarIII 核苷酸序列定序比對 55
2-3. 轉殖株 NZ3900-rcarIII 之特性分析 56
2-3-A. 革蘭氏染色法檢測 56
2-3-B. 石蕊牛乳檢測 57
2-3-C. 生長曲線 57
2-3-D. 質體穩定性測試 58
2-3-E. 不同濃度 Nisin 對轉殖株 NZ3900-rcarIII 生長之影響 58
2-3-F. 培養液 pH 值之調控 58
2-4. 轉殖株 NZ3900-rcarIII 所產 Pv-Car-C 之表現 59
2-4-A. 超音波細胞破碎法萃取轉殖胞內 Pv-Car-C 59
2-4-B. 液態氮細胞破碎法萃取轉殖胞內 Pv-Car-C 59
2-4-C. 轉殖 Pv-Car-C 之活性測定 60
2-4-D. 轉殖 Pv-Car-C 之蛋白質定量 61
2-4-E. 轉殖胞內外 Pv-Car-C 之區分純化 61
2-4-F. 轉殖 Pv-Car-C 之分子量確認 62
2-4-G. 基質特異性測試 63
2-5. 轉殖 Pv-Car-C水解紅藻膠所得寡醣產物之組成分析 63
2-5-A. 全醣量與還原醣量分析 63
2-5-B. 紅藻寡醣之分離製備 64
2-5-C. 薄層色層分析 (TLC) 64
2-5-D. 高效能液相層析分析 (HPLC) 65
2-5-E. 傅立葉轉換紅外線光譜儀分析 (FTIR) 65
2-5-F. 硫酸酯含量分析 66
2-6-G. 可溶性多酚類含量分析 66
2-6. 紅藻五糖 Car-F5 之抗氧化生理活性測定 66
2-6-A. 清除 DPPH 自由基能力測定 67
2-6-B. 亞鐵離子螯合能力測定 68
2-6-C. 還原力之測定 68
2-7. 紅藻五糖 Car-F5 之抗凝血生理活性測定 69
2-6-A. 凝血酶原時間 69
2-6-B. 活化部份凝血活酶時間 69
三、統計分析 69
伍、結果與討論 71
一、紅藻膠酶 carIII 基因轉殖至菌株 NZ3900 中 71
1-1. 菌株 MA103 紅藻酶基因篩選 71
1-2. carIII 基因以菌株 DH5 做為宿主之轉殖系統 72
1-3. carIII 基因以菌株 NZ3900 做為宿主之轉殖系統 73
二、轉殖株 NZ3900-rcarIII 74
2-1. 轉殖株 NZ3900-rcarIII 之特性分析 74
2-2. 轉殖 Pv-Car-C 之表現 78
2-3. 轉殖 Pv-Car-C 胞內外粗酵素液之區分純化 79
三、轉殖 Pv-Car-C 水解紅藻膠所得寡醣之組成分析 80
3-1. 基質特異性測試 80
3-2. 全醣量與還原醣量分析 81
3-3. 薄層色層分析 (TLC) 81
3-4. 高效能液相層析分析 (HPLC) 82
3-5. 膠體過濾層析分析 (GPC) 83
3-6. 傅立葉轉換紅外線光譜分析 (FTIR) 84
3-7. 硫酸酯含量分析 84
3-8. 可溶性多酚類含量分析 85
四、紅藻五糖 Car-F5 之生理活性分析 86
4-1. 清除 DPPH 自由基能力之分析 86
4-2. 螯合亞鐵離子能力之分析 86
4-3. 還原力之分析 87
4-4. 凝血酶原時間之分析 87
4-5. 活化部份凝血活酶時間之分析 88
陸、結論 89
柒、參考文獻 91
捌、附錄 158
王惠鈞。2005。生化實驗-基礎操作原理與方法。偉明圖書有限公司。臺北。臺灣。
古庭維。2008。納豆菌液態培養生產枯草桿菌素 NAT 最適條件之探討及其應用於乳酸菌表現。國立臺灣大學微生物與生化科技學系碩士學位論文,臺北。臺灣。
朱家宏。2011。Aeromonas salmonicida MAEF108 所產鹿角菜膠酶
基因轉殖至 Lactococcus lactis NZ3900 中表現之探討。國立臺
灣海洋大學食品科學系碩士學位論文。基隆。臺灣。
李麗鳳。2004。蛋白質表現系統簡介。化工資訊與商情。16: 34-41。
李樵。2009。提升青海菜寡醣硫酸基含量及其產物生理活性之探討。國立臺灣海洋大學食品科學系碩士學位論文。基隆,臺灣。
吳鴻程、朱惠鈴、林盈君、郭建民。1998。鹽、膠質種類和蔗糖對 -
鹿角菜膠布丁機械性質的影響。嘉南學報。24: 117-125。
吳紹祺。1999。海洋細菌所產 Agarases 生產條件與海藻多醣經 Agarase 分解所得寡醣類組成之探討。國立臺灣海洋大學食品科學系碩士學位論文。基隆。臺灣。
吳紹祺。2005。海藻多醣洋菜酶水解物及其發酵產物之生理活性研究。國立臺灣海洋大學食品科學系博士學位論文。基隆。臺灣。
吳欣蕙。2007。Pseudomonas vesicularis MA103 菌株所產 Agarases
PV-1 與 PV-2 之純化與性質探討。國立臺灣海洋大學食品科學
系碩士學位論文。基隆。臺灣。
邱健人、魏琬櫻。1978。膠在食品工業上之應用(一)。食品工業 10 (11): 36-42。
侯松伯。2007。數種臺灣可食用性藻類之抗氧化評估。國立臺灣海
洋大學食品科學系碩士學位論文。基隆。臺灣。
林岑穎、施姵岑、卡伯特 (B. Kazlowski)、馮家輝、柯孟宏、江孟燦、潘崇良。2008。新洋菜寡醣之抗凝血活性。臺灣農業化學會年會,p. 91,(B14),2008 年6 月30 日,臺北。
林志侯。2010。乳酸菌載體表現系統之研究現況與趨勢。食品生技。23: 29-40。
林慧傑。2010。Pseudomonas vesicularis MA103 所產 Alginate lyase
palIII 之基因轉殖至大腸桿菌中表現之探討。國立臺灣海洋大
學食品科學系碩士學位論文。基隆。臺灣。
林季磊。2011。海藻寡醣經分離與提高硫酸基含量後之生理活性探
討。國立臺灣海洋大學食品科學系碩士學位論文。基隆。臺灣。
洪啟芳。2003。硫化程度對一些多醣及寡醣之抗凝血性質之探討。大同大學生物工程系碩士學位論文,臺北。臺灣。
施姵岑。2009。石蓴寡醣之生產與其生理活性之探討。國立臺灣海
洋大學食品科學系碩士學位論文。基隆。臺灣。
郭宇星、潘道東。2008。超聲波破碎法提取瑞士乳桿菌胺肽酶條件的優化。食品科學。29: 140-144。
高慶煌。2002。以熱分析法測定基丁質類物質之乙醯化程度。國立臺灣海洋大學食品科學系碩士學位論文,基隆。臺灣。
黃萬滄。2001。人類 1-抗胰蛋白酶基因在哺乳類動物細胞及酵母菌中之表現。國立中興大學畜產學系碩士學位論文。臺中。臺灣。
黃霨禎。2005。龍鬚菜寡醣水解物之製備及其抗氧化與抗至突變性之探討與對雙叉桿菌生長影響。國立臺灣海洋大學食品科學系碩士學位論文,基隆,臺灣。
黃俊源。2010。洛德乳酸桿菌質體 pK50-2 之複製起始區分子特性分析。國立中興大學微生物暨公共衛生學系碩士學位論文。臺中。臺灣。
康新楷。2007。Aeromonas salmonicida MAEF108 所產 Agarase AS-II
