(3.238.96.184) 您好!臺灣時間:2021/05/10 09:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:胡慶鴻
研究生(外文):Ching-Hung Hu
論文名稱:三色微質點影像測速儀之流場測量
論文名稱(外文):Flow Field Measurement with Color Micro Particle Image Velocimetry
指導教授:沈志忠沈志忠引用關係
指導教授(外文):Jyh-Jong Sheen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:76
中文關鍵詞:微質點影像測速儀發光二極體環型聚光鏡微流體彩色質點影像測速儀交替色彩影像測速
外文關鍵詞:uPIVLEDCytoVivaMicrofluidiccolor-uPIVACIA
相關次數:
  • 被引用被引用:4
  • 點閱點閱:132
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
質點影像測速儀一般由光源與具雙重曝光功能之相機兩大關鍵元件所組成。其光源為滿足高時間響應、高亮度之需求,多為雙脈衝雷射。本研究之三色微質點影像測速儀(uPIV)系統,利用發光二極體(LED)之高效率、高頻率響應之特性,配合電路以脈衝模式依序驅動觸發三色發光二極體取代傳統雷射光源,降低成本與人員危險性。並運用交替色彩影像測速系統(ACIA),使曝光時間僅由LED觸發控制,無須受限於高速相機快門速度,可將消費型相機取代高價高速攝影機或雙重曝光相機。由於消費型相機感光元件濾色片採Bayer陣列,色彩還原度較差。為提高三色影像正確性,特針對三色LED波長進行影像最佳化反矩陣計算,並分析三色光源色散所造成之垂直焦點位移量及平面影像誤差量。本研究以測量直流道及具圓形檔塊之流道速度場分布,與模擬結果比較驗證其正確性。並觀察不同大小之液滴內部循環流,以及利用流體聚焦流道速度範圍較大及不穩定性週期性變化之特性,分析其速度場與加速度場,展現三色PIV系統一次量測下可獲得三層影像之優點。
In this study, a color micro particle image velocimetry (PIV) is demonstrated. Applying color high power light emitting diode (LED) as the light source and cardioid annular condenser in the microscope to preserve color information. This system is less expensive and saver than traditional PIV with double pulse laser and filter system. Utilizing ACIA (alternating color image anemometry) system let the exposure time can be control by the emission of LED instead of the shutter on high speed camera or PIV camera. Therefore we can replace high speed camera by a consumer DSLR (digital Single Lens Reflex). Because consumer camera uses Bayer filter mosaic as color filter array, the color will be less accurate. To solve this problem we use invertible matrix to optimize the wave length of our color LEDs. And we analyze the focus point displacement due to color dispersion.
Flow field of a microchannel with a cylinder was used to test the PIV system. The experimental results showed agreement with those from computer simulation software (COMSOL). Flow fields of circulation in microdroplet and both velocity and acceleration in hydrodynamic focusing were observed. In summary, experimental results demonstrate that this color µPIV system has the ability to measure both velocity and acceleration.

中文摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 x
第一章 緒論 1
1.1 微流體晶片 1
1.2 微流場檢測技術 1
1.3 研究動機與目的 3
1.4 文獻回顧 5
1.4.1 PIV技術之演進 5
1.4.2 應用LED照明之PIV技術 7
1.4.3 彩色之PIV技術 8
1.5 文章架構 13
第二章 彩色微質點影像測速儀之設計原理 14
2.1 PIV技術 14
2.1.1 質點影像 15
2.1.2 計算速度向量 19
2.2 環狀聚光鏡系統簡介 21
第三章 三色微質點影像測速儀設計 25
3.1 三色微質點影像測速儀硬體架構 25
3.1.1 LED 光源與驅動電路 26
3.1.2 心型環狀聚光鏡 30
3.1.3 相機與影像 35
3.2 彩色影像校正 38
第四章 三色微質點影像測速儀之實驗結果 42
4.1 典型微流場 42
4.2 微流體乳化晶片 46
4.3 流體聚焦微流體晶片 50
4.3.1雙流速範圍量測 51
4.3.2加速度量測 53
4.4 結論 59
第五章 結論與未來展望 60
5.1 結論 60
5.2 未來展望 61
參考文獻 62


[1] A. Stroock, S. Dertinger, A. Ajdari, I. Mezic, H. Stone, and G. Whitesides, "Chaotic mixer for microchannels." vol. 295, 2002, pp. 647-651.
[2] J.-J. Sheen, K.-Y. Ho, and Y.-M. Lee, "Three-dimensional hydrodynamic focusing with a circular microchannel," in Sixth International ASME Conference on Nanochannels, Microchannels and Minichannels Darmstadt, Germany, 2008.
[3] R. Adrian, "Particle-imaging techniques for experimental fluid mechanics," Annual Review of Fluid Mechanics, vol. 23, 1991, pp. 261-304.
