(3.238.96.184) 您好!臺灣時間:2021/05/08 04:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃晉毅
研究生(外文):Jin-Yi Huang
論文名稱:東海海域夏季富含藻藍素聚球藻 (Phycocyanin-rich Synechococcus spp.) 族群多樣性分布
論文名稱(外文):Phylogenetic distribution of Phycocyanin-rich Synechococcus spp. in the East China Sea in summers
指導教授:鍾至青
指導教授(外文):Chih-Ching Chung
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋環境化學與生態研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:38
中文關鍵詞:聚球藻東海
外文關鍵詞:SynechococcusEast China Sea
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,以雙雷射激發光源之流式細胞儀結合藻藍色素蛋白操作子基因 (cpcBA-ITS) 序列多樣性分析,在2009及2010年夏季航次首度對於東海水域聚球藻族群多樣性分布進行普查的工作。結果發現,在2009年夏季由於長江沖淡水水量較低,富含藻紅素 (phycoerythrin-rich, PE-rich) 的聚球藻大量增生,最高值主要分布於長江出海口外海、鹽度等於31附近,水團交匯的水域內;另一類富含藻藍素 (phycocyanin-richs, PC-rich) 聚球藻的分布則局限於長江出海口及其周遭沿岸、鹽度小於31的表水域中。進一步分析cpcBA-ITS序列多樣性,指出東海聚球藻可分為4大群、共包含14種「操作型型態單位」(operational taxonomic unit)。當中有3大群 (分別命名為ECS-1、ECS-2、與ECS-3) 與基因庫中已發表各種PC-rich聚球藻的cpcBA-ITS序列呈現較高的相似度。據此推測ECS-1應該是淡水種,而ECS-2與ECS-3可能為新發現的海洋PC-rich聚球藻族群,其中又以ECS-2在東海水域最佔優勢。而在2010年夏季,長江流域的大洪災導致大量淡水注入東海海域,此時PE-與PC-rich 的聚球藻分布依鹽度區分大致與2009年相同,只是其豐度均較2009年的觀測值顯著降低。推測可能受到長江沖淡水氾濫所影響,分布於沿岸之PC-rich聚球藻被沖至不適合其生長的高透光度之水域中;而PE-rich聚球藻則可能受到洪水注入大量陸源營養鹽或污染物質而抑制其族群生長。
Previous studies have indicated Synechococcus spp. are the major picophytoplankton in the East China Sea (ECS). Their population composition and phylogenetic distribution, however, are not investigated so far. The lack of this information will make it difficult to infer the relationship between Synechococcus ecology and global environmental changes. In this study, assemblages of Synechococcus spp. over the ECS in the summers 2009 and 2010 were revealed by a two-lasers flowcytometry, as well as by the phylogenetic analysis of phycocyanin operon, cpcBA-ITS. In the summer 2009, the phycoerytherin-rich (PE-rich) Synechococcus dominated in the water with a salinity of 31. In contract to the PE-rich Synechococcus, the phycocyanin-rich (PC-rich) Synechococcus preferred to grow in the low-saline coastal waters (salinity<31) near the mouth of the Chiangjian River. In addition, according to the result of cpcBA-ITS phylogenetic analysis, Synechococcus populations in the ECS were further categorized into at least 4 groups which contained a total of 14 operational taxonomic units. Among these, 3 groups, named ECS-1 to 3, belonged to PC-rich Syenchococcus: ECS-1 should be the species adapted in freshwater environment; ECS-2 and ECS-3 were characterized as novel marine PC-rich Syenchococcus. In the summer 2010, huge low-saline discharge occupied over half of the ECS due to the flooding arose in the Changjiang River. Except the decline of cell abundances, the distribution patterns of PE- and PC-rich Synechococcus were similar as that occurred in 2009. Plentiful terrestrial materials brought with the input of the Changjing River should be a critical factor to inhibit Synehcococcus growth in the summer 2010.
目錄
摘要 i
Abstract ii
第一章 前言 1
第二章 實驗材料與方法 6
水文資料 6
野外實驗樣品之採樣方式與前處理 6
純品系藻種的取得與培養 7
雙雷射激發光源流式細胞儀分析 8
基因體DNA (genomic DNA) 的萃取 8
聚合酶連鎖反應 (Polymerase Chain Reactions, PCR) 9
凝膠電泳分析與目標基因DNA萃取 10
核酸接合作用 (Ligation) 10
轉型作用 (Transformation) 11
cpcBA-ITS基因序列分析 11
分子多樣性分析 (Phylogenetic analysis) 12
第三章 結果 13
東海夏季水文環境 13
雙雷射激發光源流式細胞儀分析技術的確立 13
東海超微原核浮游植物族群組成與分布 14
聚球藻cpcBA-ITS基因分子多樣性分析 15
第四章 討論 17



參考文獻
Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G., and Thompson, J. D. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31:3497-3500.
