(18.207.253.100) 您好!臺灣時間:2021/05/06 09:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊振寰
研究生(外文):Chen-Huan Yang
論文名稱:鋯鈦酸鉛微橋結構聲波感測元件之製作及其應用
論文名稱(外文):Fabrication and Application of Pb(Zr0.52Ti0.48)O3 Microbridge Structure Acoustic Wave Sensor
指導教授:張忠誠張忠誠引用關係
指導教授(外文):Chung-Cheng Chang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:131
中文關鍵詞:鋯鈦酸鉛蝕刻技術犧牲層技術
外文關鍵詞:lead zirconate titanateetching techniquesacrificial layer technology
相關次數:
  • 被引用被引用:3
  • 點閱點閱:183
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  近年來由於微機電製程技術的成熟及穩定,經由不同的蝕刻技術及蝕刻選擇性,許多懸浮結構及立體結構被應用於感測元件上,進一步可達成體積微小化,更容易與後端電路整合成智慧型感測系統。本論文主要利用微機電製程技術導入蝕刻技術及犧牲層技術,使用矽基板製作完成微橋結構鋯鈦酸鉛聲波感測元件。
  聲波感測元件製作方面,犧牲層及支撐層分別選擇鋁及二氧化矽,蝕刻溶液在鋁及二氧化矽上具有優越的蝕刻選擇性,有利於製程最後將犧牲層完全移除掏空。
  本論文所製作之鋯鈦酸鉛薄膜,其共振頻率為90MHz,反共振頻率為158.75MHz,殘留極化量為29.61 ,矯頑電場為20.8 ,利用此薄膜製作之聲波感測元件,其低頻靈敏度範圍為-210 ~-225 ,頻率在100kHz時靈敏度為最高值-209.76 ,高頻靈敏度範圍為-196 ~-210 ,頻率在7.5MHz時靈敏度為最高值-195.37 ,當感測頻率越接近共振頻率時,靈敏度及聲場強度有逐漸提高的趨勢。本論文所製作之聲波感測元件,其感測聲場屬於全指向式場形,更有利於高頻聲波測距及影像系統之整合。

In recent years, as the micro-electro-mechanical system technology becomes mature and stable, many suspension structures and spatial structures are applied to sensing elements using different etching techniques and etching selectivity, further realizing microminiaturized volume. As a result, they are easier to be integrated with back end circuit into an intelligent sensing system. This study introduced etching technique and sacrificial layer technology into micro-electro-mechanical system technology, and used silicon substrate to complete the microbridge structured lead zirconate titanate sound sensing element.
In the fabrication processes of acoustic wave sensor, the sacrificial layer and supporting layer were made of aluminum and silica respectively, the etching solution had superior etching selectivity for aluminum and silica. It was helpful to detaching and undercutting the sacrificial layer completely at the end of process.
The resonance frequency of the obtained lead zirconate titanate membrane was 90MHz, the antiresonance frequency was 158.75MHz, the residual polarization was 29.61 , and the coercive electric field was 20.8 . The low frequency sensitivity range of the acoustic wave sensor made of this membrane was -210 ~-225 , the maximum value -209.76 of sensitivity occurred when the frequency was 100kHz. The high frequency sensitivity range was -196 ~-210 , the maximum value -195.37 of sensitivity occurred when the frequency was 7.5MHz. The sensitivity and sound field strength increased gradually as the sensing frequency approached to the resonance frequency. The sensing sound field of the sound sensing element in this study was in an all-directional field form, thus was more favorable to the integration of high frequency sound ranging and image system.

