(3.236.214.19) 您好!臺灣時間:2021/05/10 08:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳鐸升
研究生(外文):Duo-Sheng Chen
論文名稱:利用多層鈍化研製改善點接觸式電極矽晶太陽能電池效能
論文名稱(外文):The Study and Fabrication of Point-Contact Silicon Solar Cells with Multi-Passivation layer
指導教授:何志傑何志傑引用關係
指導教授(外文):Jyh- Jier Ho
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:123
中文關鍵詞:點接觸式雷射開孔鈍化層表面復合速率
外文關鍵詞:Point-contactlaser openingpassivation layersurface recombination rate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:227
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前國內外太陽能產業發展研究製程技術,皆是針對如何提高效
率進行改進,同時亦必須考量到成本之降低。本研究主要是在大面積
(125×125 mm2)單晶矽(Mono-Crystalline Silicon) 太陽能電池上採用點接觸式(Point Contact)電極結構。吾人利用雷射開孔(Laser Opening)形成點接觸式電極結構,此優點是在太陽能電池背面可以沉積一層鈍化
層(Passivation Layer) 以減少載子在表面復合速率(Surface
Recombination Rate)以達成較高之開路電壓(VOC)、短路電流密度(JSC)
與轉換效率(Conversion Efficiency)。
實驗結果顯示,利用二氧化矽(SiO2)於900℃,費時1200 秒,製
成之鈍化層,可以減少載子在表面復合速率,使少數載子生命週期
(Minority Carrier Lifetime)增加10.53us。使用網印技術(Screen Printing)在背面印上點狀電極後,進行燒結(co-firing),發現膠料穿透鈍化層,不易形成背表面電場(Back Surface Field, BSF),造成串聯電阻太高。吾人將背面利用電漿輔助化學氣相沈積(Plasma Enhanced Chemical
Vapor Deposition, PECVD)法沉積氮化矽(SiNx)以保護鈍化層,再使用
雷射開孔最後網印整面鋁,可以保護鈍化層不被破壞,又可以使開孔
位置形成背表面電場,轉換效率達到16.91%,比起參考電池組增加了
0.64%。而利用三氧化二鋁(Al2O3) 做為鈍化層,退火(Annealing) 500
℃,比二氧化矽還要有更高的少數載子生命週期,增加2.5us,轉換效
率比起參考電池組增加了0.887%,轉換效率為17.16%。
為進一步提升轉換效率,本論文利用硝酸(HNO3)預處理方式,浸
泡太陽能電池加上雙層抗反射膜(Double Anti-reflection Coating)。在太陽能電池表面會因磷擴散造成雜質,必須消除。本研究利用硝酸處理,
以減少表面載子復合速率,增加載子壽命,提高轉換效率。雙層抗反
射膜比單層抗反射膜有較低的反射率,再利用Al2O3/SiNx 多層鈍化結
構,來得到更高的少數載子生命週期,轉換效率可以達到17.7%。量
子效率量測結果顯示,雙層抗反射膜可以比單層抗反射膜更有優異的
抗反射效果,吾人可從短波長能明顯的觀察出來,背面鈍化會使表面
之復合率下降,而釋放更多的電子,吾人可從長波長能明顯的觀察出
來。
At present, the developing process technologies of solar energy
industry both at home and abroad aim at not only improving efficiency but
also lowering cost. This study investigates the point-contact structure
applied to on the Mono-Crystalline Silicon solar cells on a large area
(125×125mm2). We use laser-opening to form point-contact structure at
back of cells. And the advantage of this formation is that a passivation
layer can be deposited on the back of cells to reduce the surface
recombination rate of the carrier to achieve higher open circuit voltage
(VOC), short circuit current density (JSC) and conversion efficiency.
The results show that a passivation layer realized with SiO2 at 900℃
for 1200 seconds can reduce the surface recombination rate and increase
the minority carrier lifetime by 10.53us. Right after screen printing the
point electrode on the rear, the step of co-firing makes the plastic material
burn through the passivation layer. Therefore it is not easy to form a back
surface field (BSF) which causes very high series resistance. In order to
protect the passivation layer, we use Plasma Enhanced Chemical Vapor
Deposition (PECVD) to deposit silicon nitride (SiNx) on the surface of
SiO2. Then the laser opening is carried out before screen printing the entire
surface of aluminum. This step can not only protect the passivation layer
from damage but also form a back surface field at the opening position.
The conversion efficiency reaches to 16.91%, increasing by 0.64%
compared to reference cell group.
For the purpose of comparison, we use aluminum oxide (Al2O3) in
place of SiO2 as the passivation layer, then annealed at 500℃. This kind of
passivation layer can get a longer minority carrier lifetime than that of
silicon by 2.5us, and the conversion efficiency compared to the reference
cell group increased by 0.887%, i.e., 17.16%.