之純化與特性研究暨經 Agarase AS-II 水解所得藻類寡醣之生
理活性探討。國立臺灣海洋大學食品科學系碩士學位論文,基
隆。臺灣。
陳幸臣。1996。水產微生物學實驗法。華香園出版社。臺北。臺灣。
陳慶源、林富美。2004。益生菌之保健功能。食品工業。36: 1-3。
陳姿元。2006。Aeromonas salmonicida MAEF108 菌株所產洋菜酶的純化與性質之探討。國立臺灣海洋大學食品科學系碩士學位論文,基隆。臺灣。
陳柏璇。2010。Aeromonas salmonicida MAEF108 之 Agarase AS-IIIb
基因轉殖至乳酸菌及乳酸菌發酵含山藥藻類寡醣乳製品之探
討。國立臺灣海洋大學食品科學系碩士學位論文。基隆。臺灣。
陸王行、何子萬。1989。有機分子光譜分析。中央圖書出版。13-50,臺北。臺灣。
許志維。2008。Aeromonas salmonicida MAEF108 所產 Agarase AS-IIIb 基因轉殖至大腸桿菌與酵母菌及其表現。國立臺灣海洋大學食品科學系碩士學位論文,基隆,臺灣。
梁鳳鈺。1999。Pseudomonas vesicularis MA103 菌株所產洋菜酶的
純化與性質。國立臺灣海洋大學食品科學系碩士學位論文,基
隆。臺灣。
彭必先。2001。卡拉膠製備反應用。明膠科學與技術。4: 195-203。
傅子恆。2009。新洋菜寡醣之硫酸基含量提升對抗氧化與抗凝血活性之影響。國立臺灣海洋大學食品科學系碩士學位論文。基隆,臺灣。
馮家輝、鍾佳華、李欣翰、卡伯特 (B. Kazlowski)、潘崇良。2007。酸和 agarases 組合降解龍鬚菜多醣液所得寡醣之組成分析,臺灣食品科學技術學會年會,2007 年 12 月 07 日,彰化,B-57。
葉娟美、許家榮。2005。以葡萄醣醛酸酶基因 gusA 為報告基因探討 nisin 調控表現系統於乳酸菌 Lactobacillus paracasei 之調控表現研究。臺灣農業化學與食品科學。43: 86-96。
楊媛絢。1998。原生保健性菌種與益助性生質之應用。食品工業。30: 11-22。
楊依珊。2011。Alginate Lyase 之基因轉殖至Lactococcus lactis
NZ3900 表現及Alginate Lyase 所產寡醣產物分析和用於酵母
菌發酵生產乙醇之探討。國立臺灣海洋大學食品科學系碩士學位
論文。基隆。臺灣。
廖啟成。2008。發酵乳的無可取代價值。學術研討會暨台灣乳酸菌
協會第三屆第一次會員大會,臺中,臺灣。
潘崇良,郭俊德,李宗璘,許濤,吳彰哲,蔡國珍,方翠筠,張克亮,薛世怡,羅麗珠。2007。食品生物技術。華格那。臺中,臺灣。pp. 4-15。
潘崇良、陳衍昌、 蔡震壽、方翠筠、黃意真、鄒文雄、林富邦、劉秀美、唐世杰。2009。海洋功能性醣體研究: 藻類多醣生質乙醇與丁醇及碳交易附加收入。第三屆海峽兩岸「魚類生理與養殖」研討會, 2009 年 10 月 19-21 日,基隆。臺灣。
劉錦浲。2011。副乾酪乳酸桿菌 NTU 101 及胚芽乳酸桿菌 NTU 102
益生特性探討及其基因表現系統之建立。國立臺灣大學微生物與
生化科技學系碩士學位論文。臺北。臺灣。
蔡麗雯。2009。石蓴多醣粗萃物與鹿角菜膠抑制腸病毒七十一型感
染之研究。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
臺灣。
霍禮嘉、顧紅雅、胡蘋、陳章良。2004。現代生物技術。高等教育出
版社。北京。中國。
顏聰榮。2006。乳酸菌的應用-蛋白質生產工廠。科學月刊。
37: 108-110。
謝孟荔。2004。乳酸菌與雙叉桿菌發酵豆奶之抗致突變性。國立
臺灣大學食品科技研究所碩士學位論文,臺北,臺灣。
蘇明聰。2011。探討 Pseudomonas vesicularis MA103 之 -Amylase
基因轉殖至 Lactococcus lactis NZ3900 表現及轉殖 -Amylase
生化特性分析。國立臺灣海洋大學食品科學系碩士學位論文。
基隆。臺灣。
Akalin, A. S., Gonc, S., and Duzel, S. 1997. Influence of yogurt and acidophilus yogurt on serum cholesterol levels in mice. Journal of Dairy Science 80: 2721-2725.
Allen, S. P., and Blaschek, H. P. 1988. Electroporation-induced transformation of intact cells of Clostridium perfringens. Applied and Environmental Microbiology 54: 2322-2324.
Amarasekara, A. S., and Opoku, G. 2007. Effect of oversulfation on
the chemical and biological properties of chondroitin-6-sulfate.
Carbohydrate Polymers 68: 116-121.
Araki, T., Higashimoto, Y., and Morishita, T. 1999. Purification and
characterization of kappa-carrageenase from a marine bacterium,
Vibrio sp. CA-1004. Fisheries Science 65: 937-942
Arnott, S., and Scott, W. E. 1974. -Carrageenan: Molecular structure
and packing of polysaccharide double helices in oriented fibres of
divalent cation salts. Journal of Molecular Biology 90: 253-256.
Barahona, T., Encinas, MV., Mansilla, A., Matsuhiro, B., and
Zuniqa, EA. 2012. A sulfated galactan with antioxidant capacity
from the green variant of tetrasporic Gigartina skottsbergii
(Gigartinales, Rhodophyta). Carbohydrate Research 1: 114-120.
Barbeyron, T., Michel, G., Potin, P., Henrissat, B., and Kloareg, B.
