(3.238.96.184) 您好!臺灣時間:2021/05/10 08:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:劉韋宏
研究生(外文):Wei-Hung Liu
論文名稱:應用於WLAN / WiMAX平面天線之設計
論文名稱(外文):Design of Planar Antennas for WLAN / WiMAX Applications
指導教授:程光蛟孫卓勳孫卓勳引用關係
指導教授(外文):Kwong-Kau TiongJwo-Shiun Sun
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:75
中文關鍵詞:微帶線饋入共平面波導平面天線
外文關鍵詞:Microstrip line-fedCoplanar WaveguidePlanar Antenna
相關次數:
  • 被引用被引用:1
  • 點閱點閱:156
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出兩支應用於WLAN / WiMAX操作頻帶之天線,研究之天線皆使用FR4板材的簡單結構。首先提出一共平面波導饋入天線,使用4根枝狀結構,分別控制其共振模態達到阻抗匹配,量測頻寬範圍分別2.35~2.81GHz、3.3~3.87GHz 及5.02~6.11GHz,涵蓋的頻段符合WLAN ( IEEE 802.11 a/b/g ) 與WiMAX ( IEEE 802.16x )系統的要求。另提出以微帶線饋入之平面天線設計與分析,此天線之金屬輻射面是使用環型的方式設計,並且在中間加入U型殘段一起激發三個模態,利用接地面的截角和開槽,改善高頻的阻抗匹配。實際量測頻寬範圍分別涵蓋2.33~2.75GHz及3.26~6.05GHz,也都符合WLAN與WiMAX所規範的頻段,且於各頻段皆有全向性輻射場型。
In this thesis, we have proposed two types of antennas for WLAN / WiMAX applications. Both designs were fabricated on FR4 substrates with simple structure. The first proposed antenna fed by a CPW line consists of a four-branch structure which control the resonant modes to achieve good impedance match. The designed antenna depicted return loss of 10 dB for the entire bandwidth range from 2.35~2.81 GHz, 3.3~3.87 GHz, and 5.02~6.11 GHz. The covering frequency bands conform to the specification of WLAN ( IEEE 802.11a/b/g ) and WiMAX ( IEEE 802.16x ) applications. The second planar antenna fed by a microstrip line consists of a ring and U-shaped strip to excite three resonant modes. Bevel edge and slot on the ground plane have been constructed to improve impedance matching at higher frequency. The second designed also exhibit return loss of 10 dB for the entire bands of 2.33~2.75 GHz and 3.26~6.05 GHz, conforming to the requirement of WLAN/ WiMAX. The radiation patterns of both antenna designs show omni-directional characteristic in the operation bands.
中文摘要 i
英文摘要 ii
誌謝 iii
文字目錄 iv
圖形目錄 vii
表格目錄 xi
第一章 序論 ( Introduction )
1.1 研究背景 1
1.2 研究動機與目的 4
1.3 文獻回顧 5
1.4 內容提要 6
第二章 天線基礎理論
2.1 偶極天線 ( Dipole Antenna ) 8
2.2 單極天線( Monopole Antenna ) 13
2.3 迴路天線 (Loop Antenna) 16
2.4 極化(Polarization) 18
2.5 電壓駐波比(VSWR) 19
第三章 應用於WLAN/WiMAX之多頻帶單極天線設計 ( Design of Multi-band Monopole Antenna for WLAN / WiMAX Applications)
3.1 天線設計 20
3.2 結果與討論 24
3.3 天線結構之參數分析 36
3.3.1 多頻帶單極天線隨W1參數變化 36
3.3.2 多頻帶單極天線隨W3參數變化 37
3.3.3 多頻帶單極天線隨W4參數變化 38
3.3.4 多頻帶單極天線隨L2參數變化 39
3.3.5 多頻帶單極天線隨Lg參數變化 40
3.3.6 多頻帶單極天線隨g參數變化 41
第四章 應用於WLAN/WiMAX之對稱型單極天線設計 ( Design of Symmetrical Monopole Antenna for WLAN / WiMAX Applications)
4.1 天線設計 43
4.2 結果與討論 47
4.3 天線結構之參數分析 57
4.3.1 相似結構之探討 57
4.3.2 對稱型單極天線隨W1參數變化 59
4.3.3 對稱型單極天線隨L2參數變化 60
4.3.4 對稱型單極天線隨W4參數變化 61
4.3.5 對稱型單極天線隨Ws參數變化 62
4.3.6 對稱型單極天線隨a參數變化 63
第五章 結論 ( Conclusion ) 65
參考文獻 ( References ) 67

[1] S. Xiaodi, “Small CPW-fed triple band microstrip monopole antenna for WLAN applications,” Microw. Opt. Technol. Lett., vol. 51, no. 3,pp. 747–749, 2009.
