(3.235.191.87) 您好!臺灣時間:2021/05/13 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:劉文懋
研究生(外文):Wen-Mao Liu
論文名稱:雙向降升壓式電池電源模組串聯之雙向電量平衡電路
論文名稱(外文):Bidirectional Charge Equalization Circuit for Series-Connected Battery Power Modules of the Bidirectional Buck-Boost Converter
指導教授:李榮乾李榮乾引用關係
指導教授(外文):Jung-Chien Li
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:85
中文關鍵詞:電池電源模組雙向降升壓式轉換器電池組串聯平衡充電平衡放電同步整流平均相位移
外文關鍵詞:battery power module(BPM)bidirectional buck-bust converterseries-connected batterybalance chargingbalance dischargingsynchronous rectificationaverage phase-shift
相關次數:
  • 被引用被引用:7
  • 點閱點閱:307
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本論文針對串聯電池電源模組提出以雙向降升壓式轉換器為基礎的雙向電量平衡電路架構,模組中的雙向降升壓式轉換器有兩種運作模式:充電時降壓模式、放電時升壓模式,藉由調整各個模組轉換器的導通率,控制各個電池電量輸入或輸出的大小,達到雙向電量平衡的目的。此電路架構不僅同時具有平衡充電與放電的功用,節省了設計電路時所需要的空間,且電池模組可個別獨立運轉,使控制上具有彈性、保護裝置簡單、系統可靠度高及電池管理機制容易實現。
本文導入同步整流技術,解決了轉換器運作時二極體導通損耗的問題,使模組轉換效率提高;並於放電過程中加入平均相位移控制手法,降低輸出電壓漣波。最後利用電路模擬軟體IsSpice進行模擬一個由三組3.7V鋰電池模組串聯所組成的雙向降升壓式電池電源模組之雙向電量平衡電路,經由模擬實驗結果分析,驗證此雙向電量平衡電路架構之可行性。
Abstract
A bidirectional charge equalization circuit based on a bidirectional buck-boost converter topology is proposed to achieve the balance charging and discharging in series-connected battery power modules. The bidirectional buck-boost converter of the module operates at two operation modes: buck mode when charging、boost mode when discharging. The input or output charge magnitude of each battery is controlled by regulating the duty ratio of the converter among the modules to provide the balance charging or discharging. This circuit not only has the functions of charge equalization, but also saves space for designing. Modules of the battery can be operated individually that makes flexible control、simple protection device、high system reliability and easy battery management.
This thesis introduces the technique of synchronous rectification to decrease the diode conduction power loss of the converter operation, and to improve the converter efficiency. To reduce the output voltage ripple, we use the method of the average phase-shift when discharging. Finally, IsSpice is used to simulate the bidirectional charge equalization circuit with three series connected bidirectional buck-boost 3.7V Li-ion battery power modules. The analysis results of the simulation demonstrate the applicability of the proposed approach.
目 錄
摘 要 i
Abstract ii
目 錄 iv
圖 目 錄 vi
表 目 錄 x
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 3
1-3 論文大綱 4
第二章 電池串並聯應用與平衡充放電 5
2-1 二次電池 5
2-2 電池串並聯應用 9
2-3 串聯電池組電量平衡及影響 10
2-4 雙向電量平衡電路的探討 15
2-5 雙向DC/DC轉換器的電路分析 22
第三章 雙向降升壓式電池電源模組串聯雙向運作架構 26
3-1 雙向降升壓DC/DC轉換器工作原理 27
3-2 同步整流技術 29
3-3 平均相位移控制 31
3-4 同步整流Boost模式電池電源模組放電 33
3-4-1 CCM運轉 37
3-4-2 DCM運轉 39
3-5 同步整流Buck模式電池電源模組充電 41
3-5-1 CCM運轉 46
3-5-2 DCM運轉 48
第四章 IsSpice電路模擬與分析 51
4-1 電池等效電路 51
4-2 Boost放電模式分析 55
4-2-1 CCM運轉 55
4-2-2 DCM運轉 60
4-3 Buck充電模式分析 64
4-3-1 CCM運轉 64
4-3-2 DCM運轉 69
第五章 結論與未來研究方向 73
5-1 結論 73
5-2 未來研究方向 74
參考文獻 75
參考文獻
[1] 許琇玲,“溫室效應導致氣候變遷之相關認知.態度與行為意向調查研究”,國立高雄師範大學環境教育研究所碩士論文,2006年6月。
[2] United Nations Framework Convention on Climate Change, “KyotoProtocol”, Dec. 1997.