2000. -Carrageenase constitute a novel family of glycoside
hydrolases, unrelated to that of -carrageenases. The Journal of
Biology Chemistry 275: 35499-35505
Baumann, A. R., Martin, S. E., and Feng, H. 2005. Power ultrasound
treatment of Listeria monocytogenes in apple cider. Journal of
Food Science 68: 2333-2340.
Beekes, M., Lasch, P., and Naumann, D. 2007. Analytical applications
of Fourier transform-infrared (FT-IR) spectroscopy in
microbiology and prion research. Veterinary Microbiology 123:
19-30.
Bengmark, S. 2000. Bacteria for optimal health 16: 611-615.
Bernal, V. M., and Smajda, C. H. 1987. Interactions in
protein/polysaccharide/calcium gels. Journal of Food Science 52:
1121-1125.
Bertani, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology 62: 293-300.
Bernfeld, P. 1955. Amylase,  and . Methods in Enzymology 1:
149-158
Binnie, C., Jenish, D., Cossar, D., Szabo, A., Trudeau, D., Krygsman,
P., Malek, L. T., and Stewart, D. I. 1997. Expression and
characterization of soluble human erythropoietin receptor made in
Streptomyces lividans 66. Protein Expression and Purification 11:
271-278.
Bouhlal, R., Haslin, C., Chermann, JC., Colliec-Jouault, S., Singuin,
C., Cerantola, S., Riadi, H., Bourqouqnon, N. 2011. Antiviral
activities of sulfated polysaccharides isolated from Sphaerococcus
coronopifolius (Rhodophytha, Gigartinales) and Boergeseniella
thuyoides (Rhodophyta, Ceramiales). Marine Drugs 9: 1187-1209.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Biochemical Journal 72: 248-254.
Caceres, P. J., and Carlucci, M. J. 2000. Carrageenans from chilean
samples of Stenogramme interrupta (Phyllophoraceae): Structural
analysis and biological activity. Phytochemistry 53: 81-86.
Campo, V. L., and Kawano, D. F. 2009. Carrageenans: Biological
properties, chemical modifications and structural analysis-A review. Carbohydrate Polymers 77: 167-180.
Carlucci, M. J., and Pujol, C. A. 1997. Antiherpetic and anticoagulant
properties of carrageenans from the red seaweed Gigartina
skottsbergii and their cyclized derivatives: Correlation between
structure and biological activity. International Journal of
Biological Macromolecules 20: 97-105.
Carlucci, M. J., Scolaro, L. A., and Damonte, E. B. 1999. Inhibitory
action of natural carrageenans on herpes simplex virus infection of
mouse astrocytes. Chemotherapy 45: 429-436.
Chang, D. C., and Reese, T. S. 1990. Changes in membrane structure
induced by electroporation as revealed by rapid-freezing electron
microscopy. Biophysical Journal 58: 1-12.
Chang, D. C., Chassy, B. M., Saunders, J. A., and Sowers, E. 1992. Guide to Electroporation and Electrofusion. Academic Press, London, pp. 265-283, 490-495.
Chassy, B. M., Mercenier, A., and Flickinger, J. 1988. Transformation
of bacteria by electroporation. Trends in Biotechnology 6: 303-309.
Chen, H. M., Yan, X. J., Wang, F., Xu, W. F., and Zhang, L. 2010.
Assessment of the oxidative cellular toxicity of a -carrageenan
oxidative degradation product towards Caco-2 cells. Food Research
International 43: 2390-2401
Chiang, S. S., and Pan, T. M. 2012. Beneficial effects of Lactobacillus
paracasei subsp. paracasei NTU 101 and its fermented products.
Applied Microbiology and Biotechnology 93: 903-916
Chiovitti, A., Kraft, G. T., Bacic, A., and Liao, M. L. 2001. Gelling
polysaccharides from Australian seaweeds: Research and potential.
Marine Freshwater Research 52: 917-935
Choi, N. S., and Kim, S. H. 2001. The effect of sodium chloride on
serine-type fibrinolytic enzymes and the thermostability of
extracellular protease from Bacillus amyloliquefaciens DJ-4. Journal
of Biochemistry and Molecular Biology 34: 134-138.
Collen, P. N., and Lemoine, M. 2009. Enzymatic degradation of
kappa-carrageenan in aqueous solution. Biomacromolecules 10:
1757-1767.
Commane, D., Hughes, R., Shortt, C., and Rowland, I. 2005. The potential mechanisms involved in the anti-carcinogenic action of probiotic. Mutation Research 591: 276-289.
Crozo, G., and Gilliland, S. E. 1999. Measurement of bile salt hydrolase
activity from Lactobacillus acidophilus based on disappearance of
conjugated bile salts. Journal of Dairy Science 82: 466-471.
de Ruyter, P. G., Kuipers, O. P., Beerthuyzen, M. M., Alen-Boerrigter, I., and de Vos, W. M. 1996. Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. The Journal of Bacteriology 178: 3434-3439.
Dinis, T. C. P., Madeira, V. M. C., and Almeida, L. M. 1994. Action
of phenolic derivatives (acetaminophen, salicylite, and
5-aminosalicylite) as inhibitors of membrane lipid peroxidation and
as peroxyl radical scavengers. Archives of Biochemistry and
Biophysics 315: 161-169.
Dodgson, K. S. 1961. Determination of inorganic sulfate in studies on the enzymatic and non-Enzymatic hydrolysis of carbohydrate and other sulfate esters. The Journal of Biochemistry 78: 312-319.
Dower, W. J. 1990. Electroporation of bacteria: A general approach to
genetic transformation. In Genetic Engineering-Principles and
Methods. Vol. 12, pp. 275-296. Plenum Publishing, New York,
U.S.A.
Dubois, M., Gilles K. A., Hamilton, J. K., Rebers, P. A., and Smith, F.
1956. Colormetric method for determination of sugars and related
substances. Analytical Chemistry 28: 350-356.
Dyrset, N., Lystad, K. Q., and Levine, D. W. 1997. Development of a
fermentation process for production of a [kappa]-carrageenase
from Pseudomonas carrageenovora. Enzyme and Microbial
Technology 6: 418-423.
Eynard, N., Rols, M. P., Ganeva, V., Galutzov, B., Sabri, N., and
Teissi, J. 1997. Electrotransformation pathways of procaryotic and
eucaryotic cells: Recent developments. Bioelectrochemistry and
Bioenergetics 44: 103-110.
Federle, M. J., and Bassler, B. L. 2003. Interspecies communication in bacteria. Journal of Clinical Investigation 112: 1291-1299.
Ferrari, M., Mottola, L., Quaresima, V. 2004. Principles, techniques, and limitations of near infrared spectroscopy. Canadian Journal of Applied Physiology 4: 463-87.
