(3.92.96.236) 您好!臺灣時間:2021/05/07 01:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃宣豪
研究生(外文):Syuan-Hao Huang
論文名稱:分子束磊晶氧化鋅鎂薄膜成長於藍寶石基板之光學特性研究
論文名稱(外文):Optical characterization of ZnMgO thin films on sapphire substrate grown by molecular beam epitaxy
指導教授:程光蛟黃鶯聲
指導教授(外文):Kwong-Kau TiongYing-Sheng Huang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:87
中文關鍵詞:氧化鋅氧化鋅鎂薄膜二六族半導體
外文關鍵詞:ZnMgO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文中,我們主要以光激發螢光光譜(photoluminescence, 簡稱PL)、無接點電場調製反射光譜(contactless electroerflectance, 簡稱CER)量測技術探討不同鎂(magnesium)成分的氧化鋅鎂(ZnMgO)薄膜(thin film)之光學特性。所有量測樣品ZnMgO係利用分子束磊晶(molecular beam epitaxy, 簡稱MBE)成長於藍寶石 (Al2O3)基板(0001)之上。
從PL實驗結果中,可以觀察在緩衝層的鎂成份較小的氧化鋅鎂的峰值位置(peak position),以及薄膜層的鎂成份較大的氧化鋅鎂的峰值位置;而且隨著摻雜濃度增加藍移(blue shift);在溫度相依之PL實驗結果中,吾人發現因為侷限效應造成樣品表面不均勻,產生峰值強度隨著溫度上升有S型的峰值位置變化。
從CER實驗結果中,吾人可以觀察到纖維鋅礦(wurtzite)結構的spin-orbit splitting造成氧化鋅鎂的價帶分裂的能階訊號、緩衝層的氧化鋅鎂/氧化鋅訊號,另外還可以發現價帶的分裂量會隨著摻雜鎂成份越大,分裂量越多,而且往更高能量移動。
最後吾人利用經過驗證的能隙與成分的關係運算式計算調製反射光譜的能隙位置算出樣品摻雜鎂成份的多寡。


Ternary Zn1-XMgXO alloy (ZnMgO) is one of the promising candidates for low-cost electronic and optoelectronic devices, including light emitting devices (LED) and high electron mobility transistors (HEMT). From recent optical studies of Zn1-XMgXO alloy system, the energy of the fundamental band-to-band transition was found to be strongly blue shifted with increasing magnesium (Mg) content.
In this work, we present a comprehensive study of temperature dependent photoluminescence (PL) and contactless electroerflectance (CER) characteristics of Zn1-XMgXO thin films grown by plasma-assisted molecular beam epitaxy using sapphire (0001) as the substrate. At low temperature, PL spectra showed the enhanced near-band edge emission caused by localized excitons in ZnMgO. Analyzing the CER spectra, the band edge transition energies and the spin-orbit splitting of ZnMgO thin films were determine precisely. In addition, temperature dependence of PL and CER characteristics were extracted from the fitting curves of PL and CER spectra. The parameters that describe the temperature dependent excitonic transition energies were evaluated and discussed.

摘 要 I
Abstract III
致謝 IV
第一章 緒論 1
1.1研究背景 1
1.2研究目的與方法 3
第二章 樣品結構與介紹 5
2.1氧化鋅發光特性 5
2.2樣品成長方法及介紹 6
2.2.1 MBE基本介紹 6
2.2.2樣品基本介紹 10
2.2樣品結構資訊 17
第三章 調制光譜理論及量測技術 18
3.1調制光譜相關理論 18
3.1.1 前言 18
3.1.2 反射率與介電函數之關係 19
3.1.3 電場調制與擬合(fitting) 21
3.2調制光譜量測技巧 24
3.2.1調制光譜量測 24
3.3調制光譜系統概述 25
3.4 光激發螢光光譜量測 32
3.4.1 光激發螢光光譜原理 32
3.4.2 PL實驗方法與系統架構 33
第四章 結果與討論 38
4.1 光激發螢光(PL)實驗結果分析 38
4.2 室溫下PL、CER與PR的實驗結果與成份計算 53
4.3 CER之溫度相依性實驗結果討論 61
4.4 PL與CER之溫度相依性實驗結果比較 78
第五章 結論 82
參考文獻 84

[1] T. Makino, Y. Segawa, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Photoexcitation screening of the built-in electric field in ZnO single quantum wells, ” Appl. Phys. Lett., Vol. 93, 121907, 2008.