第一章 序論---------------------------------1
1-1 微機電簡介------------------------------1
1-2 聲波簡介--------------------------------3
1-3 聲波感測器簡介--------------------------4
1-4 章節概述--------------------------------8
第二章 薄膜特性理論及製程技術--------------10
2-1 壓電材料種類---------------------------10
2-2 壓電效應-------------------------------12
2-2-1 正壓電效應---------------------------13
2-2-2 逆壓電效應---------------------------13
2-3 電滯曲線-------------------------------14
2-4 壓電電性參數---------------------------15
2-4-1 機電耦合係數-------------------------15
2-4-2 機械品質因子-------------------------15
2-4-3 頻率常數-----------------------------16
2-4-4 居禮溫度-----------------------------16
2-5 壓電電性特性---------------------------17
2-5-1 介電特性與介電損失因子---------------17
2-5-2 極化機制-----------------------------18
2-5-3 漏電流機制---------------------------20
2-5-4 疲勞現象-----------------------------21
2-6 壓電方程式-----------------------------22
2-7 電極材料-------------------------------28
2-7-1 金屬電極-----------------------------28
2-7-2 氧化物電極---------------------------29
2-8 蝕刻技術-------------------------------29
2-8-1 濕式蝕刻-----------------------------30
2-8-2 乾式蝕刻-----------------------------31
2-9 犧牲層技術-----------------------------32
2-10 微影製程技術---------------------------33
2-10-1 光阻旋轉塗佈-------------------------33
2-10-2 對準及曝光---------------------------35
2-10-3 顯影---------------------------------35
2-11 製程設備-------------------------------36
2-11-1 濺鍍系統-----------------------------36
2-11-2 蒸鍍系統-----------------------------38
2-12 製程量測設備---------------------------38
2-12-1薄膜厚度量測儀------------------------39
2-12-2 X光繞射分析儀-----------------------39
2-12-3 原子力顯微鏡-------------------------40
2-12-4 掃描式電子顯微鏡---------------------41
第三章 微橋結構聲波感測元件設計及製作------42
3-1 PZT薄膜特性分析------------------------42
3-1-1 PZT材料結構--------------------------42
3-1-2 PZT薄膜沉積溫度----------------------43
3-1-3 PZT薄膜退火製程----------------------44
3-2 微橋結構聲波感測元件製作---------------47
3-2-1 光罩設計-----------------------------47
3-2-2 製程前清洗---------------------------48
3-2-3 成長氧化層SiO2-----------------------49
3-2-4 沉積犧牲層Al-------------------------49
3-2-5 蝕刻犧牲層Al-------------------------50
3-2-6 沉積支撐層SiO2-----------------------51
3-2-7 沉積電極Pt/Ti------------------------51
3-2-8 沉積壓電層PZT------------------------51
3-2-9 沉積防水層SiO2-----------------------52
3-2-10 蝕刻犧牲層Al-------------------------52
3-2-11 元件封裝-----------------------------53
第四章 微橋結構聲波感測元件量測及分析------54
4-1 元件電性量測---------------------------54
4-1-1 共振頻率與反共振頻率-----------------54
4-1-2 等效電路參數-------------------------55
4-1-3 元件電滯曲線-------------------------55
4-1-4 元件介電特性-------------------------56
4-1-5 元件壓電特性-------------------------56
4-2 元件特性量測---------------------------57
4-2-1 量測設備-----------------------------57
4-2-2 量測架構-----------------------------58
4-2-3 靈敏度量測---------------------------58
4-2-4 聲場量測-----------------------------60
第五章 結論--------------------------------62
參考文獻------------------------------------64

[1] R. Feymann, “Infinitesimal machinery”, J. of Micro electromechanical
System, Vol.2, No.1, pp.4-14, 1993.
[2] K. Petersen, “Silicon as a mechanical material”, Proceedings of the
IEEE, pp420-457, 1982.
[3] M. Madou, “Fundamentals of Microfabrication”, CRC, 1997.
[4] Frank Niklaus, Christian Vieider, Henrik Jakobsen, “MEMS-Based
Uncooled Infrared Bolometer Arrays – A Review”, Proc. of SPIE Vol.
6836, 68360D, 2007.
[5] Sanghoon Lee, Daejong Kim, Michael D. Bryant, Frederick F. Ling,
“A micro corona motor”, Sensors and Actuators A 118, pp226-232, 2005.
[6] R. Inaba, A. Tokushima, O. Kawasaki, Y. Ise, and H.Yoneno,
“Piezoelectric ultrasonic motor”, Proceeding of the IEEE Ultrasonic
Symp , Vol.40, pp687~693, 1987.
[7] L. H. Parker ,and A. F. Tasch, “Ferroelectric materials for 64Mb and
256Mb DRAMs”, Proceeding of the IEEE Circuits and Devices
Magazine, Vol.27, No.8, pp.17~26, 1990.
[8] J. Curie and P. Curie, Bull. Soc. Min. France, 3, pp.90, 1880.
[9] S. Roberts, “Dielectric and piezoelectric properties of barium titanate”,
J. Phys. Rev., 71,890, 1947.
[10] G. Shirane, E. Sawaguchi and T. Takagi, Phys. Rev., 84, pp.476, 1951.
[11] G. Shirane and K. Suzuki, J. Phy. Soc. Japan, 7, pp.333, 1952.
[12] E. Swaguchi, J. Phys. Soc. Japan, 8, pp.615, 1953.
[13] G. Shirane and A. Takeda, J. Phy. Soc. Japan, 7, pp.5, 1952.