Fleurence, J., Massiani, L., Guyader, O., and Mabeau, S. 1995. Use of
enzymatic cell wall degradation for improvement of protein extraction from Chondrus crispus, Gracilaria verrucosa and Palmaria palmata. Journal of Applied Phycology 7: 393-397.
Fukushimk, M., Yamada, A., Endo, T., and Nakano, M. 1999. Effects
of a mixture of organisms, Lactobacillus acidophilus or
Streptococcus faecalis desaturase activity in the livers of rats
fed a fat-and-cholesterol-enriched diet. Nutrition Society of
Australia 15: 373-378.
Fuller, R. 1989. Probiotics in man and animals. Journal of Applied
Bacteriology 66: 365-378.
Furuta, M., Yamaguchi, M., Tsukamoto, T., Yim, B., Stavarache, C.
E., Hasiba, K., and Maeda, Y. 2004 Inactivation of Escherichia
coli by ultrasonic irradiation. Ultrasonics Sonochemistry 11: 57-60.
Gasson, M. J., and Davies, F. L. 1980. High-Frequency conjugation
associated with Streptococcus lactis donor cell aggregation. Journal
of Bacteriology 143: 1260-1264.
Gasson, M. J. 1990. In vivo genetic systems in lactic acid bacteria.
FEMS Microbiology Reviews 87: 1-2.
Ghalfi, H., Benkerroum, N., Ongena, M., Bensaid, M., and Thonart,
P. 2010. Production of three anti-listerial peptides by Lactobacillus
curvatus in MRS broth. Food Research International 43: 33-39.
Gill, H. S., Rutherfurd, K. J., Prasad, J., and Gopal, P. K. 2000.
Enhancement of natural and acquired immunity by Lactobacillus
rhamnosus (HN001), Lactobacillus acidophilus (HN017) and
Bifidobacterium lactis (HN019). British Journal of Nutrition 83:
167-176.
Gilliland, S. E., Nelson, C. R., and Maxwell, C. 1985. Assimilation of
cholesterol by Lactobacillus acidophilus. Applied and Environmental
Microbiology 49: 377-381.
Gilliland, S. P., and Walker, D. K. 1990. Factors to consider when
selecting a culture of Lactobacillus acidophilus as a dietary adjunct
to produce a hypocholesterolemic effect in humans. Journal of Dairy
Science 73: 905-911.
Glicksman, M. 1989. Red seaweed extracts (agar, carrageenan,
furcellaran). Food Hydrocolloids pp. 73-113.
Gomes, A. M. P., and Malcata, F. X. 1999. Bifidobacterium spp. and
Lactobacillus acidophilus: Biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends in Food Science Technology 1: 139-157.
Grassauer, A., Weinmuellner, R., Meier, C., Pretsch, A.,
Prieschl-Grassauer, E., and Unger, H. 2008. Iota-carrageenan is a
potent inhibitor of rhinovirus infection. Virology Journal 5: 1-7.
Groot, M. N., Nieboer, F., Abee, T. 2008. Enhanced transformation efficiency of recalcitrant Bacillus cereus and Bacillus weihenstephanensis isolates upon in vitro methylation of plasmid DNA. Applied and Environmental Microbiology 74:7817-7820.
Guarner, F., and Schaafsma, G. J. 1998. International Journal of Food
Microbiology 39: 237-238.
Guibet, M., Colin, S., Barbeyron, T., Genicot, S., Kloareg, B., Michel,
G., and Helbert, W. 2007. Degradation of -carrageenan by
Pseudoalteromonas carrageenovora -carrageenase: A new family
of glycoside hydrolases unrelated to - and -carrageenase.
Biochemistry Journal 404: 105-514
Guntelberg, A. V., and Otteson, M. 1954. Purification of the proteolytic enzyme from Bacillus subtilis. Comptes Rendus Des Travaux Du Laboratoire Carlsberg 29: 36-48.
Harrigan, W. F., and McCance, M. E. 1979. Laboratory Methods in Food and Diary Microbiology Academic Press, London, U.K.
Hatada, Y., Mizuno, M., Li, Z., and Ohta, Y. 2011. Hyper-Production and characterization of the -Carrageenase useful for -Carrageenan oligosaccharide production from a deep-sea bacterium, Microbulbifer thermotolerans JAMB-A94T, and insight into the unusual catalytic mechanism. Marine Biotechnology 13: 411-422.
Havenaar, R., and Huis in’t Veld, J. H. J. 1992. Probiotics: A general
view. The Lactic Acid Bacteria, Vol. 1: The Lactic Acid Bacteria in
Health and Disease. Wood, B.J.B. (Ed.) pp. 151-170. Elsevier
Applied Sciences, London, U.K.
Hemar, Y., Hall, C. E., Munro, P. A., and Singh, H. 2002. Small and large deformation rheology and microstructure -carrageenan gels containing commercial milk protein products. International Dairy Journal 12: 371-381.
Heyraud, A., Colin-Morel, P., Girond, S., Richard, C., and Kloareg,
B. 1996. HPLC analysis of saturated or unsaturated
oligoguluronates and oligomannuronates. Application to the
determination of the action pattern of Haliotis tuberculata alginate
lyase. Carbohydrate Research 29: 115-126.
Hoerr, R. A., and Bostwick, E. F. 2000. Bioactive proteins and prebiotic bacteria: Modulators of nutritional health. Nutrition 16: 711-713.
Hose, H., and Sozzi, T. 1991. Probiotics, fact or fiction. Journal of
Chemical Technology Biotechnology 51: 540-544.
Hull, R. R., Conway, P. L., and Evans, A. J. 1992. Probiotic food-a
new opportunity. Food Australia 44: 112-113.
Invitrogen Corporation. 2002. pPICZB Manual. http://tools.invitrogen.com/content/sfs/manuals/ppiczalpha_man.pdf (Down loaded in July 07, 2010, U.S.A.).
Ito, M., and Nagane, M. 2001. Improvement of the electro-transformation efficiency of facultatively alkaliphilic Bacillus pseudofirmus OF4 by high osmolarity and glycine treatment. Bioscience Biotechnology and Biochemistry 65: 2773-2775.
Jan, L., Jana, J., Marcela, K., and Petr, V. 2011. Probiotics in hepatology. World Journal of Gastroenterology 24: 2890-2896.
Jayani, C., Christine, O., Sandra, K., and Muthupandian, A. 2012. Ulitrasonics in food processing-Food quality assurance and food safety. Trends in Food Science and Technology 1: 1-11.
Je, J. Y., Park, P. J., and Kim, S. K. 2004. Radical scavenging activity of hetero-chitooligosaccharides. European Food Research and Technology 219: 60-65.
Jeong, D. W., Lee, J. H., Kim, K. H., Lee, H. J. 2006. A food-grade expression/secretion vector for Lactococcus lactis that uses an a-galactosidase gene as a selection marker. Food Microbiology 23: 468-475.