[2] H. Ma, Q. X. Chu and Q. Zhang, “Compact dual-band printed monopole antenna for WLAN application,” Electron. Lett., vol. 44, pp. 834-835, July 2008.
[3] A. M. Abbosh and M. E. Bialkowski, “Design of ultrawideband planar monopole antennas of circular and elliptical shape,” IEEE Trans. Antennas Propagat., vol. 56, pp. 17-23, Jan. 2008.
[4] X. S. Yang, K. T. Ng, S. H. Yeung and K. F. Man, “Jumping genes multiobjective optimization scheme for planar monopole ultrawideband antenna,” IEEE Trans. Antennas Propagat., vol. 56, pp. 3659-3666, Dec. 2008.
[5] S.W. Su and J. H. Chou, “Compact coaxial-line-fed flat-plate dipole antenna for WLAN applications,” Microwave Opt. Technol. Lett., vol. 50, pp. 420-422, Feb. 2008.
[6] R. Eshtiaghi, J. Nourinia, and C. Ghobadi, “Electromagnetically coupled band-notched elliptical monopole antenna for UWB applications, ”IEEE Trans. Antennas Propag., vol. 58, no. 4, pp. 1397–1402, Apr. 2010.
[7] M. Ojaroudi, Sh. Yzdanifard, N. Ojaroudi, and M. Nasser- Moghaddasi, “Small square monopole antenna with enhanced by usinginverted T-shaped slot and conductor-backed plane,” IEEE Trans.Antennas Propag., vol. 59, no. 2, pp. 670–674, Feb. 2011.
[8] K.-L. Wong, W.-J. Chen, and T.-W. Kang, “Small-size loop antenna
with a parasitic shorted strip monopole for internal WWAN notebook computer antenna, ” IEEE Trans. Antennas Propag., vol. 59, no. 5, pp.1733–1738, May. 2011.
[9] C. T. Lee and K. L. Wong, “Broadband planar dipole antenna for DTV/GSM operation,” Microwave Opt. Technol. Lett., vol. 50, pp. 1900-1905, July 2008.
[10] J. Y. Li, “Compact size dipole antenna,” Electron. Lett., vol. 44, pp. 1229-1231, Oct. 2008.
[11] Y. Choi, U. Kim, J. Kim and J. Choi, “Design of modified folded dipole antenna for UHF RFID tag,” Electron. Lett., vol. 45, pp. 387-389, April 2009.
[12] F. J. Herraiz-Martinez, L. E. Garcia-Munoz, D. Gonzalez-Ovejero, V. Gonzalez-Posadas and D. Segovia-Vargas, “Dual-frequency printed dipole loaded with split ring resonators,” IEEE Antennas Wireless Propagat. Lett., vol. 8, pp. 137-140, 2009.
[13] D. Puente, D. Valderas, J. Garcia, J. Melendez, J. Gomez, and J. I.
Sancho, “Resonant frequency calculation of meander dipole antennas
by TLM,” Microw. Opt. Technol. Lett., vol. 50, no. 6, pp.1707–1712,
Jun. 2008.
[14] S. H. Wi, Y. S. Lee and J. G. Yook, “Wideband microstrip patch antenna with U-shaped parasitic elements,” IEEE Trans. Antennas Propagat., vol. 55, pp. 1196-1199, April 2007.