[4] M. Raffel, Particle image velocimetry a practical guide: Springer, 2007.
[5] Dantec Dynamics. http://dantec.net.dynamicweb.dk/
[6] C. Meinhart, S. Wereley, and M. Gray, "Volume illumination for two-dimensional particle image velocimetry," Measurement Science and Technology, vol. 11, 2000, pp. 809-14.
[7] 黃祖虹、沈志忠、趙勝裕,”彩色微質點影像測速儀之研製”,微系統暨奈米科技協會會刊第26期,中華民國一百年十二月
[8] A. Lanzillotto, T. Leu, M. Amabile, R. Wildes, and J. Dunsmuir, "Applications of x-ray micro-imaging, visualization and motion analysis techniques to fluidic microsystems," 1996, p. 123.
[9] R. Wildes, A. Lanzillotto, M. Amabile, T. Leu, D. Center, and N. Princeton, "Physically based fluid flow recovery from image sequences," 1997, pp. 969-975.
[10] S. Devasenathipathy, J. Santiago, and K. Takehara, "Particle tracking techniques for electrokinetic microchannel flows," Exp. Fluids, vol. 25, 1998, pp. 316-319.
[11] J. Santiago, S. Wereley, C. Meinhart, D. Beebe, and R. Adrian, "A particle image velocimetry system for microfluidics," Experiments in fluids, vol. 25, 1998, pp. 316-319.
[12] A. Koutsiaris, D. Mathioulakis, and S. Tsangaris, "Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries," Measurement Science and Technology, vol. 10, 1999, pp. 1037-46.
[13] C. Meinhart, S. Wereley, and M. Gray, "Volume illumination for two-dimensional particle image velocimetry," Measurement Science and Technology, vol. 11, 2000, pp. 809-14.
[14] O. Chetelat and K. Kim, "Miniature particle image velocimetry system with LED in-line illumination," Measurement Science and Technology, vol. 13, 2002, pp. 1006-1013.
[15] S. Hagsater, C. Westergaard, H. Bruus, and J. Kutter, "Investigations on LED illumination for micro-PIV including a novel front-lit configuration," Experiments in fluids, vol. 44, 2008, pp. 211-219.
[16] S. Gogineni, L. Goss, D. Pestian, and R. Rivir, "Two-Color Digital PIV Employing a Single CCD Camera," Exp. Fluids, 25(4) , 1998, pp. 320–328
[17] S. Jaw, Y. Haik, and C. Chen, "Measurement of soap film flows using color PIV," in 15th ASCE Engineering Mechanics Conference New York, USA, 2002.
[18] De Ponte S, Malavasi S, Svelto C, Matteazzi G (2003) A recirculating flow studied by three colour particle image velocimetry. In: Proceedings of 20th international congress on instrumentation in aerospace simulation facilities, 2003 ICIASF’03, pp 228–235
[19] S. Pick, F-O. Lehmann, "Stereoscopic PIV on multiple color-coded light sheets and its application to axial flow in flapping robotic insect wings," Exp Fluids, vol. 47, 2009, pp. 2009-2023.
[20] Willert C, Stasicki B, Klinner J, Moessner S (2010) Pulsed operation of high-power light emitting diodes for imaging flow velocimetry. Meas Sci Technol 21:11
[21] M. Wernet, "Development of digital particle imaging velocimetry for use in turbomachinery," Experiments in fluids, vol. 28, 2000, pp. 97-115.
[22] Seika Measurement Technology, KONCERTO ver.1.0 software Manual: Seika Measurement Technology, 2007.
[23] B. Foster, "Focus on microscopy: A technique for imaging live cell interactions and mechanisms," AMERICAN LABORATORY, vol. 36, 2004, pp. 21-27.
[24] C.-C. Su, "Optical Lithography," 2005. http://nano.nchc.org.tw/dictionary/Optical_Lithography.html
[25] A. Vainrub, O. Pustovyy, and V. Vodyanoy, "Resolution of 90 nm (/5) in an optical transmission microscope with an annular condenser," Optics letters, vol. 31, 2006, pp. 2855-2857.
[26] V. Vodyanoy, V. Petrenko, and T. Moore, "High-resolution optical microscope for quick detection of pathogens," Google Patents, 2003.
[27] L. Bacha, Color atlas of veterinary histology: Wiley-Blackwell, 2000.
[28] K. Haruyuki, "共焦点マイクロPIV を用いた微小液滴内部流動に関する研究," in Institute of Industrial Science. vol. doctor Tokyo, Japan: the University of Tokyo, 2006.
[29] H. Kinoshita, S. Kaneda, T. Fujii and M. Oshima, Threedimensional easurement and visualization of internal flow of a moving droplet using confocal micro-piv, Lab Chip, 2007, 7,338–346.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