跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/30 21:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張國卿
研究生(外文):Guo-Qing Zhang
論文名稱:光流演算法於影像伺服機械臂之應用
論文名稱(外文):Application of Optical-Flow Algorithm in Visual-Servoing Manipulators
指導教授:吳政郎
指導教授(外文):Jenq-Lang Wu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:106
中文關鍵詞:機械臂視覺伺服控制系統角點偵測光流演算法分解速度控制比例控制器
外文關鍵詞:Robot armvisual servo control systemcorner detectionoptical-flow algorithmresolved motion rate control lawproportional controller
相關次數:
  • 被引用被引用:9
  • 點閱點閱:619
  • 評分評分:
  • 下載下載:106
  • 收藏至我的研究室書目清單書目收藏:0
本論文的目標在於設計一組影像回授之機械臂控制系統,我們使用眼在手模式進行機構的設計,並使用以影像為基準的視覺伺服作為影像回授的系統架構。我們以角點偵測法取得影像特徵點座標,再透過光流演算法計算該影像特徵點移動速度,然後回授給控制器以驅使一具四自由度的機械臂抓取目標物體。我們建立影像特徵點、攝影機與機械臂各軸之間的速度轉換關係式,並利用分解運動速度控制(resolved motion rate control)法則與比例控制器的架構設計機械臂的控制器。最後經由實驗驗證,此控制器可導引機械臂完成抓取目標物之目的。
The goal of this thesis is to design an eye-in-hand manipulator control system by the image-based visual servo (IBVS) approach. Firstly, we use the corner detection method to detect the feature points’ coordinates. Then, we calculate the velocities of the feature points by the optical-flow algorithm. Finally, the velocities of the feature points are feedback to the controller for updating control signal to drive a four-degree-of-freedom manipulator to grab the target object. We construct the velocity transfer matrices among image feature points, camera, and axles of manipulator. By using the resolved motion rate control law, a proportional controller is designed for the manipulator. The experiment verifies that the obtained controller is able to guide the manipulator to grab the target.
目錄
中文摘要.................................................Ⅰ
英文摘要.................................................Ⅱ
目錄.....................................................Ⅲ
圖目錄...................................................Ⅶ
表目錄...................................................XI
第一章 緒論...............................................1
1.1 研究背景與文獻回顧..................................1
1.2 研究動機與目的......................................5
1.3 章節說明...........................................6
第二章 影像伺服與機械臂運動原理..............................8
2.1 視覺伺服系統........................................8
2.1.1 視覺伺服的靜態與動態結構.....................8
2.1.2 視覺伺服系統的機器視覺......................10
2.1.3 視覺伺服的控制架構..........................12
2.2 特徵空間控制法則....................................14
2.2.1 控制流程...................................14
2.2.2 投影模型...................................15
2.2.3 影像特徵點與攝影機的速度轉換關係..............19
2.2.4 攝影機與機械臂的速度轉換關係.................22
2.3 末端作用器與機械臂基座的速度轉換關係..................24
2.3.1 剛體的運動.................................24
2.3.2 齊次座標轉換...............................27
2.3.3 D-H轉換矩陣...............................31
2.3.4 正向運動學.................................36
2.3.5 分解速度運動控制原理........................38
第三章 影像處理與光流演算法.................................40
3.1 影像處理...........................................40
3.1.1 像素座標...................................41
3.1.2 色彩模型...................................42
3.1.3 亮度與灰階處理.............................44
3.1.4 光流之基本概念.............................45
3.2 Lucas-Kanade光流演算法.............................48
3.3 Pyramidal Lucas-Kanade光流演算法...................52
第四章 控制器設計..........................................57
4.1 控制器設計流程.....................................57
4.2 影像特徵點與攝影機的速度轉換.........................59
4.3 攝影機與機械臂的速度轉換.............................60
4.4 機械臂各關節軸之間速度轉換...........................60
4.5 控制器設計.........................................69
第五章 系統整合與實驗結果...................................72
5.1 硬體介紹...........................................72
5.1.1 機械臂機構.................................72
5.1.2 馬達控制電路...............................75
5.1.3 視覺系統...................................81
5.2 影像特徵點擷取.....................................81
5.2.1 影像特徵點判定.............................82
5.2.2 攝影機參數校正.............................83
5.3 IBVS整合程式設計...................................85
5.3.1 程式設計工具...............................85
5.3.2 視覺伺服程式...............................87
5.3.3 視覺伺服程式使用說明........................88
5.4 實驗結果...........................................90
5.4.1 任務一、抓取固定的物體......................91
5.4.2 任務二、抓取移動中的物體.....................96
第六章 結論與未來展望.....................................100
6.1 結論.............................................100
6.2 未來展望..........................................101
參考資料 ................................................102

[1]Y. S. Peter, C. Müller and C. Zheng, “Global Asymptotic Saturated PID Control for Robot Manipulators,” IEEE Transaction on Control System Technology, vol. 18, pp. 1280-1288, 2010.

[2]D. Zhao, S. Li and F. Gao, “A New Terminal Sliding Mode Control for Robotic Manipulators,” International Journal of Control, vol. 82, pp. 9888-9893, 2008.

[3]A. A. G. Siqueira and M. H. Terra, “Neural Network-Based H_∞ Control for Fully Actuated and Underactuated Cooperative Manipulators,” Proceedings American Control Conference, vol. 17, pp. 3259-3264, 2007.

