(3.238.130.97) 您好!臺灣時間:2021/05/18 20:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蔡佩容
研究生(外文):Pei-Jung Tsai
論文名稱:副熱帶陸棚水體生態系微細鞭毛蟲對細菌浮游生物攝食壓的研究- 細菌空間變動及微生物食物網能量傳遞
論文名稱(外文):Coupling of the Spatial Dynamic of Bacteria and Nanoflagellate Grazing Pressure and Carbon Flow of the Microbial Food Web in the Subtropical Pelagic Continental Shelf Ecosystem
指導教授:蔣國平蔣國平引用關係
指導教授(外文):Kuo-Ping Chiang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋環境化學與生態研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:50
中文關鍵詞:異營細菌藍綠細菌微細鞭毛蟲
外文關鍵詞:BacteriaSynechococcusNanoflagellate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
為瞭解細菌浮游生物(異營細菌與藍綠細菌)在副熱帶陸棚水體生態系中小範圍數量分布,與造成此種空間變動之成因,並同時推估細菌浮游生物在微生物食物網中向上傳遞情況。本實驗於2010與2011夏季在東海南部海域使用海研二號以分割過濾法進行五次實驗。由溫鹽圖(T-S diagram)得知五次實驗期間本海域表層均被高溫低鹽之台灣暖流水所占據。實驗結果顯示異營細菌成長率與溫度呈現負相關,暗示底層低溫湧昇水帶入之營養鹽,會刺激異營細菌成長。因此本研究海域屬BU (Bottom-up Control)控制,由此推測貧營養生態系當營養鹽注入時,會由TP (Top-down Control)變成BU。湧昇帶入之營養鹽會使細菌成長,當異營細菌與藍綠細菌現存量較低時淨成長率為正,反之現存量較高則淨成長會負值。因此造成異營細菌數量(105-106 cells ml-1)和藍綠細菌數量(104-105 cells ml-1)均在一狹窄範圍內變動,形成一個Predator-prey eddy或 Predator-prey oscillations。
發現異營細菌和藍綠細菌的成長量與被攝食量有明顯的正相關,細菌62%成長量會經由微細鞭毛蟲攝食向上傳遞,而藍綠細菌為55%。但被攝食量經由連續分割法證實有瀑布效應(cascading effect)存在,因此異營細菌被微細鞭毛蟲攝食量大約低估28.3%,藍綠細菌大約34.6%。由此可知此九成以上成長量會經由微細鞭毛蟲攝食向上傳遞。微細鞭毛蟲每日所攝食之能量64%來自異營細菌,36%來自藍綠細菌。
To investigate the mechanism of temporal and spatial dynamic of bacteria community (bacteria and Synechococcus spp.) and to estimate the carbon flux in the microbial food web in the subtropical continental shelf pelagic ecosystem, we conducted size-fractionation experiments in 5 cruises of R/V Ocean Research II during the summer periods of 2010 and 2011 in the southern East China Sea. Our culture experiment was done in surface water which was characterized with oligotrophic Taiwan Strait Water during our study period according to the temperature-salinity (T–S) diagram. Bacteria growth rate shows a negative correlation with temperature, indicating that the active growth of heterotrophic bacteria might be induced by nutrient brought up by the cold upwelling water. It is therefore evident that our studied area belongs to a BU control pelagic ecosystem. We suggest that the microbial food web of an oligotrophic ecosystem may be changed from top-down control to resource supply (bottom-up control) with the presence of a physical force to bring nutrient into the oligotrophic ecosystem. Upwelling brings nutrient-rich water to euphotic zone, and promotes bacteria growth, then the higher consumption rate of nanoflagellate will be enhanced due to increased biomass. The net growth rate (growth rate–grazing rate) becomes negative when the density of bacteria and Synechococcus spp. is lower than the threshold value. The interaction of growth and grazing will limit the abundance of bacteria (105-106 cells ml-1) and Synechococcus spp. (104-105 cells ml-1) within a narrow range, forming a predator-prey eddy or predator-prey oscillations. Meanwhile, 62% of bacteria production and 55% of Synechococcus spp. production are transported to higher trophic level (nanoflagellate), both transported percentages of carbon could be underestimated as a result from the cascading effect. Based on the result of increasing number of sizes in the size-fractionation experiments, we estimated that the predation values were be underestimated 28.3% in bacteria and 34.6% in Synechococcus spp. From the corrected result, we conclude that over 90% of picoplankton production was transferred to high trophic level via nanoflagellate in microbial food web and the diet of nanoflagellate is composed of 64% of bacteria and 36% of Synechococcus spp .