To further increase the efficiency of solar cells, this paper deploys
HNO3 pretreatment to soak solar cells and performs double anti-reflective
coating (ARC). On the solar surface, the impurity produced by phosphorus
diffusion must be eliminated. This study uses HNO3 treatment to reduce
the surface recombination rate, then to increase carrier lifetime and
improve the conversion efficiency. Compared with single-layer
anti-reflective coating, the double-layer ARC has better reflectivity.
Together with Al2O3/SiNx multi-layer passivation structure, the results
show that double-layer provides a longer minority carrier lifetime, and
results in the conversion efficiency of 17.7%. Quantum efficiency
measurements show that double-layer ARC has better reflectivity, which
can be observed from the short-wavelength. Passivation on the back
surface will decrease the surface recombination rate, and produce more
electrons, which can be observed obviously from the long-wavelength.
Abstract (Chinese)..............................................I
Abstract (English).........................................III
Acknowledgements (Chinese).................................................V
Contents...........................................VI
List of Tables.................................VIII
List of Figures.................................IX
Chapter 1 Preface...........................1
1-1 Introduction..............................................2
1-2 Motive and Purpose...................................................3
1-3 Overall Structure of Thesis.....................................................4
Chapter 2 Background and Literature Review..........5
2-1 Basic Theory of Solar Cells...........................6
2-1-1 Introduction to Solar Cells..........................6
2-1-2 Principle of Solar Cells.......................6
2-1-3 Equivalent Circuit of Solar Cells..................7
2-1-4 Dark Current of Solar Cells.............12
2-1-5 Quantum Efficiency Measurement......................................13
2-2 Literature Review...........................................................................14
2-2-1 Laser Device of Silicon Solar Cells.................................…14
2-2-2 Literatures of Point-contact Solar Cells...............................16
Chapter 3 Experiment Process and Equipment Introduction..............19
3-1 Experiment Process........................................................................20
3-2 Introduction to Equipment.............................................................27
3-2-1 Chemical Tank.....................................................................27
3-2-2 High Temperature Diffusion Furnaces and Plasma Enhanced
Chemical Vapor Deposition System....................................27
VII
3-2-3 Electrode Reel-to-Reel Screen Printer.....................……....28
3-2-4 High Temperature Firing Furnace........................................30
3-2-5 High Temperature Tube Annealing Furnace.......................30
3-2-6 Laser Etching System...........................................................31
3-2-7 Atomic Layer Deposition System........................................32
3-3 Measurement Equipment Introduction...........................................33
3-3-1 Ultraviolet Spectrometer......................................................33
3-3-2 Photoelectric Conversion Efficiency Measurement System of
Solar Cells............................................................................34
3-3-3 Spectral Response Measurement System.............................35
3-3-4 Lifetime Tester WT-2000....................................................36
3-3-5 Field Emission Gun Scanning Electron Microscopy
(FEG-SEM)..........................................................................37
3-3-6 LBIC Measurement..............................................................38
Chapter 4 Results and Discussion............................................................40
4-1 PC1D Simulation...........................................................................41
4-1-1 Simulation with Different Series Resistances......................42
4-1-2 Simulation of Solar Cells for Different Lifetime.................45
4-2 Influence of SiO2 Passivation Layer on Point-contact Solar
Cells................................................................................................48
4-3 Influence of SiO2/SiNx Passivation Layer on Point-contact Solar
Cells................................................................................................63
4-4 Influence of Al2O3/SiNx Passivation Layer on Point-contact Solar
Cells................................................................................................82
4-5 Point-contact Plus Nitric Acid Treatment and Double-layer
Anti-Reflection Coating...............................................................101
Chapter 5 Conclusion..............................................................................111
References................................................................................................116
Reference
[1] 戴寶通、鄭晃忠,“太陽能電池技術手冊”、台灣電子材料與元件協會、中華民國九十七年六月。
[2] Jan Schmidt, Mark Kerr, Andres Cuevas,” Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks”, Semicond. Sci. Technol., Vol. 16, pp. 164-170, 2001.
[3] E. Schneiderlöchner, R. Preu, R. Lüdemann, S. W. Glunz,” Laser-fired rear contacts for crystalline silicon solar cells”, prog. photovolt res. appl, Vol. 10, pp. 29-34, 2007.
[4] Malcolm Abbott, Jeffrey Cotter.,” Optical and Electrical Properties of Laser Texturing for High-efficiency Solar Cells” Prog. Photovolt: Res. Appl., Vol. 14, pp. 225–235, 2006.
