跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/04 20:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾鴻智
研究生(外文):Hong-JHih Zeng
論文名稱:純鈦表面以層對層技術被覆膠原蛋白/肝素多層複合膜的血液相容性與結合性
論文名稱(外文):Blood-compatibility and Adhesion of Collagen/Heparin Multilayers Coated on cp-Ti Surface using a Layer-by-Layer Technique
指導教授:周昭昌
指導教授(外文):Chau-Chang Chou
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:53
中文關鍵詞:多層複合膜純鈦肝素膠原蛋白自組裝血液相容性
外文關鍵詞:Multilayered filmscp-TiHeparinCollagenLayer-by-layer self-assemblyBlood-compatibility
相關次數:
  • 被引用被引用:3
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在探討以膠原蛋白與肝素透過層對層的自組裝技術形成多層複合膜來改善純鈦材料表面的血液相容性及其結合性,其中鈦底材的拋光方式、氫氧化鈉溶液表面前處理的條件,還有被覆之複合膜的層數是主要的研究對象。底材的拋光方式分為電解拋光與鏡面拋光兩種,而氫氧化鈉溶液前處理則依處理時的溶液溫度和時間區分為80 ℃8小時和60 ℃24小時兩種。經過拋光處理的鈦板先浸泡於氫氧化鈉溶液中,讓表面鍵結氫氧根負離子,接著再浸泡於帶有正電的聚離氨酸中,然後才將帶負電的肝素和帶正電的膠原蛋白交替被覆於表面上,直到達到所需的層數。被覆完成的試片,透過原子力顯微鏡和電子顯微鏡觀察表面形貌、傅立葉轉換紅外線光譜儀分析表面化性、接觸角量測和刮痕實驗分別探討薄膜的親疏水性與結合性。在血液相容性方面,以溶血率和血小板吸附實驗來評估多層複合膜的血液相容性和抗凝血效果。結果顯示,被覆多層複合膜的純鈦表面,除了底材拋光方式和氫氧化鈉溶液前處理的搭配有效提升原本的血液相容性外,適當層數以上的複合膜亦有利於與鈦底材之結合能力的提升。
This paper investigates the blood-compatibility and adhesion of collagen/heparin multilayers on a cp-Ti substrate by layer-by-layer self-assembly technique. The titanium samples were pretreated by being immersed in a 5 M NaOH solution to obtain a negatively charged surface with hydroxyl groups. The NaOH-treated samples were then positively charged by being immersed in polyl-L-Lysine. The repeated treatment of the samples applying heparin and collagen alternatively determined the number and thickness of the multilayers. The surface topography, chemical composition, hydrophile and adhesion of the films were investigated by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, water contact angle measurement, and nano-scratch test. The blood compatibility was evaluated by measuring haemolysis ratio and platelet-covered area in vitro. The untreated titanium surface was used as the benchmark. The results indicate that the Hep-Col multilayers on the titanium surface have superior anticoagulation performance than the untreated titanium surface does. The increase of the multilayers’ thickness can strengthen the adhesion to Ti substrate.
摘要 I
Abstract II
目錄 III
表目錄 VI
圖目錄 VII
1.1 前言 1
1.2 研究動機 2
1.3 研究方法與目標 2
1.4 論文架構 3
第二章 文獻回顧 5
2.1 生醫材料簡介[2, 4] 5
2.2 鈦金屬及其表面改質技術 6
2.3 抗凝血藥劑 7
第三章 實驗方法與量測分析 9
3.1 實驗流程 9
3.2 實驗前置準備與塗層步驟 9
3.2.1 試片準備 9
3.2.2 氫氧化鈉溶液調配 10
3.2.3 聚離氨酸溶液調配與保存 10
3.2.4 肝素溶液調配與保存 10
3.2.5 膠原蛋白溶液調配與保存 10
3.2.5 試片腐蝕前處理 10
3.2.6 塗層步驟 11
3.3 薄膜性質分析 12
3.3.1 表面形貌與粗糙度量測[3, 7] 12
3.3.2 原子力顯微鏡[31] 12
3.3.3 傅立葉轉換紅外光譜分析 13
3.3.4 刮痕實驗 13
3.3.5 接觸角量測分析 14
3.3.6 血液相容性實驗[33] 14
第四章 結果與討論 24
4.1 掃描式電子顯微鏡拍攝結果分析 24
4.2 原子力顯微鏡分析 24
4.3 傅立葉轉換紅外線光譜儀分析 25
4.4 奈米刮痕實驗分析 26
4.5 水接觸角量測分析 26
4.6 血小板吸附實驗分析 27
第五章 結論與未來展望 48
5.1 結論 48
5.2 未來展望 49
參考文獻 50
致謝 50

[1] 俞耀庭, 生物醫用材料. 台北縣: 新文京開發出版股份有限公司, 2004年7月.