[14] Y. Takagi, Phys. Rev., 85, pp.315, 1952.
[15] B. Jaffe, R. S. Roth and S. Marzullo, J. Res. Nat. Bur. Stds., 55,
pp.239, 1955.
[16] S.V. Krishnaswamy, J. Rosenbaum, S. Horwitz, C. Vale, and R.A.
Moore, “Film bulk acoustic wave resonator technology”, Proceedings,
IEEE Ultrasonics symposium, Honolulu, December, pp529-536, 1990.
[17] S.V. Krishnaswamy, J. F. Rosenbaum, S.S. Horwitz, and R.A. Moore,
“Film bulk acoustic wave resonator and filter technology”, Digest,
IEEE Microwave Symposium, Albuquerque, June, pp153-155, 1992.
[18] H. Zhang and E.S. Kim, “Air-backed, Al/ZnO/Al film bulk acoustic
resonator without any support layer”, IEEE international frequency
control symposium and PDA exhibition, pp 20-26, 2002.
[19] Choon-Sup Lee, Jae-Duk Lee, Chul-Hi Han, “A new wide-dimensional
freestanding microstructure fabrication technology using laterally
formed porous silicon as a sacrificial layer” , Sensors and Actuators A:
Physical, Volume 84, Issues 1-2, Pages 181-185, 1 August 2000.
[20] M. Hara, J. Kuypers, T. Abe and M. Esashi, “Aluminum nitride based
thin film bulk acoustic resonator using germanium sacrificial layer
etching”, Transducers’03, The 12th International Conference on Solid
State Sensors, Actuators and Microsystems, June, pp 1780-1783, 2003.
[21] G. Yoon and J.D. Park, “Fabrication of ZnO-based film bulk acoustic
resonator devices using W/SiO2 multilayer reflector”, Electronics
Letters, 36, pp 1435-1437, 2000.
[22] R.Lanz and P. Muralt, “Bandpass filters for 8 GHz using solidly
mounted bulk acoustic wave resonators”, IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, 52, pp 936-946, 2005.
[23] Tong-Yi Zhang, Xusheng Wang, Bin Huang, “Microbridge testing of thin
films”, Materials Science and Engineering: A, Volume 409, Issues 1-2,
Pages 329-339, 15 November 2005.
[24] J. Eisenmenger, C. Brand, P. Leiderer, “Microbridge on YBa2Cu3O7?δ
thin film patterned by reversible laser annealing”, Physica C:
Superconductivity, Volume 262, Issues 3-4, Pages 168-172, 20 May,
1996.
[25] S. V. Krishnaswamy, J. Rosenbaum, S. Horwitz, C. Vale, R. A. Moore,
“Film Bulk Acoustic Wave Resonator Technology”, Ultrasonics
Symposium Proceedings, v 1, pp.529-536, 1990.
[26] Nakamura, S., Numasato, H., Sato, K., Kobayashi, M., and Naniwa,I.,
“A Push–Pull Multi-Layered Piggyback PZT Actuator”, Microsystem
[27] Ritter, T., “Single Crystal PZN/PT-Polymer Composites for Ultrasound
Transducer Applications”, IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, Vol. 47, No. 4, pp. 792-800, 2000.
[28] C. B. Eom, R. B. V. Dover, J. M. Phillips, D. J. Werder, J. H. Marshall,
“Fabrication and properties of epitaxial ferroelectric heterostructures with
(SrRuO3) isotropic metallic oxide electroded“, Appl. Phys. Lett. 63(18),
2570, 1993.
[29] A. J. Moulson, J. M. Herbert, “electroceramics”, materials, Properties,
Application, 1990.
[30] 吳朗, “電子陶瓷入門:壓電”, 全欣資訊圖書股份有限公司, pp.1-27,1992.
[31] S. W. Choi, T. R. Shrout, S. J. A. S. Bhalla, “Ferroelectrics”. Vol.100,
pp.29-38, 1989.
[32] Almajid, A., and Taya, M., “Analysis of out-of-plane Displacement and
Stress Field in a Piezocomposite Plate with Functionally Graded
Microstructure”, International Journal of Solids and Structures,
pp. 3377-3391, 2001.
[33] Tan, P., and Tong, L., “Micro-electromechanics Models for Piezoelectric-
fiber-reinforced Composite Materials”, Composites Science and
Technology, pp. 759-769, 2001.
[34] D. R. Askeland, “The science and engineering of materials”, International
Thomson Publishing, 1989.
[35] C. P. D. Arangjo, J. F. Scott, G. W. Taylor, “Ferroelectric thin films:
synthesis and basic properties”, Gordon and Breach Publishers, 193-194,
1966.
