(3.238.173.209) 您好!臺灣時間:2021/05/17 12:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:宋雨霖
研究生(外文):Yu-Lin Sung
論文名稱:台灣海峽潮流之研究
論文名稱(外文):A Study of Tidal Current in Taiwan Strait
指導教授:張明輝張明輝引用關係
指導教授(外文):Ming-Huei Chang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋環境資訊學系
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:54
中文關鍵詞:台灣海峽正壓潮流斜壓潮流
外文關鍵詞:Taiwan StraitBarotropic tidal currentBaroclinic tidal current
相關次數:
  • 被引用被引用:2
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:2
台灣海峽位居大陸東部沿海與台灣西部沿岸之間,趨近於北偏東走向之長方形,長約600 km,寬約180 km。本研究主要分析於1999至2001年期間四個觀測時期佈放於台中外海延伸至烏坵間及澎湖水道口五組都卜勒聲波流剖儀(Acoustic Doppler Current Profiler, ADCP )之錨碇資料。由於台灣海峽平均水深約小於60m,一般狀態之下,海峽呈現上下水層垂直混和均勻,海水間密度分層不明顯,所以台灣海峽的潮汐運動以正壓潮為最大分量的潮汐運動。
本文由實測資料與正壓潮流數值模式結果發現,全日/半日之正壓潮流大致沿著海峽地形運動,流速方面,全日正壓潮(K1、O1)於海峽中線處及澎湖水道口之流速分量差異不大(介於0.1~ 0.13m/s之間),半日正壓潮(M2、S2)於海峽中線處之流速則呈現由海峽西側向東側遞減的趨勢且澎湖水道口之流速(~0.9 m/s)遠大於中線處,然而,全日/半日正壓潮因受海峽地形影響,在海峽之隆起處及沿岸岬口處,皆可觀測到異常大的流速值。另,全日/半日斜壓潮在一般狀態下較不顯著,其流速分量分別約為其正壓分量的30~50%及20~35%,且皆呈現第一斜壓模態(first baroclinic mode)。
然而,由斜壓潮之垂直平均動能時間序列發現,其動能除了有類似於大小潮循環週期的變化之外,在1999年10月期間於台灣海峽中線測站之半日斜壓潮動能有異常增強現象,其中,正壓潮與斜壓潮之平均動能存在約大於50小時的時間延遲,因此,本文根據台灣海峽周遭之內潮起源及淺水波波速理論,粗略推算出內潮可能是由呂宋海峽傳遞而來。
最後,本文再藉由分析颱風路徑、海表面溫度(Sea Surface Temperature, SST )、海水位高度異常值(Sea Level Anomaly, SLA)等資料後,發現1999年10月期間,在南海北緣由颱風引起的冷尾跡效應及冷渦現象所產生之水平密度結構變化可能影響台灣海峽的半日內潮變化。當南海北部的水平鋒面形成時,位於台灣海峽的中部測站(靠大陸沿岸)觀測到強勁的半日週期第一斜壓內潮,其最大流速可達0.27 m/s,約為平時的2倍,其斜壓動能則約為大潮時期的1.5~2倍之多,而此增強現象由海峽中線西側向東側遞減。

The Taiwan Strait (TS) is a 180×600 km shelf channel located between Taiwan and China. We analyzed five ADCP acoustic Doppler current profilers (ADCPs), four were deployed along the central part of the TS distributed uniform from Taichung to Wuchung and one was deployed in the Peng-Hu Channel (PHC). The data period is 1999-2001. In the general phase, tidal motions are dominated by barotropic component in TS due to shallow bathymetry and weak stratification.
In this study, using in-suit data accompanying with OTPS (OSU Tidal Prediction Software), we found that the barotropic diurnal/semidiurnal tidal motions almost flowed along the topography trend of the strait. The current magnitudes of barotropic diurnal tides were 0.1~ 0.13 m/s in the central part of the TS and PHC. The current magnitudes of barotropic semidiurnal tides eastward decrease in the central part of TS, and the maximum magnitude of semidiurnal barotropic tidal current were observed in the PHC(~ 0.9 m/s), much stronger than that in the central TS. Also, the magnitudes of barotropic tidal currents were enhanced by the rising and nearshore narrow channel in the TS. Meanwhile, the baroclinic diurnal/semidiurnal tidal motions were not significant in the general phase, in TS, and the magnitudes were 30~50% and 20~35% of the magnitudes of the barotropic diurnal/semidiurnal tidal motions, respectively. The baroclinic tides were dominated by first-mode baroclinic tidal motions.
The depth-integrated kinetic energy (KE) of the baroclinic tides revealed nearly spring-neap circle. However, KE of baroclinic tides were not only effected by the circle, other external events such as typhoon and eddy in the South Chain Sea could also enhance the KE of the baroclinic tides in the central part in TS. Meanwhile, the time lag (> 50hours) of the KE between the barotropic and baroclinic tides implied that internal tides were remotely generated in the Luzon Strait and subsequently proceeded to TS via South China Sea.
Compiling typhoon track、Sea Surface Temperature (SST) and Sea Level Anomaly (SLA), we conclude that the internal tides could be intensified in the presence of horizontal fronts in the northern South Chinese Sea (SCS). The fronts could be produced by the typhoon-induced cold wake or cold eddy. As our observation, the strong mode-1 semidiurnal baroclinic tides were intensified, with a maximum velocity of ~0.27 m/s. The maximum depth-integrated kinetic energy of semidiurnal internal tides after the time of the thermal fronts impact were 1.5~2 times of those in the time of spring tide. And the enhancement of internal tides were the most remarkable in the west of strait (Mainland China side).