[3] United Nations Framework Convention on Climate Change, “Copenhagen Accord”, Jan. 2010.
[4] W. G. Hurley, Y. S. Wong, and W. H. Wolfle, “Self-equalization of cell voltages to prolong the life of VRLA batteries,” IEEE Transactions on Industry Electronics, Vol. 56, NO. 6, pp. 2115-2120. June 2009.
[5] A. C. Baughman and M. Ferdowsi, “Double-tiered switched-capacity battery charge equalization technique,” IEEE Transactions on Industry Electronics, Vol. 55, NO. 6, pp. 19-21. June 2008.
[6] H. S. Park, C. E. Kim, J. H. Lee, and J. K. Oh, “Charge equalization with series coupling of multiple primary windings for hybrid electric vehicle Li-ion battery system,” in Proc. PESC, June 2007, pp. 266-272.
[7] Z. G. Kong, C. B. Zhu, R. G. Lu, and S. K. Cheng, “Comparison and evaluation of charge equalization technique for series connected batteries,” in Proc. PESC, June 2007, pp.1-6.
[8] Y. S. Lee and M. W. Cheng, “Intelligent control battery equalization for series connected Lithium-ion battery strings,” IEEE Transactions on Industry Electronics, Vol. 52, NO. 5, pp. 1297-1307. October 2005.
[9] P. T. Krein, S. West, and C. Papenfuss, “Equalization Requirements for Series VRLA Batteries,” Annual Battery Conference on Applications and Advances, 2001, pp. 125-130.
[10] S. West and P. T. Kerin, “Equalization of Valve-Regulated Lead-Acid Batteries: Issues and Life Test Results,” International Telecommunications Energy Conference, 2000, pp. 439-446.
[11] B. Dickinson and J. Gill, “Issues and Benefits with Fast Charging Industrial Batteries,” Battery Conference on Applications and Advances, 2000, pp. 223-229.
[12] H. Oman, “Battery Developments that will make Electric Vehicles Practical,” IEEE Aerospace & Electronics Systems Magazine, Vol. 1, Issue 8, August 2000, pp. 11-21.
[13] T. B. Gage, “Lead-acid batteries: key to electric vehicle commercialization; Experience with design, manufacture, and use of EVs,” in Proc. BCAA, January 2000, pp. 217-222.
[14] H. Oman, “Making Batteries Last Longer,” IEEE Aerospace & Electronics Systems Magazine, Vol. 14, Issue 9, September 1999, pp. 19-21.
[15] C. C. Chan and K. T. Chau, “An Overview of Electric Vehicles-Challenges and Opportunities,” IEEE Industrial Electronics Control, IECON 1996, Vol. 1, August 1996, pp. 1-6.
[16] H. S. Park, C. E. Kim, C. H. Kim, G. W. Moon, and J. H. Lee, “A modularized charge equalizer for an HEV lithium-ion battery string,” IEEE Trans. Ind. Electron., vol. 56, no. 5 pp. 1464-1476, May 2009.
[17] M. B. Camera, F. Gustin, H. Gualous, and A. Berthon, “Energy management strategy for coupling supercapacitors and batteries with DC-DC converters for hybrid vehicle applications,” in Proc. IEEE. EPE-PEMC, Sep. 2009, pp. 1542-1547.
[18] Z. Nie, and M. C, “Fast battery equalization with isolated bidirectional DC-DC converter for PHEV applications,” in Proc. IEEE VPPC, Sep. 2009, pp. 78-81.
[19] X. F. Wang, S. Y. Yang, N. J. Park, K. J. Lee, and D. S. Hyun, “A three-port bidirectional modular circuit for li-on battery strings charge/discharge equalization applications,” in Proc. IEEE. PESC, June 2008, pp. 4695-4698.
[20] C. H. Kim, H. S. Park, and G. W. Moon, “A modularized two-stage charge equalization converter for series connected lithium-ion battery strings in an HEV,” in Proc. IEEE PESC, June 2008, pp. 992-997.
[21] M. X. Zheng, B. J. Qi, and H. J. Wu, “A li-ion battery management system based on CAN-bus for electric vehicle,” in Proc. IEEE ICIEA, June 2008, pp. 1180-1184.