Jimenez-Escrig, A., Jimenez-Jimenez, I., Pulido, R., Saura-Calixto, F. 2001. Antioxidant activity of fresh and processed edible seaweeds. Journal of Science Food Agricultural 81: 530-534.
Johnston, K. H., and McCandless, E. L. 1973. Enzymic hydrolysis of the potassium chloride soluble fraction of carrageenan: Properties of "λ-Carrageenases" from Pseudomonas carrageenovora. Canadian Journal of Microbiology 19: 779-788.
Jouanneau, D., Boulenguer, P., Mazoyer, J., and Helbert, W. 2010. Enzymatic degradation of hybrid -/-Carrageenan by Alteromonas fortis -Carrageenase. Carbohydrate Research 345: 934-940.
Kaizu, H., Sasaki, M., Nakajima, H., and Suzuki, Y. 1993. Effect of
antioxidative lactic acid bacteria on rats fed a diet deficient in
vitamin. Journal of Dairy Science 76: 2493-2499.
Kazlowski, B., Ko, Y. T., and Pan, C. L. 2007. Comparison of two neoagaro-oligosaccharide production systems in the quantification of their oligomer products generated from agarose by -agarase digestion. December 7th, 2007. B-56. Taiwan Association for Food Science and Technology, Changhua, Taiwan, R. O. C.
Kazlowski, B., and Pan, C. L. 2008. Separation and quantification of Monostroma-oligosaccharide from Monostroma nitidum and neoagaro-Oligosaccharide from Gracilaria tenuistipitata products obtained via digestion of Aeromonas salmonicida MAEF108 -Agarases by preparative HPLC and NMR analysis. June 30th, 2008. C42, p. 125. Agricultural Chemical Society of Taiwan, Taipei, Taiwan, R. O. C.
Kazlowski, B., Pan, C. L., and Ko, Y. T. 2008a. Separation and quantification of neoagaro- and agaro-oligosaccharide products generated from agarose digestion by -agarase and HCl in liquid chromatography systems. Carbohydrate Research 343: 2443–2450.
Kazlowski, B., Kazlowska, K., Pan, C. L., and Tsai, G. J. 2008b. Stimulation on nitric oxide production in RAW 264.7 macrophages by defined chain lengths oligosaccharides derived from Gracilaria tenuistipitata and Monostroma nitidum. May 8th to 9th, 2008. BT-03, p. 270. International Conference of Advanced Research on Marine Bioresources, Keelung, Taiwan, R. O. C.
Khambhaty, Y., Mody, K., and Jha, B. 2007. Purification and Characterization of -Carrageenase from a novel -Proteobacterium, Pseudomonas elongata (MTCC 5261) syn. Microbulbifer elongatus comb. Biotechnology and Bioprocess Engineering 12: 668-675
Kirimura, K., Masuda, N., Iwasaki, Y., Nakagawa, H., Kobayashi, R., and Usami, S. 1999. Purification and characterization of a novel -Agarase from an alkalophilic bacterium, Alteromonas sp. E-1. Journal of Bioscience Bioengineering 87: 436-441.
Kim, J. Y., Woo, H. J., Kim, Y. S. and Lee, H. J. 2002. Screening for
antiproliferative effects of cellular components from lactic acid
bacteria against human cancer cell lines. Biotechnology Letters 24:
1431-1436.
Kleerebezem, M., Beerthuyzen, M. M., Vaughan, E. E., de Vos, W. M., and Kuipers, O. P. 1997. Controlled gene expression systems for lactic acid bacteria: Transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp. Applied and Environmental Microbiology 63: 4581-4584.
Knutsen, S. H. and Grasdalen, H. 1992. Analysis of carrageenans by enzymic degradation, gel filtration and 1H NMR spectroscopy. Carbohydrate Polymers 19: 199-210.
Kopp-Hoolihan, L. 2001. Prophylactic and therapeutic uses of probiotics: A review. Journal of American Dietetic Association 101: 229-241.
Kuipers, O. P., and de Ruyter, P. G. G. A. 1998. Quorum
sensing-controlled gene expression in lactic acid bacteria. Journal
of Biotechnology 64: 15-21.
Kuipers, O. P., de Ruyter, P. G. G. A., Kleerebezem, M., and de Vos, W. M. 1998. Quorum sensing-controlled gene expression in lactic acid bacteria. Journal of Bacteriology 64: 15-21.
Kullisaar, T., Zilmer, M., Mikelsaar, M., Vihalemm, T., Annuk, H.,
Kairane, C., and Kilk, A. 2002. Two antioxidative lactobacilli
strains as promising probiotics. International Journal of Food
Microbiology 72: 215-224.
Leibbrandt, A., Meier, C., Konig-Schuster, M., Weinmullner, R., Kalthoff, D., Pfluqfelder, B., Graf, P., Frank-Gehrke, B., Beer, M., Fazekas, T., Unger, H., Prieschl-Grassauer, E., and Grassauer, A. 2010. -Carrageenan is a potent inhibitor of influenza A virus infection. Public Library of Science One 5: 12-20.
Lilly, D.M., and Stillwell, R. H. 1965. Probiotics: Growth promoting factors produced by microorganisms. Science 147: 747–748.
Lin, M. Y. and Yen, C. L. 1999. Antioxidative ability of lactic acid bacteria. Journal of Agricultural and Food Chemistry 47: 1460-1466.
Liska, B. J., and Calbert, H. E. 1958. A test for the detection of lactic bacteriophage using 2,3,5-triphenyltetrazolium chloride. Journal of Dairy Science 41: 776-782.
Liu, S. N., Han, Y., and Zhou, Z. J. 2011. Lactic acid bacteria in traditional fermented Chinese foods. Food Research International 44: 643-651.
Liu, G. L., Li, Y., Chi, Z., and Chi, Z. M. 2011. Purification and characterization of -carrageenase from the marine bacterium Pseudoalteromonas porphyrae for hydrolysis of -carrageenan. Process Biochemistry 46: 265-271.
Ma, Y. X., Dong, S. L., Jiang, X, L., Li, J. and Mou, H. J. 2009. Purification ation and charactertion of -carrageenase from marine bacterium mutant strain Pseudoalteromonas sp. Aj5-13 and it’s degraded products. Journal of Food Biochemistry 34: 661-678
Majamaa, H., Isolauri, E., Saxelin, M., and Vesikari, T. 1995. Lactic
acid bacteria in the treatment of acuterotavirus gastroenteritis.
Journal of Pediatric Gastroenterology and Nutrition 20: 333-338.
Matsubara, K., Mastsuura, Y., Bacic, A., Liao, M. L., Hori, K., and
Miyazawa, K. 2001. Anticoagulant properties of a sulfate galactan
preparation from a marin green alga, Codium cylindricum.
Biomacromolecules 28: 395-399.