目錄
摘要 I
英文摘要 III
目錄 V
表目錄 VI
圖目錄 VII
1 前言 1
2 材料與方法 7
3 結果 12
4 討論 14
5 參考文獻 20
6 表 28
7 圖 29

表目錄
表一、五航次之背景資料及異營細菌與藍綠細菌之成長攝食率 28

圖目錄
圖一、採樣測站圖 29
圖二、五航次之溫鹽圖 30
圖三、溫鹽圖(T-S diagram) 31
圖四、溫度與異營細菌成長率之回歸圖 32
圖五、異營細菌(A)和藍綠細菌(B)的成長量與被攝食量之回歸圖 33
圖六、異營細菌(A)和藍綠細菌(B)的數量與成長率之回歸圖 34
圖七、異營細菌(A)和藍綠細菌(B)的現存量與淨成長率之回歸圖 35
圖八、微細鞭毛蟲與異營細菌(A)和藍綠細菌(B)的數量之回歸圖 36
圖九、異營細菌(A)和藍綠細菌(B)被攝食量與異營性微細鞭毛蟲成
長量之回歸圖 37
圖十、異營細菌和藍綠細菌的被鞭毛蟲攝食的能量傳遞圖 38
圖十一、三航次(1796、1809及1816航次)各測站各培養組之異營細
菌與藍綠細菌之被攝食率 39
圖十二、受湧昇影響(T<27 ℃ S>34) 之異營細菌(A)和藍綠細菌(B)成
長量與被攝食量之回歸圖 40


Azam F, Fenchel T, Field JG, Grey JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263
Andersen TA, Schartau K, Paasche E (1991) Quantifying external and internal nitrogen and phosphorus pools, as well as nitrogen and phosphorus supplied through remineralization, in coastal marine plankton by means of a dilution technique. Mar Ecol Prog Ser 69:67–80
Børsheim KY, Bratbak G (1987) Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. Enriched from seawater. Mar Ecol Prog Ser 36:171–175
Bouvy M, Troussellier M, Got P, Arfi R (2004) Bacterioplankton responses to bottom–up and top– down controls in a West African reservoir (Selingue, Mali). Aquat Microb Ecol 34:301–307
Calbet A, Landry MR, Nunnery S (2001): Bacteria-flagellate interaction s in the microbial food web of the oligotrophic subtropical North Pacific. Aquat Microb Ecol 23:283–292
Calbet A (2008) The trophic roles of microzooplankton in marine systems. ICES Journal of Marine Science 65: 325–331
Carlsson P, Caron DA (2001) Seasonal variation of phosphorus limitation of bacterial growth in a small lake. Limnol Oceanogr 46:108–20
Caron D, Goldman J, Dennett M (1988) Experimental demostration of the roles of bacteria and bacterivorous protozoa in plankton nutrient cycles. Hydrobiologia 159: 27–40
Chan YF, Tsai AY, Chiang, KP, Hsieh CH (2009) Pigmented Nanoflagellates grazing on Synechococcus: seasonal variations and effect of flagellate size in the coastal ecosystem of subtropical western Pacific. Microb Ecol 58: 548-557
Chiang KP, Kuo MC, Chang J, Wang RH, Gong GC (2002) Spatial and temporal variation of the Synechococcus population in the East China Sea and its contribution to phytoplankton biomass. Cont Shelf Res 22:3–13
Christaki U, Wambeke FV, Dolan JR (1999) Nanoflagellates (mixotrophs, heterotrophs and autotrophs) in the oligotrophic eastern Mediterranean: lationships with bacterial production. Mar Ecol Prog Ser 181:297–307
Ducklow HW (1992) Factors regulating bottom-up control of bacteria biomass in open ocean plankton communities. Arch. Hydrobiol Beih Ergebn Limnol 37: 207–217
Ducklow HW, Carlson CA (1992) Oceanic bacterial production. Aquat Microb Ecol. 12: 113–182
Fenchel T (1982a) Ecology of heterotrophic microflagellates.II. Bioenergetics and Growth. Mar Eco Prog Ser 8:225–231
Fenchel T (1982b) Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar Eco Prog Ser 9: 35–42
Fenchel T, King GM, Blackburn TH (1998) Bacterial biogeochemistry: the ecophysiology of mineral cycling. Academic Press, San Diego, CA
Fuhrman JA (1999) Marine viruses: biogeochemical and ecological effects. Nature 399: 541–548
Gasol JM (1994) A framework for the assessment of top-down
vs bottom-up control of heterotrophic nanoflagellate abundance.