[22] 洪瑋,“串聯電源模組之電池平衡充電”,國立中山大學電機工程研究所碩士論文,2010年7月。
[23] 胡錦欣,“電池電源模組之輸出串聯運轉”,國立中山大學電機工程研究所碩士論文,2009年7月。
[24] C. S. Moo, K. S. Ng, and J. S. Hu, “Operation of battery power modules with series output,” in Proc. IEEE ICIT, Feb. 2009, pp. 1-6.
[25] C. S. Moo, K. S. Ng, and Y. S. Hsieh, “Parallel operation of battery power modules,” IEEE Trans. Energy Convers., vol. 23, no. 2, pp. 701-707, June 2008.
[26] “二次電池”,台灣立凱電能科技股份有限公司。
[27] “財經百科”,MoneyDJ理財網。
[28] 賴世榮,“智慧型鋰離子電池殘存電量估測之研究”,國立中山大學電機工程研究所碩士論文,2004年10月。
[29] H. S Ben, J. M. Lee, H. S. Mok, and G. H. Choe, “Load sharing improvement in parallel-operated lead acid batteries,” in Proc. ISIE, June 2001, Vol. 2, pp. 1026-1031.
[30] H. X. Shen, W. L. Zhu, and W. X. Chen “Charge equalization using multiple winding magnetic model for lithium-ion battery string,” in Proc. IEEE APPEC, March 2010, pp. 1-4.
[31] H. X. Shen, W. L. Zhu, and W. X. Chen, “Charge equalization for series connected lithium-ion batteries,” in Proc. IEEE ICEMI, Aug. 2009, vol. 4, pp. 1032-1037.
[32] Y. H. Zhang, J. G. Li, J. Lin, and J. F. Ge, “A charging equalization circuit with odd and even module for li-ion series-connected batteries,” in Proc. IEEE AICI, Nov. 2009, vol. 1, pp. 553-557.
[33] M. Chen, Z. Zhang, Z. M. Feng, J. J. Chen, and Z. M. Qian, “An improved control strategy for the charge equalization of lithium ion battery,” in Proc. IEEE APEC, Feb. 2009, pp. 186-189.
[34] F. Wen, J. C. Jiang, W. G. Zhang, and H. P. Guo, “Research on the charge mode of series-connected batteries,” in Proc. IEEE VPPC, Sep. 2008, pp. 1-5.
[35] Y. C. Hsieh, S. P. Chou, and C. S. Moo, “Balance discharge for series-connected batteries,” in Proc. IEEE PESC, June 2004, Vol. 4, pp. 2697-2702.
[36] B. Lindemark, “Individual Cell Voltage Equalizer(ICE) for Reliable Battery Performance,” International Telecommunications Energy Conference, INTELEC 1991, November 1991, pp. 196-201.
[37] G. A. Kobzev, “Switched-Capacitor Systems for Battery Equalization,” Modern Techniques and Technology, MTT 2000, March 2000, pp. 57-59.
[38] C. Pascual and P. T. Krein, “Switch Capacitor System for Automatic Series Battery Equalization,” IEEE Applied Power Electronics Conference and Exposition, APEC 1997, Vol. 2, February 1997, pp. 848-854.
[39] C. S. Moo, Y. C. Hsieh, and S. P. Chou, “Balance Discharging for Series-Connected Batteries,” IEEE Power Electronics Specialists Conference, PESC 2004, pp. 2697-2702.
[40] N. H. Kutkut, H. L. N. Wiegman, D. M. Divan, and D. W. Novotny, “Design Considerations for Charge Equalization of an Electric Vehicle Battery System,” IEEE Trans. On Industry Applications, Vol. 35, No. 1, January/February 1999, pp. 28-35.
[41] H. Sakamoto, K. Murata, E. Sakai, K. Nishijima, K. Harada, S. Taniguchi, K. Yamasaki, and G. Ariyoshi “Balanced Charging of Series Connected Battery Cells,” International Telecommunications Energy Conference, INTELEC 1998. pp. 311-315.
[42] N. H. Kutkut, H. L. N. Wiegman, D. M. Divan, and D. W. Novotny, “Charge Equalization for an Electric Vehicle Battery System,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 34, No. 1, January 1998, pp. 235-245.
[43] N. H. Kutkut, “Nondissipative Current Diverter Using a Centralized Multi-winding Transformer,” IEEE Power Electronics Specialists Conference, PESC 1997, Vol. 1, June 1997, pp. 648-654.
[44] H. Leung, “Equalization of EV and HEV Batteries with a Ramp Converter,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 33, No. 1, Jane 1997, pp. 307-311.