Ma, Y, X., Dong, S, L., Jiang, X, L., Li, J., and Mou, H. J. 2010. Purification ation and charactertion of -carrageenase from marine bacterium mutant strain Pseudoalteromonas sp. Aj5-13 and it’s degraded products. Journal of Food Biochemistry 34: 661-678.
Maischberger, T., Mierau, I., Peterbauer, C. K., Hugenholtz, J., and
Haltrich, D. 2010. High-level expression of Lactobacillus
-galactosidases in Lactococcus lactis using the food-grade,
nisin-controlled expression system NICE. Journal of Agricultural
and Food Chemistry 58: 2279-2287.
McIntyre, D. A., and Harlander, S. K. 1989. Genetic transformation of
intact Lactococcus lactis subsp. lactis by high-voltage
electroporation. Applied and Environmental Microbiology 55:
604-610.
McKay, L. L., Baldwin, K. A., and Zottola, E. 1972. Loss of lactose metabolism in lactic streptococci. Applied Microbiology 23: 1090-1096.
McKay, L. L. and Baldwin, K. A. 1978. Stabilization of lactose metabolism in Streptococcus lactis C2. Applied and Environmental Microbiology 36: 360-367.
McLean, M. W., and Williamson, F. B. 1980. Enzymes from
Pseudomonas carrageenovora. Application to studies of
carrageenan structure. Proceedings International Seaweed
Symposium 10: 479-484.
McLean, M. W., and Williamson, F. B. 1981. Neocarratetraose 4-0-monosulfate-hydrolase from Pseudomonas carrageenovora. European Journal of Biochemistry 113: 447-456.
Mercenier, A., and Chassy, B. M. 1988. Strategies for the development of bacterial transformation systems. Biochimie 70: 503-517.
Mercenier, A. 1990. Molecular genetics of Streptococcus thermophilus. FEMS Microbiology Reviews 87: 61-78.
Merveille, N., Taco, N., and Dominique, D. 2011. Gel formation of mixtures of -carrageenan and sodium caseinate. Food Hydrocolloids 25: 750-757.
Michel, G., Flament, D., Barbeyron, T., Vernet, T., Kloareg, B., and
Dideberg, O. 1998. Expression, purification, crystallization and
preliminary X-Ray analysis of the -carrageenase from
Pseudoalteromonas carrageenovora. Biological Crystallography
55: 918-920.
Michel, G., Flament, D., Barbeyron, T., Vernet, T., Kloareg, B., and Dideberg, O. 2000. Expression, purification, crystallization and preliminary X-Ray analysis of the -carrageenase from Alteromonas fortis. Biological Crystallography 56: 766-768.
Michel, G., Chantalat, L., Fanchon, E., Henrissat, B., Kloareg, B., and Dideberg, O. 2001. The -carrageenase of Alteromonas fortis. The Journal of Biological Chemistry 276: 40202-40209.
Mierau, I., Leij, P., van Swam, I., Blommestein, B., Floris, E., Mond, J., and Smid, E. J. 2005. Industrial-Scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE®: The case of lysostaphin. Microbial Cell Factories 4: 15-24.
Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for reagent for deterimination of reduceing sugars. Analytical Chemistry 31: 426-428.
Miller, J. H. 1992. A Short Course in Bacterial Genetics: A Laboratory
Manual and Handbook for Escherichia coli and Related Bacteria.
Cold Spring Harbor Labatory Press, Cold Spring Harbor, NY, U.S.A.
pp. 298-306.
Naidu, S., Bidlack, W. R. and Clemens, R. A. 1999. Probiotic spectra
of lactic acid bacteria (LAB). Critical Reviews Food Science and
Nutrition 38: 13-16.
Naumann, D., Helm, D., and Labischinski, H. 1991. Microbiological
characterizations by FT-IR spectroscopy. Nature 6321: 81-82.
Naumann, P. 2000. Infrared spectroscopy in Microbiology. In Encyclopedia of Analytical Chemistry, Robert Meyers, U.S.A. pp. 102-111.
Neutra, M. R. 1999. M cells in antigen sampling in mucosal tissues.
Current Topics in Microbiology Immunology 62: 4915-4921.
Nouaille, S., Ribeiro, L. A., Miyoshi, A., Pontes, D., Le Loir, Y.,
Oliveira, S. C., Langella, P., and Azevedo, V. 2003. Heterologous
protein production and delivery systems for Lactococcus lactis.
Genetics and Molecular Research 2: 102-111.
Neumann, E., Sowers, A. E., Jordan, C. A. 1989. Electroporation and Electrofusion in Cell Biology. Plenum Press, New York, U.S.A. pp. 152-154.
Ohta, Y., and Hatada, Y. 2007. A novel enzyme, -carrageenase, isolated from a deep-sea bacterium. The Journal of Biochemistry 140: 475-481.
Opoku, G., and Qiu, X. 2006. Effect of oversulfation on the chemical
and biological properties of kappa carrageenan. Carbohydrate
Polymers 65: 134-138.
Ouwehand, A. C., Isolauri, E., Kirjavainen, P. V., Tölkkö, S., and Salmined, S. J. 2000. The mucus binding of Bifidobacterium lactis Bb12 is enhanced in the presence of Lactobacillus GG and Lactobacillus delbureckii subsp. bulgaricus. Letters in Applied Microbiology 30: 10-13.
Oyaizu, M. 1986. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Japanese Journal of Nutrition 44: 307-215.
Pal, V., Pal, A., Patil, M., Ramana, K. V., and Jeevaratnam, K. 2010. Isolation, biochemical properties and application of bacteriocins from Pediococcus pentosaceous isolates. Journal of Food Processing and Preservation 34: 1064-1079.
Panesar, P. S., and Kennedy, J. F. 2007. Bioutilisation of whey for
lactic acid production. Food Chemistry 105: 1-14.
Parker, R. B. 1974. Probiotics, the other half of the antibiotic story. Animal Nutrition and Health 29: 4–8.
Parvez, S., Lee, H. C., Kim, D. S., and Kim, H. Y. 2005. Bile aslt
hydrolase and cholesterol removal effect by Bifidobacterium bifidum
NRRL 1976. World Journal of Microbiology and Biotechnology 22: 455-459.
Patil, M. M., Pal, A. T., Arand, T., and Ramana, K. V. 2010. Isolation
and characterization of lactic acid bacteria from curd and cucumber.
Indian Journal of Biotechnology 9: 166-172.
Pecota, D. C., Kim, C. S., Wu, K., Gerdes, K., and Wood, T. K. 1997. Combining the hok/sok, parDE, and pnd postse gregational killer loci to enhance plasmid stability. Applied and Environmental Microbiology 63: 1917-1924.
Perdigon, G., Alvarez, S., Rachid, M., Aguero, G., and Gobbato, N. 1995. Immune system stimulation by probiotics. Journal of Dairy Science 78: 1597-1606.
Pontes, D. S., de Azevedo, M. S., Chatel, J. M., Lanqella, P., Azevedo, V., and Miyoshi, A. 2011. Lactococcus lactis as a live vector: Heterologous protein production and DNA delivery systems. Protein Expression and Purification 79: 165-175.