誌謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 台灣海峽地理環境 1
1.2 台灣海峽之低頻海流 1
1.3 台灣海峽之潮流概況 3
1.3.1 正壓潮流 3
1.3.2 斜壓潮流 4
1.4 颱風對台灣海峽及周遭海域造成之影響 4
1.5 研究動機 5
第二章 觀測資料與研究方法 6
2.1 觀測資料 6
2.1.1 錨碇觀測資料 6
2.1.2 正壓潮流數值模式資料 7
2.1.3 颱風路徑資料 8
2.1.4 海表面溫度資料 8
2.1.5 衛星高度計資料 9
2.2 研究方法 9
2.2.1 調和分析 9
2.2.2 濾波分析 12
2.2.3 流速之深度平均法 12
2.2.4 海流垂直動能積分平均法 13
第三章 分析結果 14
3.1 台灣海峽潮流概況 14
3.1.1 正壓潮流 14
3.1.2 斜壓潮流 16
3.2 斜壓潮動能增強現象 17
3.3 引發斜壓潮增強之各別事件探討 19
第四章 討論 22
4.1 台灣海峽之斜壓潮可能起源 22
4.2 斜壓潮增強之可能原因 23
第五章 結論 25
參考文獻 27

Chuang, W. S. (1985), Dynamics of subtidal flow in the Taiwan Strait. Journal of the Oceanographical Society of Japan., vol. 41, 65–72.

Chang, Y. C., R. S. Tseng, and L. R. Centurioni (2010), Typhoon induced strong surface flows in the Taiwan Strait and Pacific. Journal of Oceanography., vol. 66, 175–182.

Chiou, D. M., S. Jan, J. Wang, R. C. Lien, and H. Chien (2011), Sources of baroclinic tidal energy in the Gaoping Submarine Canyon off southwestern Taiwan. Journal of Geophysical Research., vol. 116, C12016, doi:10.1029/2011JC007366.

Egbert, G. D., and S. Y. Erofeeva (2002), Efficient inverse modeling of
barotropic ocean tides. Journal of Oceanic and Atmospheric Technology., vol. 19, 183–204

Fang, G., Y. K. Kwok, K. Yu, and Y. Zhu (1999), Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Continental Shelf Research., vol. 19, 854–869.

Isobe, A. (1999), On the origin of the Tsushima warm current and its
seasonality. Continental Shelf Research., vol. 19, 117–133.

Jan, S., C. S. Chern, and J. Wang (2002), Transition of tidal waves from the East to South China Sea over the Taiwan Strait: influence of the abrupt step in the topography. Journal of Oceanography., vol. 58, 837–850.

Jan, S., R. C. Lien, and C. H. Ting (2008), Numerical study of baroclinic tides in Luzon Strait. Journal of Oceanography., vol. 64, 789-802.

Jan, S., C. C. Chen, Y. L. Tsai, Y.J. Yang, J. Wang, C.S. Chern, G. Gawarkiewicz, R. C. Lien, L. Centurioni, and J. Y. Kuo (2011), Mean structure and variability of the cold dome northeast of Taiwan.
The Official Magazine Of The Oceanography Society., vol. 24, 100–109.

Ko, D. S., R. H. Preller, G. A. Jacobs, T. Y. Tang, and S. F. Lin (2003), Transport Reversals at Taiwan Strait during October and Novemeber 1999. Journal of Geophysical Research., vol. 108, 3370, doi:10.1029
/2003JC001836.

Lin, M. C., W. J. Juang, and T. K. Tsay (2000), Application of the mild-slope equation to tidal computations in the Taiwan Strait. Journal of Oceanography., vol. 56, 625–642.

Liang, W. D., T. Y. Tang, Y. J. Yang, M. T. Ko, and W. S. Chuang (2003),
Upper-ocean currents around Taiwan. Deep Sea Research., Part II., vol. 50, 1085 –1105.

Lin, S. F., T. Y. Tang, S. Jan and C. J. Chen (2005), Taiwan Strait current in winter. Continental Shelf Research., vol. 25, 1023–1042.

Niwa, Y., and T. Hibiya (2004), Three-dimensional numerical simulation of
M2 internal tides in the East China Sea. Journal of Geophysical Research., vol. 109, C04027, doi:10.1029/2003JC001923.

Price, J. F. (1981), Upper ocean response to a hurricane. Journal of Physical Oceanography., vol. 11, 153–175.

Pawlowicz, R., R. Beardsley, and S. Lentz (2002), Classical tidal harmonic
analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences., vol. 28, 929–937.

Shen, M. L., Y. H. Tseng, and S. Jan (2011), The formation and dynamics of the cold-dome off northeastern Taiwan. Journal of Marine Systems., vol. 86, 10-27,

Wang, Y. H., S. Jan, and D. P. Wang (2003), Transport and tidal current
estimates in the Taiwan Strait from shipboard ADCP observations (1999–2001). Estuarine, Coastal and Shelf Science., vol. 57, 193–199.

Zhang, W. Z., F. Y. Shi, H. S. Hong, S. P. Shang, and J. T. Kirby (2010),
Tide-surge interaction intensified by the Taiwan Strait. Journal of Geophysical Research., vol. 115, C06012, doi:10.1029/2009JC005762

Foreman, M.G.G. (1996), Manual For Tidal Currents Analysis And
Prediction. Pacific Marine Science Report 78-6, Institute of Ocean Sciences Patricia Bay Sidney, British Columbia.

Wyrtki, K (1961), Physical oceanography of the southeast Asian waters.
Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand 1959–1961. NAGA Report volume 2, Scripps Institution of Oceanography, La Jolla.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top