[15] W. S. Chen and Y. H. Yu, “Dual-band printed dipole antenna with parasitic element for WiMAX applications,” Electron. Lett., vol. 44, pp. 1338-1339, Nov. 2008.
[16] Sato, K., Amano, T., "Improvements of impedance and radiation
performances with a parasitic element for mobile phone", IEEE
Antennas and Propagation Society International Symposium. (AP-S
2008), pp. 1-4, Jul. 2008.
[17] P. Jin and R. W. Ziolkwski, “Multi-frequency, linear and circular polarized, metamaterial-inspired, near-field resonant parasitic antennas, ”IEEE Trans. Antennas Propag., vol. 59, no. 5, pp. 1446–1459, May. 2011.
[18] T. H. Chand and J. F. Kiang, “Dualband split dielectric resonator antenna,” IEEE Trans. Antennas Propagat., vol. 55, pp. 3155-3162, Nov. 2007.
[19] S. Mei and Z. Y. Ping, “A chip antenna in LTCC for UWB radios,” IEEE Trans. Antennas Propagat., vol. 56, pp. 1177-1180, April. 2008.
[20] Y. C. Huang, W. F. Su and J. F. Kiang, “Wideband dielectric resonator antenna with a tunnel,” IEEE Antennas Wireless Propagat. Lett., vol. 7, pp. 275-278, 2008.
[21] H. M. Chen, Y. K. Wang, Y. F. Lin, S. C. Lin and S. C. Pan, “A Compact dual-band dielectric resonator antenna using a parasitic slot,” IEEE Antennas Wireless Propagat. Lett., vol. 8, pp. 173-176, 2009.
[22] P. V. Bijumon, Y. Antar, A. P. Freundorfer, and M. Sayer, “Dielectric resonator antenna on silicon substrate for system on-chip applications, ”IEEE Trans. Antennas Propag., vol. 56, no. 11, pp. 3404–3410, Nov. 2008.
[23] K. M. Luk and K. W. Leung, Dielectric Resonator Antennas. New
York: Research Studies Press, Jun. 2002.
[24] C. S. Hong, “Small annular slot antenna with capacitor loading,” Electron. Lett., vol. 36, pp. 110-111, Jan. 2000.
[25] H. Iizuka, K. Sakakibara and N. Kikuma, “Stub- and capacitor-loaded folded dipole antenna for digital terrestrial TV reception,” IEEE Trans. Antennas Propagat., vol. 56, pp. 215-222, Jan. 2008.
[26] J. H. Lim, G. T. Back, Y. I. Ko, C. W. Song, and T. Y. Yun, “A
reconfigurable PIFA using a switchable PIN-diode and a fine-tuning
varactor for USPCS/WCDMA/m-WiMAX/WLAN,” IEEE Trans. Antennas Propag., vol. 58, no. 7, pp. 2404–2411, Jul. 2010.
[27] K. Wong and S. Chen, “Printed single-strip monopole using a chip inductor for penta-band WWAN operation in the mobile phone,” IEEE Trans. Antennas Propag., vol. 58, no. 3, pp. 1011–1014, Mar. 2010.
[28] C. H. Chang and K. L. Wong, “Small-size printed monopole with a
printed distributed inductor for pentaband WWAN mobile phone application,” Microw. Opt. Technol. Lett., vol. 51, pp. 2903–2908, 2009.
[29] W. S. Chen and K. Y. Ku, “Band-rejected design of the printed open slot antenna for WLAN/WiMAX operation,” IEEE Trans. Antennas Propagat., vol. 56, pp. 1163-1169, April 2008.
[30] C. I. Lin and K. L. Wong, “Printed monopole slot antenna for internal multiband mobile phone antenna,” IEEE Trans. Antennas Propagat., vol. 55, pp. 3690-3697, Dec. 2007.
[31] X. C. Lin and C. C. Yu, “A dual-band CPW-fed inductive slot-monopole hybrid antenna,” IEEE Trans. Antennas Propagat., vol. 56, pp. 282-285, Jan. 2008.
[32] J. Y. Sze, C. I. Hsu and S. C. Hsu, “Design of a compact dual-band annular-ring slot antenna,” IEEE Antennas Wireless Propagat. Lett., vol. 6, pp. 423-426, 2007.