Pucci, M. J., Monteschio, M. E., and Kemker, C. L. 1988. Intergeneric and intergeneric conjugal trasfer of plasmid-encoded antibiotic resistance determinants in Leuconostoc spp. Applied and Environmental Microbiology 54: 281-287.
Qiu, X., Amarasekara, A., and Doctor, V. M. 2006. Effect of oversulfationon the chemical and biological properties of fucoidan. Carbohydrate Polymers 63: 224-228.
Roberts, J. N., Buck, C. B., Thompson, C. D., Kines, R., Bernardo,
M., Choyke, P. L., Lowy, D. R., and Schiller, J. T. 2007. Genital
transmission of HPV in a mouse model is potentiated by
nonoxynol-9 and inhibited by carrageenan. Nature Medicine 13:
857-861.
Romero, D. A., Sllos. P., Robert, C., Castellino, I. and Mercenier, A.
1987. Conjugative mobilization as an alternative vector delivery
system for lactic streptococci. Applied and Envorinmental
Microbiology 53: 2405-2413.
Running, C. A., Falshaw, R., and Janaswamy, S. 2012. Trivalent iron
induced gelation in lambda-Carragennan. Carbohydrate Polymers
87: 2735-2739.
Sabelnikov, A. G., Cymbalyuk, E. S., Gongadze, G., and Borovyagin,
V. L. 1991. Escherichia coli membranes during
electro-transformation: An electron microscopy study. Biochimica et
Biophysical Acta 1066: 21-28.
Sarwar, G., Sakata, T., and Kasimoto, D. 1983. The production and characteristics of carrageenase from marine Cytophaga. Bulletin of the Japanese Society for the Science Fisheries 49: 1689-1694.
Sarwar, G., Oda, H., Sakata, T., and Kakimoto, D. 1987. Potentiality of artificial sea water salts for the production of carrageenase by a marine Cytophaga sp. Microbiology Immunology 31: 869-977.
SAS (Statistical Analytical System). 1999. SAS User's Guide: Basic Statistical Analysis. SAS Institute Inc., Cary, NC, U.S.A.
Sambrook, J., and Russell, D. W. 2006. The Condensed Protocol from
Molecular Cloning: A Laboratory Manual. Cold Spring Harbor
Labatory Press, Cold Spring Harbor, NY, U.S.A. pp. 58-59, 177,
188-192, 243, 718-725, 730, 758-760.
Sanders, J. W., Venema, G. and Kok, J. 1997. A chloride-inducible gene expression cassette and its use in induced lysis of Lactococcus lactis. Applied and Environmental Microbiology 63: 4877-4882.
Schiffrin, E. J., Brassart, D., Servin, A. L., Rochat, F., and Donnet-Hughes, A. 1997. Immune modulation of blood leukocytes in humans by lactic acid bacteria: Criteria for strain selection. The American Journal of Clinical Nutrition 66: 515S-520S.
Schultz, C. P., Liu, K. Z., Kerr, P. D., and Mantsch, H. H. 1998. In situ infrared histopathology of keratinization in human
oral/orophharyngeal squamous cell carcinoma. Oncology Research
10: 277-286.
Schultz, C. P., Liu, K. Z., Salamon, E. A., Reise, K. T., and Mantsch, H. H. 1999. Application of FT-IR microspectroscopy in diagnosing thyroid neoplasms. The Journal of Molecular Structure 481: 369-377.
Sen, M., and Erboz, E. N. 2010. Determination of critical gelation condition of -carrageenan by viscosimetric and FT-IR analyses. Food Research International 43: 1361-1364
Shalev, E., Battino, S., Weiner, E., Colodner, R., and Keness, Y. 1996. Ingestion of yogurt containing Lactobacillus acidophilus compared with pasteurized yogurt as a prophylaxis for recurrent candida vaginitis and bacterial vaginosis. Archives of Microbiology 5: 593-596.
Shibata, T., Fujimoto, K., Nagayama, K., Yamaguchi, K., and
Nakamura, T. 2002a. Inhibitory activity of brown algal
phlorotannins against hyaluronidase. International Journal of
Food Scencri and Technology 37: 703-709.
Shibata, T., Yamaguchi, K., Nagayama, K., Kawaguchi, S., and
Nakamura, T. 2002b. Inhibitory activity of brown algal
phlorotannins against glycosidases from the viscera of the turban
shell Turbo cornutus. European Journal of Phycology
37: 493-500.
Shimada, K., Fujikawa, K., Yahara, K., and Nakamura, T. 1992.
Antioxidative properties of xanthan on the antioxidation of soybean
oil in cyclodextrin emulsion. Journal of Agricultural and Food
Chemistry 40: 945-948.
Silva, F. R. F., Dore, C. M. P. G., Marques, C. T., Nascimento, M. S.,
Benevides, N. M. B., Rocha, H. A. O., Chavante, S. F., and Leite, E. L. 2010. Anticoagulant activity, paw edema and pleurisy induced carrageenan: Action of major types of commercial carrageenans. Carbohydrate Polymers 79: 26-33.
Singleton, V. L., and Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotingsticacid regent. American Journal of Enology Viticulture 16:144-153.
Sokolova, E. V., Barabanova, A. O., Bogdanovich, R. N., Khomenko, V. A., Solov’eva, T. F., and Yermak, I. M. 2011. In vitro antioxidant properties of red algal polysaccharides. Biomedicine and Preventive Nutrition 3: 161-167.
Steen, A., Schalkwijk, S. V., Buist, G., Twigt, M., Szeliga, M., Meijer, W., Kuipers, O. P., Kok, J., and Hugenholtz, J. 2007. Lytr, a phage-derived amidase is most effective in induced lysis of Lactococcus lactis compared with other lactococcal amidases and glucosaminidases. International Dairy Journal 17: 926-936,
Stone, A. K., and Nickerson, M. T. 2012. Formation and functionality of whey protein isolate- (kappa-, iota-, and lambda-type) carrageenan electrostatic complexes. Food Hydrocolloids 27: 271-277.
Studier, F. W., Rosenberg, A. H., Dunn, J. J. and Dubendorf, J. W.
1990. Use of T7 RNA polymerase to direct expression of cloned
genes. Methods in Enzymology 185: 60-89.
Sun, F. S., Ma, Y. X., Wang, Y., and Liu, Q. 2010. Purification and
characterization of nocel -carrageenase from marine Tamlana sp.
HC4. Chinese Journal of Oceanology and Limnology
28: 1139-1145
Talarico, L. B., and Zibetti, R. G. M. 2004. Anti-herpes simplex virus
activity of sulfated galactans from the red seaweeds Gymnogongrus
griffithsiae and Cryptonemia crenulata. International Journal of
Biological Macromolecules 34: 63-71.