[2] U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices, ” J. Appl. Phys., Vol. 98, 041301, 2005.

[3] C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, and H. K. Cho, “A comparative analysis of deep level emission in ZnO layers deposited by various methods, ” J. Appl. Phys., Vol. 105, 013502, 2009.

[4] N. Vico Triviño, G. Rossbach, U. Dharanipathy, J. Levrat, A. Castiglia, J. F. Carlin, K. A. Atlasov, R. Butté, R. Houdré, and N. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate, ” Appl. Phys. Lett., Vol. 100, 071103, 2012.

[5] Y. W. Heo, M. Kaufman, K. Pruessner, D. P. Norton, F. Ren, M. F. Chisholm, and P. H. Fleming, “Optical properties of Zn1−xMgxO nanorods using catalysis-driven molecular beam epitaxy, ” Solid-State Electronics, Vol. 47, pp. 2269-2273, 2003.

[6] O. Lopatiuk, W. Burdett, L. Chernyak, K. P. Ip, Y. W. Heo, D. P. Norton, S. J. Pearton, B. Hertog, P. P. Chow, and A. Osinsky, “Minority carrier transport in p-type Zn0.9Mg0.1O doped with phosphorus, ” Appl. Phys. Lett., Vol. 86, 012105, 2005.

[7] H. S. Yang, Y. Li, D. P. Norton, K. Ip, S. J. Pearton, S. Jang, and F. Ren, “Low-resistance ohmic contacts to p-ZnMgO grown by pulsed-laser deposition, ” Appl. Phys. Lett., Vol. 86, 192103, 2005.

[8] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1−xO as a II–VI widegap semiconductor alloy, ” Appl. Phys. Lett., Vol. 72, 2466, 1998.

[9] I. Takeuchi, W. Yang, K. S. Chang, M. A. Aronova, T. Venkatesan, R. D. Vispute, and L. A. Bendersky, “Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1−xO composition spreads, ” J. Appl. Phys., Vol. 94, 7336, 2003.

[10] T. C. He, R. Chen, W. W. Lin, F. Huang, and H. D. Sun, “Two-photon-pumped stimulated emission from ZnO single crystal, ” Appl. Phys. Lett., Vol. 99, 081902, 2011.

[11] R. Schmidt, B. Rheinländer, M. Schubert, D. Spemann, T. Butz, J. Lenzner, E. M. Kaidashev, M. Lorenz, A. Rahm, H. C. Semmelhack, and M. Grundmann, “Dielectric functions (1 to 5 eV) of wurtzite MgxZn1−xO (x≤0.29) thin films, ” Appl. Phys. Lett., Vol. 82, 2260, 2003.

[12] B. O. Seraphin , “The Effect of an Electric Field on Reflectivity of Germanium”, Proc. 7th Int. Conf. Phys. Semicond., ed. By M. Hulin, Academic, Dunod, Paris , 1964.

[13] R. L. Tober, A. L. Smirl, and T. F. Boggess, “Piezo-reflectance as a Supplement to Photoreflectance for Nondestructive Characterization of GaAs/AlxGa1-xAs Multiple Quantum Wells”, J. Appl. Phys., Vol. 64, No. 9, pp. 4678-4682 , 1988.

[14] H. Shen, M. Dutta, and R. Lux, “Dynamics of Photoreflectance form Undoped GaAs”, Appl. Phys. Lett., Vol. 59, No. 3, pp. 321-323 , 1991.



[15] H. Shen, M. Dutta, and R. Lux, “Dynamics of Photoreflectance form Undoped GaAs”, Appl. Phys. Lett., Vol. 59, No. 3, pp. 321-323 , 1991.