[5] Barada K. Nayak, Vikram Iyengar, Mool C. Gupta.,” Ultrafast Laser Textured Silicon Solar Cells”, Mater. Res. Soc. Symp. Proc., Vol. 1123-P07-09, 2009.
[6] L.A. Dobrzański, A. Drygała,” Surface texturing of multicrystalline silicon solar cells”, Journal of Achievements in Materials and Manufacturing Engineering, Vol. 31, pp. 77-82, 2008.
[7] H. Knauss, P. Fath, W. Jooss, M. McCann, E. Rüland, S. Steckemetz,” Large Area Metallisation Wrap Through Solar Cells with Thickfilm Metallisation” 14th International Photovoltaic Science and Engineering Conference, Vol. 90, pp. 3232-3237, 2006.
[8] T. Markvart, L. Castaner,“ Solar Cells: Materials, Manufacture and Operation, Elsevier”, Amsterdam, 2006.
[9] Green MA.,” Solar Cells: Operating Principles, Technology and System Applications”, University of New South Wales: Sydney, 1998.
[10] Stefaan De Wolf, Guido Agostinelli, Guy Beaucarne,” Influence of stoichiometry of direct plasma-enhanced chemical vapor deposites SiNx films and silicon substrate surface roughness on surface passivation”, Journal of applied physics, Vol. 97, pp. 1-8, 2005.
[11] Thomas Lauinger, Jans Moschner, Armin G. Aberle, Rudolf Hezel,“ Optimization and characterization of remote plasma-enhanced chemical vapor deposition silicon nitride for the passivation of p-type crystalline silicon surfaces”, J. Vac. Sci. Technol. A, Vol. 16, No. 2, pp. 530-543, 1998.
[12] Correscan User Manual, 2007.
[13] Van der Heide ASH, Bultman JH, Hoornstra J, Scho¨necker A, Wyers GP, Sinke WC.,” Locating losses due to contact resistance, shunts and recombination by potential mapping with the Corescan”, Proceedings of the 12th Workshop on Crystalline Silicon Solar Cell Materials and Processes, pp. 117–123, 2002.
[14] Schmidt, J., Merkle, A., Bock, R., Altermatt,“ Progress in the surface passivation of silicon solar cells”, Proceedings 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain., pp. 974-981, 2008.
[15] Semilab, Theory of operation (WT-2000).
[16] Thomas Lauermann, Thomas Lüder, Sascha Scholz, Bernd Raabe, Giso Hahn, Barbara Terheiden “ Enabling Dielectric Rear Side Passivation for Industrial Mass Production by Developing Lean Printing-Based Solar Cell Processes”, Preprint 35th IEEE PVSC, pp.1-6, 2010.
[17] J. Schmidt, A. Merkle, B. Hoex, M.C.M. van de Sanden, W.M.M. Kessels, R. Brendel,“ Atomic-Layer-Deposited Aluminum Oxide for the Surface Passivation of High-efficiency silicon solar cells”, Institut für Solarenergieforschung Hameln (ISFH), pp. 1-5, 2009.
[18] C.J.J. Tool, M. Koppes, M. Fleuster, B.H.M. van Straaten, A.W. Weeber,“ Almost 1% Absolute Efficiency Increase in Mc-Si Solar Cell Manufacturing with Simple Adjustments to the Processing Sequence”, 21st European Photovoltaic Solar Energy Conference, pp.1272-1276, 2006.
[19] Myoung Yone Seo, Edward Namkyu Cho, Chang Eun Kim,“ Characterization of Al2O3 Films grown by Electron Beam Evaporator on Si Substrates” 14th International Photovoltaic Science and Engineering Conference, Vol. 90, pp. 2-3, 2006.
[20] Yukie Yamamoto, Yukiharu Uraoka, and Takashi Fuyuki,“ Passivation Effect of Plasma Chemical Vapor Deposited SiNx on Single-Crystalline Silicon Thin-Film Solar Cells”, Japanese Journal of Applied Physics, Vol. 42, No. 8, pp. 5135-5139, 2003.
[21] G. Dingemans, P. Engelhart, R. Seguin, B. Hoex,” Firing Stability of Atomic Layer Deposited Al2O3 for C-Si Surface Passivation”, Proceedings of the 34th IEEE Photovoltaic Specialist Conference(PVSC), pp. 000705-000708, 2009.
[22] G. Dingemans, W.M.M. Kessels,” Recent Progress in the Development and Understanding of Silicon Surface Passivation by Aluminum Oxide for Photovoltaics”, 5th World Conference on Photovoltaic Energy Conversion, pp. 1083-1090, 2010.
[23] Benick J., Richter A., Li T.-T.A., Grant N.E., McIntosh,“ Effect of a post-deposition anneal on Al2O3 Si interface properties”, 35th IEEE Photovoltaic Specialists Conference (PVSC), pp. 000891-000896, 2010.