[36] S. Wolf, R. N. Tauber, “Silicon bocessing for the VLIV era”, Published
by Lattice Poess, CA Sunset Beach, 384, 1986.
[37] E. A. Kneer , D. P. Birnie , R. D. Schrimpf , J. C. Podlesny , G. Teowee,
“Investigation of Surface Roughness and Hillock Formation on Platinized
Substrates Used for Pt/PZT/Pt Capacitor Fabrication” , Integrated
Ferroelectrics ,7, 1995.
[38] K. Sreenivas , I. Reaney , T. Maeder , and N. Setter , “Investigation of
Pt/Ti Bilayer Metallization on Silicon for Ferroelectric Thin Film
Integration ” , J.Appl.Phys.,75(1), 1994.
[39] Y. H. Yeh, “The Study of LiTaO3 Pyroelectric Thin Film IR Detectors
Prepared by the Sol-Gel Process with Various Annealing Treatments” ,
National Sun Yat-sen University, Taiwan, ROC, 2004.
[40] F. Hedrich, S. Billat, W. Lang, “Structuring of membrane sensors using
sacrificial porous silicon”, Sensors and Actuators A: Physical, Volume 84,
Issue 3, Pages 315-323, 1 September 2000.
[41] Choon-Sup Lee, Jae-Duk Lee, Chul-Hi Han, “A new wide-dimensional
freestanding microstructure fabrication technology using laterally
formed porous silicon as a sacrificial layer”, Sensors and Actuators A:
Physical, Volume 84, Issues 1-2, Pages 181-185, 1 August 2000.
[42] Yosuke Okamura, Saori Utsunomiya, Hidenori Suzuki, Daisuke Niwa,
Tetsuya Osaka, Shinji Takeoka, “Fabrication of free-standing
nanoparticle-fused nanosheets and their hetero-modification using
sacrificial film”, Colloids and Surfaces A: Physicochemical and
Engineering Aspects, Volume 318, Issues 1-3, Pages 184-190, 1 April
2008.
[43] L. J. Guerin, M. Bossel, M. Demierre, S. Calmes, and Ph. Renaud,
“Simple and Low Cost Fabrication of Embedded Microchannels by
Using A New Thick-Film Photoplastic’’, Proceedings of IEEE MEMS
Symposium, pp.1419-1422, 1997.
[44] 徐文祥, 許鎮鵬, “微機電製程中的犧牲層技術之發展現況”,
半導體科技雜誌, 十月號, 2001.
[45] P. J. Holmes, “The Electrochemistry of Semiconductors”, Academic
press, 1962.
[46] C. Li, M. Furuta, T. Matsuda, T. Hiramatsu, H. Furuta, T. irao, “Effects
of substrate on the structural, electrical and optical properties of Al-doped
ZnO films prepared by radio frequency magnetron sputtering”, Thin Solid
Films, Volume 517, Issue 11, Pages 3265-3268, 2 April 2009.
[47] A.S. Bhattacharyya, G.C. Das, S. Mukherjee, S.K. Mishra, “Effect of
radio frequency and direct current modes of deposition on protective
metallurgical hard silicon carbon nitride coatings by magnetron
sputtering”, Vacuum, Volume 83, Issue 12, Pages 1464-1469, 11 August
2009.
[48] J.Z. Shi, C.Z. Chen, H.J. Yu, S.J. Zhang, “The effect of process conditions
on the properties of bioactive films prepared by magnetron sputtering”,
Vacuum, Volume 83, Issue 2, Pages 249-256, 26 September 2008.
[49] R. D. Hudson JR., Infrared System Engineering, Ch.2, pp.39-53,
Wiley-Interscience, New York, 1969.
[50] D. Murphy, M. Ray, J. Wyles, J. Asbrock, C. Hewitt, R. Wyles, E.
Gordon, T. Sessler, A. Kennedy, S. Baur, D. Van Lue, “Performance
improvements for VOx microbolometer FPAs”, Proc. SPIE, Vol.5406,
pp.531-540, Orlando, USA, 2004.
[51] S. W. Choi, T. R. Shrout, S. J. A. S. Bhalla, “Ferroelectrics”. Vol.100,
pp.29-38, 1989.
[52] P. Muralt,” Piezelectric and pyroelectric Microsystems based on
ferroelectric thin film,” IEEE, pp.145~151, 1996.