[33] C. J. Wang and S. W. Chang, “A technique of bandwidth enhancement for the slot antenna,” IEEE Trans. Antennas Propagat., vol. 56, pp. 3321-3324, Oct. 2008.
[34] Y. Zhang, W. Hong, C. Yu, Z. Q. Kuai, Y. D. Don and J. Y. Zhou, “Planar ultrawideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line,” IEEE Trans. Antennas Propagat., vol. 56, pp. 3063-3068, Sep. 2008.
[35] K. V. Caekenberghe, N. Behdad, K. M. Brakora and K. Sarabandi, “A 2.45-GHz electrically small slot antenna,” IEEE Antennas Wireless Propagat. Lett., vol. 7, pp. 346-348, 2008.
[36] J. Y. Jan and J. C. Kao, “Novel printed wide-band rhombus-like slot
antenna with an offset microstrip-fed line,” IEEE Antennas Wireless
Propag. Lett., vol. 6, pp. 249–251, 2007.
[37] J. Y. Sze and C. C. Chang, “Circularly polarized square slot antenna
with a pair of inverted-L grounded strips,” IEEE Antennas Wireless
Propag. Lett., vol. 7, pp. 149–151, 2008.
[38] Nasimuddin, X. Qing, and Z. N. Chen, "Slits Loaded Microstrip Antennas for Circular Polarization," Microwave and Optical Technology Letters, 52, vol. 9, pp. 2043- 2049, Sep. 2010.
[39] K. L. Lau, K. C. Kong and K. M. Luk, “Dual-band stacked folded shorted patch antenna,” Electron. Lett., vol. 43, pp. 789-790, July 2007.
[40] A. A. Serra, P. Nepa, G. Manara, G. Tribellini and S. Cioci, “A wide-band dual-polarized stacked patch antenna,” IEEE Antennas Wireless Propagat. Lett., vol. 6, pp. 141-143, 2007.
[41] M. A. Matin, B. S. Sharif and C. C. Tsimenidis, “Probe fed stacked patch antenna for wideband applications,” IEEE Trans. Antennas Propagat., vol. 55, pp. 2385-2388, Aug. 2007.
[42] Nasimuddin, K. P. Esselle, and A. K. Verma, “Optimising the coaxial-fed location to enhance circular polarization bandwidth of
stacked microstrip antennas,” Microw. Opt. Technol. Lett., vol. 49, no.1, pp. 132–135, Jan. 2007.
[43] Z. Wang, S. Fang, S. Fu and S. Lu, “Dual-band probe-fed stacked patch antenna for GNSS applications,” IEEE Antennas Wireless Propagat. Lett., vol. 8, pp. 100-103, 2009.
[44] Z. B. Wang, S. J. Fang, and S. Q. Fu, “Wideband dual-layer patch
antenna fed by a modified L-strip,” J. Microw. Optoelectron. Electromagn. Appl., vol. 9, no. 2, pp. 89–100, Dec. 2010.
[45] V. Deepu, S. Mridula, R. Sujith and P. Mohanan, “Slot line fed dipole antenna for wide band applications,” Microwave Opt. Technol. Lett., vol. 51, pp. 826-830, Mar. 2009.
[46] C. Y. Pan, T. S. Horng, W. S. Chen, and C. H. Huang, “Dual wideband printed monopole antenna for WLAN/WiMAX applications,” IEEE Antennas Wireless Propagat. Lett., vol. 6, pp. 149-151, 2007.
[47] W. C. Liu, “Dual wideband coplanar waveguide-fed notched antennas with asymmetrical grounds for multi-band wireless application,” IET Microwaves, Antennas Propagat., vol. 1, pp. 980-985, 2007.
[48] Q. X. Chu and Y. Y. Yang, “3.5/5.5 GHz dual band-notch ultra-wideband antenna,” Electron. Lett., vol. 44, pp. 172-174, 2008.
[49] W. S. Chen and Y.-C. Chang, “CPW-fed printed monopole antenna
with branch slits for WiMAX applications,” Microw. Opt. Technol.