[2] 王盈錦, 生物醫學材料. 台北市: 合記圖書出版社, 2002.
[3] W. F. Ho, C. H. Lai, H. C. Hsu, and S. C. Wu, "Surface modification of a Ti-7.5Mo alloy using NaOH treatment and Bioglass(A (R)) coating," Journal of Materials Science-Materials in Medicine, vol. 21, pp. 1479-1488, May 2010.
[4] 劉宣勇, 生物醫用鈦材料及其表面改性: 化學工業出版社, 2008.
[5] H. Nygren, P. Tengvall, and I. Lundstrom, "The initial reactions of TiO2 with blood," Journal of Biomedical Materials Research, vol. 34, pp. 487-492, Mar 1997.
[6] G. Decher, "Fuzzy nanoassemblies: Toward layered polymeric multicomposites," Science, vol. 277, pp. 1232-1237, Aug 1997.
[7] J. L. Chen, Q. L. Li, J. Y. Chen, C. Chen, and N. Huang, "Improving blood-compatibility of titanium by coating collagen-heparin multilayers," Applied Surface Science, vol. 255, pp. 6894-6900, May 2009.
[8] 八幡義人, 圖解血液. 台北市: 書泉出版社, 2008.
[9] K. R. Kamath, Albumin grafting on biomaterial surfaces using gamma-irradiation. USA: Lafayette, IN (United States); Purdue Univ., 1993.
[10] D. Beyer, W. Knoll, H. Ringsdorf, J. H. Wang, R. B. Timmons, and P. Sluka, "Reduced protein adsorption on plastics via direct plasma deposition of triethylene glycol monoallyl ether," Journal of Biomedical Materials Research, vol. 36, pp. 181-189, Aug 1997.
[11] Y. Kawamoto, A. Nakao, Y. Ito, N. Wada, and M. Kaibara, "Endothelial cells on plasma-treated segmented-polyurethane - Adhesion strength, antithrombogenicity and cultivation in tubes," Journal of Materials Science-Materials in Medicine, vol. 8, pp. 551-557, Sep 1997.
[12] H. Dong and T. Bell, "State-of-the-art overview: ion beam surface modification of polymers towards improving tribological properties," Surface &; Coatings Technology, vol. 111, pp. 29-40, Jan 1999.
[13] L. D. Piveteau, M. I. Girona, L. Schlapbach, P. Barboux, J. Boilot, and B. Gasser, "Thin films of calcium phosphate and titanium dioxide by a sol-gel route: a new method for coating medical implants," Journal of Materials Science-Materials in Medicine, vol. 10, pp. 161-167, Mar 1999.
[14] A. Nanci, J. D. Wuest, L. Peru, P. Brunet, V. Sharma, S. Zalzal, and M. D. McKee, "Chemical modification of titanium surfaces for covalent attachment of biological molecules," Journal of Biomedical Materials Research, vol. 40, pp. 324-335, May 1998.
[15] J. C. Lin and S. M. Tseng, "Surface characterization and platelet adhesion studies on polyethylene surface with hirudin immobilization," Journal of Materials Science-Materials in Medicine, vol. 12, pp. 827-832, Sep 2001.
[16] B. Seifert, P. Romaniuk, and T. Groth, "Covalent immobilization of hirudin improves the haemocompatibility of polylactide-polyglycolide in vitro," Biomaterials, vol. 18, pp. 1495-1502, Nov 1997.
[17] J. Zhang, B. Senger, D. Vautier, C. Picart, P. Schaaf, J. C. Voegel, and P. Lavalle, "Natural polyelectrolyte films based on layer-by layer deposition of collagen and hyaluronic acid," Biomaterials, vol. 26, pp. 3353-3361, Jun 2005.
[18] Q. K. Lin, J. J. Van, F. Y. Qiu, X. X. Song, G. S. Fu, and J. A. Ji, "Heparin/collagen multilayer as a thromboresistant and endothelial favorable coating for intravascular stent," Journal of Biomedical Materials Research Part A, vol. 96A, pp. 132-141, Jan 2011.