[24] H. Mackel and R. Ludemann,“ Detailed Study of the Composition of Hydrogenated SiNx Layers for High-Quality Silicon Surface Passivation”, J. Applied Physics, Vol. 92, No. 5, 2002.
[25] Jan Schmidt, Mark Kerr,“ Highest-Quality Surface Passivation of Low-Resistivity P-Type Silicon using Stoichiometric PECVD Silicon Nitride”, Solar Energy Materials & Solar Cells, Vol. 65, pp.585-591, 2001.
[26] D. N. Wright, E. S. Marstein and A. Holt,“ Double Layer Anti-Reflective Coatings for Silicon Solar Cells”, IEEE, 31st PVSC, pp.1237-1240, 2005.
[27] J. H. Zhao, S. H. Wang, and M. A. Green,“ Double Layer Antireflection Coating for High-Efficiency Passivated Emitter Silicon Solar Cells”, IEEE Trans. on Electron Devices, Vol. 41, No 9, 1994.
[28] KBtia Aparecida Abade, Fernando Josepetti Fonseca, Ronaldo Domingues Mansano, Paulo Abade,“ PECVD Single-layer (SiN:H) and Double-layer (SiN:H/SiO2) ARC on Mono and Multicrystalline Silicon Solar Cells”, 30th Photovoltaic Specialists Conference, 2000.
[29] 盧永安,”利用硝酸處理與雙層抗反射膜研製改善矽晶太陽能電池效能” 國立台灣海洋大學,碩士論文,2009。
[30] 李正中,“薄膜光學與鍍膜技術”、藝軒圖書出版社、2006年七月第五版。
[31] A. Lemke, H. Furtwangler, J. Rentsch, D. Biro, R. Preu,“ Thermal Oxidation and Wet Chemical Cleaning of Silicon Wafers for Industrial Solar Cell Production”, 22nd European Photovoltaic Solar Energy Conference, 2007.
[31] M. Lohmann, F.Delahaye,“ Report on Industrial use of Inline Wet Edge Isolation for Solar Cell Production”, 22nd European Photovoltaic Solar Energy Conference, 2007.
[32] S. Keipert, P. Wang, D. Borchert, S. Muller, L. Kuhnemann, M. Rinio,“ Influence of Different Wet Chemical Cleaning Procedures Prior to Silicon Nitride Deposition on Solar Cell Performance and Surface Passivation”, Presented at the 23rd European Photovoltaic Solar Energy Conference and Exhibition, 2008.
[33] Markus Rinio, Dietmar Borchert, Stefan Muller, Stephan Riepe, Rainer Tolle, Lars JanBen, Heinrich Kurz,“ Industrial Rear SiN-Passivated Multicrystalline Silicon Solar Cells, Presented at the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, 2006.
[34] C.J.J. Tool, M. Koppes, M. Fleuster, B.H.M. van Straaten, A.W. Weeber,“ Almost 1% Absolute Efficiency Increase in Mc-Si Solar Cell Manufacturing with Simple Adjustments to the Processing Sequence”, 21st European Photovoltaic Solar Energy Conference, 2006.
[35] D. Morrison, A. Cole, S. Devenport, J. Delve,” Development of Laser Fired Contact (LFC) Rear Passivated Laser Groove Buried Contact (LGBC) Solar Cells Using Thin Wafers”, International solar energy society uk section -conference(ISSU), pp. 101-104, 2009.
[36] S. H. Lee,“ Development of High-Efficiency Silicon Solar Cells for Commercialization”, Journal of the Korean Physical Society, Vol. 39, No. 2, pp. 369-373, 2001.
[37] Jan Schmidt, Mark Kerr, Andres Cuevas,” Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks”, Semicond. Sci. Technol., Vol. 16, pp. 164-170, 2001.
[38] 葉沐詩,” 太陽能電池製作與效能改進之研究” 中華大學,碩士論文,2010。
[39] TUBUTAK-UME, Optics Laboratory,“ Quantum Efficiency Determination of Unbiased Silicon Photodiode and Photodiode Based Trap Detectors” Rev. Adv. Mater. Sci., No 1, Vol. 21, pp. 90-98, 2009.
[40] Yuang-Tung Cheng, Jyh-Jier Ho*,“ Investigation of Low-Cost Surface Processing Techniques for Large- Size Multi-crystalline Silicon Solar Cells,“ Int. J. Photoenergy, vol. 2010, doi:10.1155/2010/268035, pp. 1-6, 2010.
[41] Guo Aijuan, Ye Famin, Guo Lihui,” Effect of the back surface topography on the efficiency in silicon solar cells” Journal of Semiconductors, Vol. 30, Issue 7, pp. 074003, 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