Lett., vol. 50, no. 4, pp. 952–954, Apr. 2008.
[50] W. S. Chen and Y.-H. Yu, “Compact design of T-type monopole antenna with asymmetrical ground plane for WLAN/WiMAX applications,” Microw. Opt. Technol. Lett., vol. 50, no. 2, pp. 515–519, Feb. 2008.
[51] K. L. Wong and P. Y. Lai, “Wideband integrated monopole slot antenna for WLAN/WiMAX operation in the mobile phone,” Microw. Opt. Technol. Lett., vol. 50, pp. 2000–2005, Aug. 2008.
[52] P. Y. Lai and K. L.Wong, “Capacitively-fed hybrid monopole/slot antenna for 2.5/3.5/5.5 GHz WiMAX operation in the mobile phone,”
Microw. Opt. Technol. Lett., vol. 50, pp. 2689–2694, Oct. 2008.
[53] C. Mahatthanajatuphat, S. Saleekaw, and P. Akkaraekthalin, “A
rhombic patch monopole antenna with modified Minkowski fractal
geometry for UMTS, WLAN, and mobileWiMAX application,” Prog. Electromagn. Res., vol. 89, pp. 57–74, 2009.
[54] J. Zhang, X.-M. Zhang, J.-S. Liu, Q.-F.Wu, T. Ying, and H. Jin, “Dualband bidirectional high gain antenna for WLAN 2.4/5.8 GHz applications,” Electron. Lett., vol. 45, no. 1, pp. 6–7, 2009.
[55] W. Hu, Y. Z. Yin, X. Yang, K. Song, Z. Y. Liu, and L. H.Wen, “A wide open U-slot antenna with a pair of symmetrical L-strips for WLAN applications,” Prog. Electromagn. Res. Lett., vol. 16, pp. 141–149, 2010.
[56] Q. Zhao, S. X. Gong, W. Jiang, B. Yang, and J. Xie, “Compact wideslot tri-band antenna for WLAN/WiMAX applications,” Prog. Electromagn. Res. Lett., vol. 18, pp. 9–18, 2010
[57] L. Dang, Z. Y. Lei, Y. J. Xie, G. L. Ning, and J. Fan, “A compact
microstrip slot triple-band antenna for WLAN/WiMAX applications,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 1178–1181, 2010.
[58] H.-W. Liu, C.-H. Ku, and C.-F. Yang, “Novel CPW-fed planar monopole antenna for WiMAX/WLAN applications,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 240–243, 2010.
[59] W. C. Liu, C. M. Wu, and Y. J. Tseng, “Parasitically loaded CPW-fed
monopole antenna for broadband operation,” IEEE Trans. Antennas
Propag., vol. 59, no. 6, pp. 2415–2419, Jun. 2011.
[60] A. P. Saghati, M. Azarmanesh, and R. Zaker, “A novel switchable
single- and multifrequency triple-slot antenna for 2.4-GHz Bluetooth,
3.5-GHz WiMax, and 5.8-GHz WLAN,” IEEE Antennas Wireless
Propag. Lett., vol. 9, pp. 534–537, 2010
[61] W.-C. Liu, C.-M. Wu, and N.-C. Chu, “A compact CPW-fed slotted
patch antenna for dual-band operation,” IEEE Antennas Wireless
Propag. Lett., vol. 9, pp. 110–113, 2010.
[62] Chih-Yu Huang and En-Zo Yu, “A Slot-Monopole Antenna for Dual-Band WLAN Applications,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 500–502, 2011.
[63] Satish K. Sharma, Senior Member, and Balamurugan Shanmugam, “A Radiation Pattern Characteristics of a Wideband Novel Modified Archimedean Spiral Antenna Array Covering DCS/PCS/WLAN and LTE Wireless Communication Bands,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1453–1456, 2011.
[64] 謝宣威,手機天線設計之應用,碩士論文,國立臺灣海洋大學,台北,2009。
[65] 鄭宏志,應用於WLAN/WiMAX系統之平面單極天線設計,碩士論文,國立臺灣海洋大學,台北,2011。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