[45] S. T. Hung, D. C. Hopkins, and C. R. Mosling, “Extension of Battery Life via Charge Equalization Control,” IEEE Trans. On Industrial Electronics, Vol. 40, No. 1, February 1993, pp. 96-104.
[46] N. H. Kutkut, H. L. N. Wiegman, D. M. Divan, and D. W. Novotny, “Charge Equalization for Series Connected Battery Strings,” IEEE Trans. On Industry Application, Vol. 31, No. 3, May/June 1995, pp. 562-568.
[47] C. Karnjanapiboon, Y. Rungruengphalanggul, and I. Boonyaroonate, “The Low Stress Voltage Balance Charging Circuit for Series Connected Batteries Based on Buck-Boost Topology,” International Symposium on Circuit and Systems ISCAS 2003, Vol. 3, May 2003, pp. 284-287.
[48] Y. S. Lee, M. W. Chen, K. L0 Hsu, J Y. Du, and C. F. Chuang, “Cell Equalization Scheme with Energy Transferring Capacitance for Series Connected Battery Strings,” IEEE Conference on Computers, Communications, Control and Power Engineering TENCON 2002, Vol. 3, October 2002, pp. 2042-2045.
[49] M. Tang and T. Stuart, “Selective Buck-Boost Equalizer for Series Battery Packs,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 36, No. 1 Jane 2000, pp. 201-211.
[50] Z. Ye and T. A. Stuart, “Sensitivity of a Ramp Equalizer for Series Batteries,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 34, No. 4, October 1998, pp. 1227-1236.
[51] N. H. Kutkut, “A Modular Nondissipative Current Diverter for EV Battery Charge Equalization,” Applied Power Electronics Conference and Exposition APEC 1998, Vol. 2, February 1998, pp. 686-690.
[52] D. C. Hopkins, C. R. Mosling, and S. t. Hung, “Dynamic Equalization During Charging of Serial Energy Storage Elements,” IEEE Trans. On Industry Applications, Vol. 29, No. 2, March/April 1993, pp. 363-368.
[53] C. S. Moo, Y. C. Hsieh, I. S. Tsai, and J. C. Cheng, “Dynamic Charge Equalization for Series-Connected Batteries,” IEEE Proceedings Electric Power Application, Vol. 150, No. 5, September 2003, pp. 501-505.
[54] C. S. Moo, Y. C. Hsieh, and I. S. Tsai, “Charge Equalization for Series-Connected Batteries,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 39, No. 2, April 2003, pp. 704-710.
[55] H. Shibata, S. Taniguchi, K. Adachi, K Yamasaki, G. Ariyoshi, K. Kaeata, K. Nishijima, and K. Harada, “Management of Serially-Connected Battery System Using Multiple Switches,” International Conference on Power Electronics and Drive Systems, PEDS 2001, Vol. 2, October 2001, pp. 508-511.
[56] 陳志霖,“同步整流雙向直流-直流轉換器之研製”,國立臺灣海洋大學電機工程研究所碩士論文,2010年6月。
[57] 林立韋,“用於燃料電池電源系統之雙向直流/直流轉換器”,中原大學電機工程研究所博士論文,2006年6月。
[58] 秋煌仁,“燃料電池車用高效能轉換系統之關鍵技術研究”,國科會計畫編號:NSC 94-2213-E-033-045,2005年。
[59] Peng, F. Z., Hui Li; Gui-Jia Su, Lawler, J. S., “A new ZVS bidirectional DC-DC converter for fuel cell and battery application,” IEEE Transactions on Power Electronics, pp. 54-65, 2004.
[60] 洪裕桓,“智慧型鋰電池管理系統之研製”,國立中山大學電機工程研究所碩士論文,2005年6月。
[61] H. L. Chan, “A new battery model for use with battery energy storage systems and electric vehicles power systems,” IEEE Power Engineering Society, Vol. 1, pp. 470-475, 2000.
[62] 梁適安,“交換式電源供給器之理論與實務設計(修定版)”,全華圖書股份有限公司,2008年9月。
[63] 歐陽文億,“串聯電池組雙向電量平衡電路”,國立中山大學電機工程研究所碩士論文,2005年6月。
[64] 鄭明憲,“具及時監控雙向並聯直流轉換器之研製”,國立成功大學電機工程研究所碩士論文,2005年6月。
[65] 藍信章,“鋰電池防爆技術已成熟,爆炸事件可見平息”,宜電電池科技股份有限公司,2004年2月。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