[53] C. C. Mardare et al., “Effect of Deposition and Processing Conditions for
LaNiO3 Bottom Electrodes on the Properties of Pb(Zr,Ti)O3 Thin Film
Capacitors made by RF Magnetron Sputtering,” Materials Science Forum
Vols. 514-516, pp. 1343-1347, 2006.
[54] Kaoru Yamashita, Hiroshi Katata, Masanori Okuyama, Hiromi iyoshi,
Genro Kato, Seiji Aoyagi, Yoshihiko Suzuki, “ Arrayed ultrasonic
microsensors with high directivity for in-air use using PZT thin film
on silicon diaphragms” Sensors and Actuators A 97-98, 302-307, 2002.
[55] Zhihong Wang, Weiguang Zhu, Jianmin Miao, Hong Zhu, Chen Chao,
Ooi Kiang Tan, “Micromachined thick film piezoelectric ultrasonic
transducer array : Sensor and Actuators A 130-131, 485-490, 2006.
[56] Michael Quirk, Julian Serda, “Semiconductor Manufacturing
Technology”, Pearson Education Taiwan Ltd.
[57] M. Moreno, A. Kosarev, A. Torres, R. Ambrosio, “Comparison of three
un-cooled micro-bolometers configurations based on amorphous
silicon–germanium thin films deposited by plasma”, Journal of
Non-Crystalline Solids 354, 2598–2602, 2008.
[58] 劉傳俊, “水下超音波相移陣列影像系統之研發”, 國立臺灣海洋大學
電機工程研究所, 2008.
[59] Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits 5th ed,
New York : Oxford University Press, 2004.
[60] Teowee, G, McCarthy, K.C, Alexander, T.P, Bukowski, T.J, Uhlmann,
D.R, “Sol-gel derived Pb1-xCaxTiO3 thin films”, Proceedings of the
Tenth IEEE International Symposium on Applications of Ferroelectrics,
Volume 1, page 18-21, Aug, 1996.
[61] Wang G.S., Lai Z.Q., Meng X.J., Sun J.L., Yu J., Guo S.L., Chu J.H.,
“PbZr0.5Ti0.5O3 thin films prepared on La0.5Sr0.5CoO3/LaNiO3
heterostructures for integrated ferroelectric devices”, Solid-State and
Integrated-Circuit Technology, Proceedings. 6th International
[62] K. G.Lee, “Simulation, Fabrication, and Characteristic Measurment
of Piezoelectric Ultrasound Transducer with Non-uniform
Thickness” National Cheng Kong University, July, 1993.
[63] Arora A.K., Mansingh A., “Effect of target substrate distance on the
properties of RF sputtered PZT films”, Applications of Ferroelectrics,
IEEE 7th International Symposium, 6-8 June 1990 Pages:707-709, 1990.
[64] Low Frequency Hydrophone, Type8104 Datasheet, Bruel & Kjar.
[65] High Frequency Hydrophone, PZT 44-1000 Datasheet, ONDA.
[66] Hansch, R., Seifert S., Braue W., Sporn D., Muller G., “The effects of
PbO content upon the microstructure and the ferroelectric properties of
undoped sol-gel derived PZT(53/47) fibers”, Journal of the European
Ceramic Society Volume: 24, Issue: 8, July, pp. 2485-2497, 2004.
[67] Yukio Fukuda and Katsuhiro Aoki, “Effects of Excess Pb and Substrate
on Crystallization Processes of Amorphous Pb(Zr, Ti)O3 Thin Films
Prepared by RF Magnetron Sputtering”, Japanese journal of applied
physics, Vol. 36 Part1, No. 9B pp.5793-5798, 1997.
[68] Kim S.-H., Tai W.-P., “Relationship between cyclic loading and
degradation of piezoelectric properties in Pb(Zr,Ti)O3 ceramics” ,
Materials Science and Engineering: B, Volume: 38, Issue: 1-2, March,
pp. 182-185, 1996.
[69] K. G. Lee, “Simulation, Fabrication, and Characteristic Measurment
of Piezoelectric Ultrasound Transducer with Non-uniform Thickness”,
National Cheng Kong University, July, 1993.
[70] A. Dogan and K. Uchino, “Composite piezoelectric transducers with
truncated conical endcaps cymbals”, IEEE Trans. Ultrasonics,
Ferroelec. Freq. Cont., vol.44, pp.597-605, 1997.
[71] 盧平強, “鈦酸鉛鋯薄膜感音器之研製”, 國立臺灣海洋大學
電機工程研究所, 1995.
[72] R. E. Newnham and A. Dogan, “Metal-electroactive ceramic
composite transducer”, US Patent No 5,729,077, Mar. 17, 1998.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