[16] H. Shen, P. Parayanthal, Y. F. Lin, and F. H. Pollak, “New Normalization Procedure for Modulation Spectroscopy”, Rev. Sci. Instrum., Vol. 58, No. 8, pp. 1429-1432 , 1987.

[17] Y. Tian, X. Ma, D. Li, and D. Yang, “Electrically pumped ultraviolet random lasing from heterostructures formed by bilayered MgZnO films on silicon, ” Appl. Phys. Lett., Vol. 97, 061111, 2010.

[18] T. A. Wassner, B. Laumer, M. Althammer, S. T. B. Goennenwein, M. Stutzmann, M. Eickhoff, and M. S. Brandt, “Electron spin resonance of Zn1−xMgxO thin films grown by plasma-assisted molecular beam epitaxy, ” Appl. Phys. Lett., Vol. 97, 092102, 2010.

[19] D. O. Dumcenco, S. Levcenco, Y. S. Huang, C. L. Reynolds, J. G. Reynolds, K. K. Tiong, T. Paskova, and K. R. Evans, “Characterization of freestanding semi-insulating Fe-doped GaN by photoluminescence and electromodulation spectroscopy, ” J. Appl. Phys., Vol. 109, 123508, 2011.

[20] J.-G. Yoon, S. W. Cho, E. Lee, and J. S. Chung, “Characteristics of indium-tin-oxide Schottky contacts to ZnMgO/ZnO heterojunctions with band gap grading, ” Appl. Phys. Lett., Vol. 95, 222102, 2009.

[21] R. Ghosh and D. Basak, “Composition dependent ultraviolet photoresponse in MgxZn1−xO thin films, ” J. Appl. Phys., Vol. 101, 113111, 2007.

[22] K. Yoshino, S. Oyama, and M. Yoneta, “Structural, optical and electrical characterization of undoped ZnMgO film grown by spray pyrolysis method, ” Journal of Materials Science: Materials in Electronics, Vol. 19, pp. 203-209, 2007.

[23] A. L. Yang, H. P. Song, D. C. Liang, H. Y. Wei, X. L. Liu, P. Jin, X. B. Qin, S. Y. Yang, Q. S. Zhu, and Z. G. Wang, “Photoluminescence spectroscopy and positron annihilation spectroscopy probe of alloying and annealing effects in nonpolar m-plane ZnMgO thin films, ” Appl. Phys. Lett., Vol. 96, 151904, 2010.

[24] B. Pécz, A. El-Shaer, A. Bakin, A. C. Mofor, A. Waag, and J. Stoemenos, “Structural characterization of ZnO films grown by molecular beam epitaxy on sapphire with MgO buffer, ” J. Appl. Phys., Vol. 100, 103506, 2006.

[25] M. Trunk, V. Venkatachalapathy, A. Galeckas, and A. Y. Kuznetsov, “Deep level related photoluminescence in ZnMgO, ” Appl. Phys. Lett., Vol. 97, 211901, 2010.

[26] R. D. Schmidt-Grund, A. Carstens, B. Rheinländer, D. Spemann, H. Hochmut, G. Zimmermann, M. Lorenz, M. Grundmann, C. M. Herzinger, and M. Schubert, “Refractive indices and band-gap properties of rocksalt MgxZn1−xO (0.68≤x≤1), ” J. Appl. Phys., Vol. 99, 123701, 2006.

[27] G. T. Dang, H. Kanbe, T. Kawaharamura, and M. Taniwaki, “Pulsed laser excitation power dependence of photoluminescence peak nergies in bulk ZnO, ” J. Appl. Phys., Vol. 110, 083508, 2011.

[28] C. H. Chia, J. N. Chen, and Y. M. Hu, “Photoluminescence due to inelastic exciton-exciton scattering in ZnMgO-alloy thin film, ” Appl. Phys. Lett., Vol. 99, 131908, 2011.

[29] S. K. Mohanta, A. Nakamura, and J. Temmyo, “Nitrogen and copper doping in MgxZn1−xO films and their impact on p-type conductivity, ” J. Appl. Phys., Vol. 110, 013524, 2011.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