Taranto, M. P., Sesma, F., Holdago, A. P. R., and Valdez, G. F. 1997.
Bile salts hydrolase plays a key role on cholesterol removal by
Lactobacillus casei. Biotechnology Letters 19: 845–847.
Tciboula, A., and Horne, D. S. 1999. Influence of whey protein
denaturation on [kappa]-carrageenan gelation. Colloids and Surfaces B: Biointerfaces 12: 299-308.
Terho, T. T., and Hartiala, K. 1971. Method for determination of the sulfate content of glycosaminoglycans. Analytical Biochemistry 41: 471-476.
Terzaghi, B. E., and Sandine, W. E. 1975. Improved medium for lactic streptococci and their bacteriophages. Applied Microbiology and Biotechnology 6: 807-813.
Turgeon, N., Laflamme, C., Ho, J., and Duchaine, C. 2006. Elaboration of an electroporation protocol for Bacillus cereus ATCC 14579. Jouanal of Microbiological Methods 67:543-548.
Twomey, D., Ross, R. P., Ryan, M., Meaney, B., and Hill, C. 2002. Lantibiotics produced by lactic acid bacteria: Structure, function and applications. Antonie van Leeuwenhoek 82: 165-185.
Van den Ent, F., and Lowe, J. 2006. RF cloning: A restriction-free method for inserting target genes into plasmids. Journal of Biochemical and Biophysical Methods 67: 67-74.
Verschuere, L., Rombaut, G., Sorgeloos, P., and Vertraete, W. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews 64: 655-671.
Villanueva, R. D., Mendoza, W. G., Rodrigueza, M. R. C., Romero, J. B., and Montano, N. M. E. 2004. Structure and functional performance of gigartinacean kappa-iota hybrid carrageenan and solieriacean kappa-iota carrageenan blends. Food Hydrocolloids 18: 283-292
Wang, W., Zhang, P., Yu, G. L., Li, C. X., Hao, C., Qi, X., Zhang, L. J., and Guan, H. S. 2012. Preparation and anti-influenza A virus activity of -carrageenan oligosaccharide and its sulphated derivatives. Food Chemistry 133: 880-888
Wehmeier, K. R., and Mooradian, A. D. 1994. Autooxidative and antioxidative potential of simple carbohydrates. Free Radical Biology and Medicine 17: 83-86.
Wells, J. M., Wilson, P. W., Norton, P. M., and Le Page, R. W. F.
1993. A model system for the investigation of heterologous protein
secretion pathways in Lactococcus lactis. Applied Environment
Microbiology 59: 3954-3959.
Wells, J. M., and Le-Page, R. W. F. 1993. Improved cloning vectors and transformation procedure for Lactococcus lactis. Journal of Applied Bacteriology 74: 629-636.
Wells, J. M., Robinson, K., Chamberlain, L. M., Schofield, K. M. and Le Page, R. W. 1996. Lactic acid bacteria as vaccine delivery vehicles. Antonie van Leeuwenhoek 70: 317-330.
Wisselink, H. W., and Weusthuis, R. A. 2002. Mannitol production by
lactic acid bacteria: a review. International Dairy Journal 12:
151-161.
Yan, X., Chuda, Y., Suzuki, M., and Magata, T. 2000. Fucoxanthin as
the major antioxidant in Hijkia fusiformis, a common edible
seaweed. Bioscience Biotechnology and Biochemistry
63: 605-607.
Yermak, I. M., Barabanova, A. O., Aminin, D. L., Davydova, V. N.,
Sokolova, E. V., Solov’eva, T. F., Kim, Y. H., and Shin, K. S.
2012. Effects of structural peculiarities of carrageenans on their
immunomodulatory and anticoagulant activities. Carbohydrate
Polymers 87: 713-720.
Yuan, H., and Zhang, W. 2005. Preparation and in vitro antioxidant
activity of [kappa]-carrageenan oligosaccharides and their
oversulfated, acetylated, and phosphorylated derivatives. Carbohydrate Research 340: 685-692.
Zhang, Z. Q., Yu, G. L., Hao, Z, X., Li, Q., and Guan, H. S. 2005. Thin layer chromatography analysis of several uronates and their oligosaccharides. Chinese Journal of Analytical Chemistry 33: 1750-1752.
Zhou, J., Wang, Z., Sun, S., Liu, M., and Zhang, H. 2001. A rapid method for detecting conformational changes during differetiation and apoptosis of HL60 cells by Fourier-Transform infrared spectroscopy. Biotechnological Application of Biochemistry 33: 127-132.
Zhou, M. H., Ma, J. H., Li, J., Yel, H. R., Huang, K. X., and Zhao X, W. 2008. A κ-Carrageenase from a newly isolated Pseudoalteromonas-like bacterium, WZUC10. Biotechnology Mater Science 13: 545-551.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 褐藻膠裂解酶 palIII 基因轉殖至乳酸菌表現與純化以及生化特性與水解褐藻膠所得寡醣之生理活性探討
2. 無內毒素大腸桿菌表現 Aeromonas salmonicida MAEF 108 carII 所產 iota-Carrageenase CarIIH1 特性及降解紅藻膠所得寡醣之生理活性探討
3. Pseudomonas vesicularis MA103 Fucosidase 之 fucI基因轉殖至 Lactococcus lactis NZ3900 表現及Fucosidase rfucI-H水解岩藻聚醣所得寡醣於 Caco-2 細胞吸收效果之探討
4. 高硫酸基含量青海菜寡醣之製備及生理活性探討
5. 高硫酸基含量海藻寡醣之抗凝血與抗血小板凝集和抗病毒活性及被Caco-2 細胞吸收效果之探討
6. 馬尾藻生質乙醇之最適生產條件探討
7. 鋸齒麒麟菜乳酸發酵產品之生產與抗氧化特性之探討
8. 探討 Pseudomonas vesicularis MA103 之 a-Amylase 基因轉殖至 Lactococcus lactis NZ3900 表現及轉殖 a-Amylase 生化特性分析
9. 天貝黴菌分離菌株酵素水解大豆渣所得寡醣之生理活性探討
10. Aeromonas salmonicida MAEF108 之 Agarase AS-IIIb 基因轉殖至乳酸菌及乳酸菌發酵含山藥藻類寡醣乳製品之探討
11. 海洋細菌所產agarase生產條件與海藻多醣經agarase分解所得寡糖類組成之探討
12. 脫脂大豆粉與大豆渣酵素水解寡醣及脫脂大豆寡醣乳酸菌發酵產物之生理活性探討
13. 臺灣產海洋紅藻海膜藻屬(海膜藻科,紅藻門)分子親源關係與分類研究
14. 探討自馬尾藻生產褐藻膠寡醣之最適生產條件與其生理活性
15. Pseudomonas vesicularis MA103 xylI 基因轉殖至無內毒素大腸桿菌表現及以轉殖聚木糖酶水解所得海藻木寡醣生理活性之探討