( 您好!臺灣時間:2021/05/14 21:51
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Yueh-Ju Chung
論文名稱(外文):A Cloud-Based Resembling Trademark Images Retrieval System
指導教授(外文):Shao-Wei Leu
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0

Registering a trademark is necessary for the protection of the trademark owner’s legal rights. Conversely, when registering a trademark, one must be very careful not to violate the rights of exiting trademarks owners. Therefore, it is highly desirable to be able to search and retrieve from the database all trademarks that may appear similar to the one about to be registered.
Attempting to fulfill the goal stated above, this research first uses the Scale Invariant Feature Transformation (SIFT) algorithm to extract local features of trademark images, then the Bag of Features (BoF) model to obtain vocabulary-based representation of the images. Finally, the Locality Sensitive Hashing (LSH) is applied to facilitate efficient indexing and retrieval of the images. The users of our system can search the database to retrieve resembling trademarks for further examination, and they can also add new trademark images into the database if so desire.
Because the amount of trademark images will only continue to grow, for future scalability of the system and to gain experience on cloud computing, we choose to deploy our database on Dot-Cloud, an IaaS-style cloud system. The database was implemented with MySQL and the Web program was developed with Django.

第 一 章 緒論 1
1.1 研究動機 1
1.2 問題現況 1
1.3 研究目的 5
1.4 論文內容提要 6
第 二 章 文獻探討 7
2.1 Cloud Computing 7
2.1.1 Cloud Computing的基本特徵 7
2.1.2 Cloud Computing四個建置模式 8
2.1.3 Cloud Computing三個服務模式 9
2.2 內容式圖像檢索 10
2.3 局部特徵 11
2.4 最鄰近搜尋(Nearest Neighbor Search, NNS) 12
2.4.1 KD-Tree演算法 13
2.4.2 LSH (Locality Sensitive Hashing)演算法 15
第 三 章 相關演算法介紹 16
3.1 商標圖像處理流程 16
3.2 SIFT演算法 16
3.2.1 構建尺度空間以獲得尺度不變性 17
3.2.2 特徵點精確定位 19
3.2.3 特徵點分配方向值 20
3.2.4 特徵點描述 21
3.3 BoF碼 22
3.4 LSH演算法 24
3.4.1 嵌入(embedding) 25
3.4.2 投影(projection) 26
3.4.3 計算Hamming distance 27
第 四 章 系統架構與操作方法 28
4.1 系統架構 28
4.2 系統操作 30
第 五 章 實驗與結果分析 36
5.1 實驗商標來源 36
5.2 實驗檢定 37
5.3 實驗結果檢討與分析 45
第 六 章 結論與未來發展 48
6.1 結論 48
6.2 未來發展 48

[1] Y. Rui and S. Huang, “Image retrieval: current techniques, promising directions, and open issues,” Journal of Visual Communication and Image Representation 10 (1), pp. 39-62, 1999.
[2] Yahoo奇摩圖片, <http://www.yahoo.com>.
[3] 無名小站, <http://www.wretch.cc>.
[4] 經濟部智慧財產局商標檢索系統, <http://tmsearch.tipo.gov.tw/TIPO_DR/index.jsp>.
[5] P. Mell and T. Grance, “The NIST definition of cloud computing -- recommendations of the National Institute of Standards and Technology,” NIST Special Publication 800-145, 2011, <http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf>.
[6] R. Datta, D. Joshi, J. Li, and Z. Wang, “Image retrieval: ideas, influences, and trends of the new age,” ACM Computing Surveys 40 (2), pp. 1-60, 2008.
[7] 陳必衷,蝴蝶影像內容檢索,國立臺灣大學資訊工程研究所碩士論文,2000。
[8] 劉治杰,智慧型旅遊見聞管理系統,國立臺灣大學資訊網路與多媒體研究所碩士論文,2006。
[9] 謝昀哲,影像辨識技術運用於藥物檢索系統之研究,義守大學電子工程學系研究所碩士論文,2009。
[10] 朱國延,臺灣老照片資料庫重複照片比對研究,國立臺灣大學資訊網路與多媒體研究所碩士論文,2009。
[11] Q. Li, X. Mao, and H. Xie, “Interactive tutoring of cooking activities with personalized multimedia recipe search,” in Proceedings of the Third International ACM Workshop on Multimedia Technologies for Distance Learning, pp. 31-36, 2011.
[12] Daniel Manger, “Large-scale tattoo image retrieval,” in Proceeding of the Nineth Conference on Computer and Robot Vision, 2012.

[13] K. Williams and H. Suleman, “Translating handwritten bushman texts,” in Proceedings of the 10th Annual Joint Conference on Digital Libraries, pp. 109-118, 2010.
[14] TinEye Reverse Image Search Engine, <http://www.tineye.com>.
[15] Google圖片, <https://www.google.com/imghp?hl=zh-TW&tab=wi>.
[16] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the International Conference on Computer Vision, 1999.
[17] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, pp. 91-110, 2004.
[18] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An optimal algorithm for approximate nearest neighbor searching in fixed dimensions,” Journal of the ACM, vol. 45, pp. 891-923, 1998.
[19] J. H. Friedman, N. S. Netanyahu, R. Silvrman, and A. Y. Wu, “An algorithm for finding best matches in logarithmic expected time,” ACM Transactions on Mathematical Software, vol. 3 (3), pp. 209-226, September 1977.
[20] G. Csurka, C. R. Dance, L.X. Fan, J. Willamowski, and C. Bray, “Visual categorization with bags of keypoints,” in Proceeding of ECCV International Workshop on Statistical Learning in Computer Vision, pp. 59-74, 2004.
[21] P. Indyk and R. Motwani, “Approximate nearest neighbours: towards removing the curse of dimensionality,” In Proceedings of Symposium on Theory of Computing, pp. 604-613, 1998.
[22] A. Rajaraman and J. D. Ullman, Mining of Massive Datasets (Chapter 3: Finding Similar Items), Cambridge University Press, 2010.
[23] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces,” VLDB 1998: 194-205, 1998.
[24] A. Kent, M. M. Berry, F. U. Luehrs, and J. W. Perry, “Machine Literature Searching VIII. Operational Criteria for Designing Information Retrieval Systems,” Journal of the American Society for Information Science and Technology, vol. 6, no. 2, pp. 93-101, 1955.
[25] A. E. Hakim and A. A. Farag, “CSIFT: a SIFT descriptor with color invariant characteristics,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1978-1983, 2006.
[26] Yan Ke, “PCA-SIFT: a more distinctive representation for local image descriptors,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 506-513, 2004.
[27] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “SURF: speeded up robust features,” Computer Vision and Image Understanding (CVIU), vol. 110, no. 3, pp. 346-359, 2008.
[28] J. M. Morel and G. Yu, “ASIFT: a new framework for fully affine invariant image comparison,” SIAM Journal on Imaging Sciences, vol. 2, no. 2, 2009.

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top