Chiang, K.-P., M.-C. Kuo, J. Chang, R.-H. Wang, and G.-C. Gong. 2002. Spatial and temporal variation of the Synechococcus population in the East China Sea and its contribution to phytoplankton biomass. Cont. Shelf Res. 22:3-13.
Chen, C. T. A., W. Zhai, and M. Dai. 2008. Riverine input and air-sea CO2 exchanges near the Changjiang (Yangtze River) Estuary: Status quo and implication on possible future changes in metabolic status. Cont. Shelf Res. 28:1476-1482.
Chung, C.-C., J. Chang, G.-C. Gong, S.-C. Hsu, K.-P. Chiang, and C.-W. Liao. 2011. Effects of Asian dust storms on Synechococcus populations in the subtropical Kuroshio Current. Mar. Biotechnol. 13:751-763.
Chung, C.-C., G.-C. Gong, and C.-C. Hung. 2012. Effect of Morakot on microphytoplankton population dynamics in the subtropical Northwest Pacific. Mar. Ecol. Prog. Ser. 448:39-49.
Crosbie, N. D., M. Pockl, and T. Weisse. 2003. Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses. Appl. Environ. Microbiol. 69:5716-5721.
Fuller, N. J., D. Marie, F. Partensky, D. Vaulot, A. F. Post, and D. J. Scanlan. 2003. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl. Environ. Microbiol. 69:2430-2443.
Gong, G.-C. 1992. Chemical hydrography of the Kuroshio front in the sea northeast of Taiwan. PhD. Thesis. Institute of Oceanography, National Taiwan University, Taipei.
Gong, G.-C., Y.-L. L. Chen, and K.-K. Liu. 1996. Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: Implications in nutrient dynamics. Cont. Shelf Res. 16:1561-1590.
Gong, G.-C., Y.-H. Wen, B.-W. Wang, and G.-J. Liu. 2003. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep-Sea Res. 50:1219-1236.
Gong, G.-C., K.-K. Liu, K.-P. Chiang, T.-M. Hsiung, J. Chang, C.-C. Chen, C.-C. Hung, W.-C. Chou, C.-C. Chung, H.-Y. Chen, F.-K. Shiah, A.-Y. Tsai, C.-H. Hsieh, J.-C. Shiao, C.-M. Tseng, S.-C. Hsu, H.-J. Lee, M.-A. Lee, I.-I. Lin, and F.-J. Tsai. 2011. Yangtze River floods enhance coastal ocean phytoplankton biomass and potential fish production. Geophys. Res. Lett. 38:L13603.
Guillard, R. R. L., and J. H. Ryther. 1962. Studies on marine planktonic diatoms. 1. Cyclotella nana Hustedt and Detonulla confervaceae (Cleve) Grunow. Can. J. Microbiol. 8: 229-239
Haverkamp, T., S. G. Acinas, M. Doeleman, M. Stomp, J. Huisman, and L. J. Stal. 2008. Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ. Microbiol.10:174-188.
Haverkamp, T. H. A., D. Schouten, M. Doeleman, U. Wollenzien, J. Huisman, and L. J. Stal. 2009. Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea. ISME J. 3:397-408.
Herdman, M., R. W. Castenholz, I. Iteman, J. B. Waterbury, and R. Rippka. 2001. Subsection I, p. 493-514. In D. R. Boone, R. W. Castenholz, and G. M. Garrity (eds.), Bergey's Manual of Systematic Bacteriology, 2nd ed., vol. 1. Springer, New York.
Hoegh-Guldberg, O., and J. F. Bruno. 2010. The impact of climate change on the world's marine ecosystems. Science 328:1523-1528.
Jiao, N. Z., Y. H. Yang, H. Koshikawa, and M. Watanabe. 2002. Influence of hydrographic conditions on picoplankton distribution in the East China Sea. Aquat. Microb. Ecol. 30:37-48.