Mar Ecol Prog Ser. 113: 291–300
Gasol JM, Carlos PA , Dolors V (2002) Regulation of bacterial assemblages in oligotrophic plankton systems:results from experimental and empirical approaches. Antonie van Leeuwenhoek 81: 435–452
Gong GC, Chen YL, Liu KK. (1996) Summertime hydrography hydrography and chlorophyll a distribution in the East China Sea in summer:Implications of nutrient dynamics, Cont Shelf Res 16:1561–1590
Iturriaga R, Mitchell BG, Kiefer DA (1988) Microphotometric analysis of individual particle absorption spectra . Limnol Oceanogr 33:128–135
Iwamoto N, Imai I, Uye S (1994) Seasonal fluctuation in abundance of bacteria, heterotrophic nanoflagellates, autotrophic nanoflagellates and nanodiatoms in Hiroshima Bay, the Inland Sea of Japan. Bull Plankton Soc Japan 41:31–42
Johnson PW, Sieburth JM (1979) Chroococcoid cyanobacteria in the sea : A ubiquitous and diverse phototrophic biomass. Limnol Oceanogr 24:928–935
Jürgens K, Massana R (2008) Protistan grazing on marine bacterioplankton. In: Kirchman DL (ed) Microbial ecology of the oceans, 2nd edn. Wiley-Liss, New York, p 383–441
Kobari T, Fujii T, Kobari Y, Habano A (2010) Seasonal variation in abundance , growth and mortality of hetetrophic bacteria in Kagoshima Bay. J Oceanogr 66: 845- 853
Landry MR, Hass LW, Fagerness VL (1984) Dynamics of microbial plankton communities: experiments in Kaheone Bay, Hawaii. Mar Ecol Prog Ser 16:127–133
Lee S, Fuhrman JA (1987) Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microbiol 53:1298–1303
Lessard EJ, Swift E (1985) Species–specific grazing rates of heterotrophic dino-flagellates in oceanic waters, measured with a dual-label radioisotope technique. Mar Bio 87: 289–296
Li, WKW, Rao DVS, Harrison WG, Smith JC, Cullen JJ, Irwin B, Platt T (1983) Autotrophic picoplankton in tropical ocean. Science 219: 292–295
Li WKW, Dickie PM, Irwin BD, Wood AM (1992) Biomass of bacteria, cyanobacteria, prochlorophytes and photosynthetic eukaryotes in the Sargasso Sea. Deep Sea Res 39:501–519
Lin Y C, Tsai AY, Chiang KP (2009) Trophic coupling between Synechococcus and pigmented nanoflagellates in the coastal waters of Taiwan, western subtropical Pacific. J. Oceanogr 65: 781-789
Mostajir B, Dolan JR, Rassoulzadegan F (1995) Seasonal variations of pico- and nano-detrital particles (DAPI yellow particles, DYP) in the Ligunan Sea(NW Medterranean ). Aquat Microb Ecol 9:267–277
Nagata T (1988) The microflagellate–picoplankton food linkage in the water column of Lake Biwa. Limnol Oceanogr 33:504–517
Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948
Rassoulzadegan F, Sheldon RW (1986) Predator-prey interactions of nanozooplankton and bacteria in an oligotrophic marine environment. Limnol Oceanogr 31:1010–1021.
Sanders RW, Caron DA, Berninger UG (1992) Relationships between bacteria and heterotrophic nanoplankton in marine and fresh water: an inter-ecosystem comparison. Mar Ecol Prog Ser 86: 1–14
Sanders RW, Berninger UG, Lim EL, Kemp PF, Caron DA (2000) Heterotrophic and mixotrophic nanoflagellate predation on picoplankton in the Sargasso Sea and Georges Bank. Mar Ecol Prog Ser 192:103–118
Shen ML, Tseng YH, Jan S (2011) The formation and dynamics of the cold-dome off northeastern Taiwan. Journal of Marine Systems 86:10–27
Sherr EB, Sherr BF (1994) Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb Ecol 28: 223−235
Sherr EB, Sherr BF, McDaniel J (1991) Clearance rates of <6 µm fluorescently labeled algae (FLA) by estuarine protozoa: potential grazing impact of flagellates and ciliates. Mar Ecol Prog Ser 69:81−92
Simek K, Bobkova J, Macek M, Nedoma J, Psenner R (1995) Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol Oceanogr 40:1077–1090
Tanaka T, Fujita N, Taniguchi A (1997) Predator-prey eddy in heterotrophic nanoflagellate-bacteria relationships in a coastal marine environment: a new scheme for predator- prey associations. Aquat Microb Ecol 13:249-256
Tsai AT, Chiang KP, Chang J, Gong GC (2005)Seasonal diel variations of picoplankton and nanoplankton in a subtropical western Pacific coastal ecosystem. Limnol Oceanogr 50:1221–1231
Tsai AT, Chiang KP, Chang J, Gong GC (2008) Seasonal variations in the trophic dynamics ofnanoflagellates and picoplankton in coastal waters of the western subtropical Pacifical Ocean. Aquat Microb Ecol 51: 263–274
Tsai AT, Gong GC, Sander RW, Chen WH, Chao C F, Chiang KP (2011) Importance of bacterivory by pigmented and heterotrophic nanoflagellates during the warm season in a subtropical western Pacific coastal ecosystem. Aquat Microb Ecol 63: 9–18
Unrein F, Massana R, Alonso-Sáez L, Gasol JM (2007) Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnol Oceanogr 52:456–469
Wright RT, Coffin RB (1984) Factors affecting bacterioplankton density and productivity in salt marsh estuaries. In Klug MJ, Reddy CA (eds) Current perspective in microbial ecology. American Society for Microbiology. Washington, DC, p 485–494
Wright RT, Coffin RB (1984) Measuring microzooplankton grazing on planktonic marine bacteria by its impact on bacterial production. Microb Ecol 10: 137–149
龔國慶、徐崇仁、施文鴻、劉康克 (1992) 台灣東北海域冷水消長:1990年6~12月,台灣海洋學刊,28,118-127.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top