[4]S. E. Lyshevski , “Nonlinear Control of Advanced Direct Drive Robots: Theory and Experiments,” International Journal of Control, vol. 74, pp. 638-647, 2001.

[5]L. M. Capisani, T. Facchinetti and A. Ferrara , “Real-Time Networked Control of An Industrial Robot Manipulator via Discrete-Time Second-Order Sliding Modes,” International Journal of Control, vol. 83, pp. 1595-1611, 2010.

[6]J. Denavit and R. S. Hartengbart, “A Kinematic Notation for Lower Pair Mechanisms Based on Matrices,” Transactions of American Society Mechanical Eengineers, pp. 215-221, 1955.

[7]Y. Chen, L. Liu, M. Zhang and H. Rong, “Study on Coordinated Control and Hardware System of A Mobile Manipulator,” Proceedings of the 6th World Congress on Intelligent Control and Automation, pp. 9037-9041, 2006.

[8]S. B. Yang and W. A. Waston , “Micras, Mcrocomouter Interactive Codes for Robot Analysis and Simulation,” Mechanisms and Machine Theory, vol. 20, pp. 271-284, 1985.

[9]C. R. Rocha, C. P. Tonetto and A. Dias, “A Comparison Between the Denavit-Hartenbergand the Screw-Based Methods Used in Kinematic Modeling of Robot Manipulators,” Robotics and Computer-Integrated Manufacturing , vol. 27, pp. 723-728, 2011.

[10]T. Martinez-Marin and T. Duckett, “Robot Docking by Reinforcement Learning in A Visual Servoing Framework, ” Proceedings of IEEE Conference on Robotics, Automation and Mechatronics, vol. 1, pp. 159-164, 2004.

[11]T. Takahama, K. Nagatani and Y. Tanaka, “Motion Planning for Dual-Arm Mobile Manipulator - Realization of "Tidying A Room Motion",” Proceedings of IEEE International Conference on Robotics and Automation, vol. 5, pp. 4338-4343, 2004.

[12]S. Hutchinson, G. D. Hager and P. I. Corke, “A Tutorial on Visual Servo Control,” IEEE Transactions on Robotics and Automation, vol. 12, pp. 651-670, 1996.

[13]H. Wang , Y. H. Liu and W. Chen, “ Uncalibrated Visual Tracking Control Without Visual Velocity,” IEEE Transaction on Control System Technology, vol. 18, pp. 1359-1370, 2010.

[14]B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique with An Application to Stereo Vision,” Proceedings of Imaging Understanding Workshop, pp. 121-130, 1981.

[15]A. R. Acha and S. Peleg , “Lucas-Kanade Without Iterative Warping,” International Conference on Image Processing, pp. 1097-1100, 2006

[16]B. K. P. Horn and B. G. Shunck, “Determining Optical Flow”, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, vol 17, pp. 185-203, 1981.

[17]N. Bauer, P. Pathirana and P. Hodgson, “Robust Optical Flow with Combined Lucas-Kanade/Horn-Schunck and Automatic Neighbor -hood Selection,” International Conference on Information and Automation, pp. 378-383, 2006.

[18]J. Y. Bouguet, “ Pyramidal Implementation of The Lucas Kanade Feature Tracker Description of The Algorithm,” Intel Corporation Microprocessor Research Labs, 1999.

[19]J. J. Craig, “Introduction to Robotics: Mechanics & Control,” Addison-Wesley, 1989.

[20]L. W. Tsai, ”Robot Analysis - The Mechanics of Serial and Parallel Manipulator,” Wiley Interscience, 2005.

[21]S. B. Niku, “Introduction to Robot-Analysis, Systems, Application,” Prentice Hall, 2004.

[22]R. P. Paul, “Robot Manipulators: Mathematics Programming and Control,” The Massachusetts of Institute of Technology, 1981.

[23]MG995 Data sheet, HITEC Inc,2006.
Download: http://roboeq.com/PDF/0102002.pdf

[24]PIC18F4580 Data sheet, Microchip Technology Inc, 2004.
Download: http://www.kip.uni- heidelberg.de/tip/root/img/pool/practices/quadrocopter/doc/pic18.pdf

[25]HIN232 Data sheet, Intersil Inc, 2004.
Download:http://www.hobbyengineering.com/specs/INTERSIL-HIN232.pdf

[26]OpenCV Reference Manunal v2.1, 2010.
Download:http://www.comp.nus.edu.sg/~cs4243/doc/opencv.pdf

[27]陳偉海、陳泉柱、張建斌、張穎,“線驅動擬人臂機器人逆向運動學分析,” Chinese Journal of Mechanical Engineering, vol.4, pp. 14-21, 2007.

[28]葉忠憲, “移動式機械臂之抓物控制設計,” 國立交通大學電機工程學系碩士論文, 2006。

[29]黃志鴻, “機器手臂式覺抓取系統,” 國立中正大學機電光整合工程研究所碩士論文, 2003。

[30]周敬堯, “自主式視覺伺服搬運車,” 國立台灣海洋大學電機工程學系碩士論文, 2006。

[31]張宜平, “利用3D視覺之機械手演空演算法,” 國立彰化師範大學電機工程系碩士論文,2006。

[32]陳俊豪, “高黏度流體於點膠機構定位噴印之研究,” 國立成功大學航空太空工程系所碩士論文,2008。

[33]洪曉鵬,“Introduction to Lucas-Kanade Algorithm,” 哈爾濱工業大學, 2008。

[34]郭尚君, “精通MFC視窗程式設計-Visual Studio 2010版,”松崗出版, 2010。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top