Jiao, N. Z., Y. Zhang, Y. H. Zeng, W. D. Gardner, A. V. Mishonov, M. J. Richardson, N. Hong, D. L. Pan, X. H. Yan, Y. H. Jo, C. T. A. Chen, P. X. Wang, Y. T. Chen, H. S. Hong, Y. Bai, X. H. Chen, B. Q. Huang, H. Deng, Y. Shi, and D. C. Yang. 2007. Ecological anomalies in the East China Sea: Impacts of the three gorges dam? Water Res. 41:1287-1293.
Jukes T. H., and Cantor C. R. 1969. Evolution of Protein Molecules. pp. 21–132. Academic Press, New York.
Kester, D.R, I.W. Duedall, D. Conners, and R.M. Pytkowicz. 1967. Preparation of artificial seawater. Limnol. Oceanogr. 12:176–179.
Lu, Y.-H., S.-P. L. Hwang, K.-M. Chen, C.-C. Chung, H.-P. Li, T.-M. Hsiung, and J. Chang. 2001. Isolation and identification of a picophytoplankton, Nannochloris sp., in coastal waters of northern Taiwan. Acta Oceanogr. Taiwanica 39:83-92. (in Chinese)
Morán, X. A. G., A. Lopez-Urrutia, A. Calvo-Diaz, and W. K. W. Li. 2010. Increasing importance of small phytoplankton in a warmer ocean. Glob. Change Biol. 16:1137-1144.
Nicholas, K.B., Nicholas H.B. Jr., and Deerfield, D.W. II. 1997. GeneDoc: Analysis and Visualization of Genetic Variation, EMBNEW.NEWS 4:14.
Pai, S.-C., C.-C. Yang, and J. P. Riley. 1990a. Formation kinetics of the pink azo dye in the determinatron of nitrite in natural waters. Anal. Chim. Acta 232:345-349.
Pai, S.-C., C.-C. Yang, and J. P. Riley. 1990b. Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonyl molybdenum blue complex. Anal. Chim. Acta 229:115-120.
Partensky, F., and L. Garczarek. 2010. Prochlorococcus: Advantages and Limits of Minimalism. Annu. Rev. Mar. Sci. 2:305-331.
Robertson, B. R., N. Tezuka, and M. M. Watanabe. 2001. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int. J. Syst. Evol. Microbiol. 51:861-871.
Rocap, G., D. L. Distel, J. B. Waterbury, and S. W. Chisholm. 2002. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl. Environ. Microbiol. 68:1180-1191.
Satoh, A., L. Q. Vudikaria, N. Kurano, and S. Miyachi. 2005. Evaluation of the sensitivity of marine microalgal strains to the heavy metals, Cu, As, Sb, Pb and Cd. Environ. Int. 31:713-722.
Scanlan, D. J., and N. J. West. 2002. Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiol. Ecol. 40:1-12.
Scanlan, D. J. 2003. Physiological diversity and niche adaptation in marine Synechococcus. Adv. Microb. Physiol. 47:1-64.
Schloss, P. D., S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A. Lesniewski, B. B. Oakley, D. H. Parks, C. J. Robinson, J. W. Sahl, B. Stres, G. G. Thallinger, D. J. Van Horn, and C. F. Weber. 2009. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 75:7537-7541.
Six, C., J. C. Thomas, L. Garczarek, M. Ostrowski, A. Dufresne, N. Blot, D. J. Scanlan, and F. Partensky. 2007. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol. 8:R259.
Stomp, M., J. Huisman, L. Voros, F. R. Pick, M. Laamanen, T. Haverkamp, and L. J. Stal. 2007. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol. Lett. 10:290-298.
Tai, V., and B. Palenik. 2009. Temporal variation of Synechococcus clades at a coastal Pacific Ocean monitoring site. ISME J. 3:903-915.
Tsai, A.-Y., G.-C. Gong, K.-P. Chiang, C.-F. Chao, and H.-R. Guo. 2011. Long-term (1998-2007) trends on the spatial distribution of heterotrophic ciliates in the East China Sea in summer: effect of the Three Gorges Dam construction. J. Oceanogr. 67:725-737.
Wang, K., K. E. Wommack, and F. Chen. 2011. Abundance and distribution of Synechococcus spp. and cyanophages in the Chesapeake Bay. Appl. Environ. Microbiol. 77:7459-7468.
Welschmeyer, N. A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 39:1985-1992.
Zwirglmaier, K., L. Jardillier, M. Ostrowski, S. Mazard, L. Garczarek, D. Vaulot, F. Not, R. Massana, O. Ulloa, and D. J. Scanlan. 2008. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ. Microbiol. 10:147-161.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