[19] F. N. Crespilho, V. Zucolotto, O. N. Oliveira, and F. C. Nart, "Electrochemistry of Layer-by-Layer Films: a review," International Journal of Electrochemical Science, vol. 1, pp. 194-214, Sep 2006.
[20] L. Stryer, 大學生物化學. 台北市: 藝軒圖書出版社, 1996.
[21] 蔣挺大, 膠原與膠原蛋白. 北京: 化學工業出版社, 2006.
[22] J. L. Chen, C. Chen, Z. Y. Chen, J. Y. Chen, Q. L. Li, and N. Huang, "Collagen/heparin coating on titanium surface improves the biocompatibility of titanium applied as a blood-contacting biomaterial," Journal of Biomedical Materials Research Part A, vol. 95A, pp. 341-349, Nov 2010.
[23] J. Y. Lee, K. H. Kim, S. Y. Shin, I. C. Rhyu, Y. M. Lee, Y. J. Park, C. P. Chung, and S. J. Lee, "Enhanced bone formation by transforming growth factor-beta 1-releasing collagen/chitosan microgranules," Journal of Biomedical Materials Research Part A, vol. 76A, pp. 530-539, Mar 2006.
[24] Q. K. Lin, X. Ding, F. Y. Qiu, X. X. Song, G. S. Fu, and J. Ji, "In situ endothelialization of intravascular stents coated with an anti-CD34 antibody functionalized heparin-collagen multilayer," Biomaterials, vol. 31, pp. 4017-4025, May 2010.
[25] J. A. Johansson, T. Halthur, M. Herranen, L. Soderberg, U. Elofsson, and J. Hilborn, "Build-up of collagen and hyaluronic acid polyelectrolyte multilayers," Biomacromolecules, vol. 6, pp. 1353-1359, May-Jun 2005.
[26] P. Dong, W. C. Hao, Y. Y. Xia, G. Z. Da, and T. M. Wang, "Comparison Study of Corrosion Behavior and Biocompatibility of Polyethyleneimine (PET)/Heparin and Chitosan/Heparin Coatings on NiTi alloy," Journal of Materials Science &; Technology, vol. 26, pp. 1027-1031, Nov 2010.
[27] M. M. S. Hau C. Kwaan, Clinical thrombosis Boca Raton, Fla: CRC, 1989.
[28] M. H. P.S. Damus, and R. D. Rosenberg, "Anticoagulant Action of Heparin," Nature, vol. 246, pp. 355-357, 1973.
[29] 田育彰, 固定生醫單體之生物活性與結構隱定性之探討: 私立中原大學碩士畢業論文, 2002.
[30] Q. L. Li, N. Huang, J. L. Chen, G. J. Wan, A. S. Zhao, J. Y. Chen, J. Wang, P. Yang, and Y. X. Leng, "Anticoagulant surface modification of titanium via layer-by-layer assembly of collagen and sulfated chitosan multilayers," Journal of Biomedical Materials Research Part A, vol. 89A, pp. 575-584, Jun 2009.
[31] 鄒明衡, 原子力顯微鏡之滯滑運動的理論探討: 國立臺灣海洋大學碩士畢業論文, 2009.
[32] J. H. Choee, S. J. Lee, Y. M. Lee, J. M. Rhee, H. B. Lee, and G. Khang, "Proliferation rate of fibroblast cells on polyethylene surfaces with wettability gradient," Journal of Applied Polymer Science, vol. 92, pp. 599-606, Apr 2004.
[33] 吳沂洋, 以射頻電漿輔助化學氣相沉積法被覆含氟類鑽碳薄膜於鈦合金底材之機械性質及血液相容性研究: 國立臺灣海洋大學碩士畢業論文, 2011.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 以層對層技術被覆重組水蛭素/膠原蛋白與肝素/膠原蛋白聚電解質多層複合膜之鈦金屬表面的血液相容性與結合性比較
2. 超高分子量聚乙烯之玻尿酸表面改質處理及其抗磨耗性能研究
3. 經氧化處理之多巴胺中間層對被覆肝素/膠原蛋白多層複合膜之鈦金屬表面的血液相容性與結合性探討
4. 以自組裝技術被覆肝素/多巴胺與肝素/膠原蛋白多層複合膜之鈦金屬表面的血液相容性與結合性Hemocompatibility and Adhesion of Heparin/Dopamine and Heparin/Collagen Self-Assembled Multilayers Coated on a Titanium Substrate
5. 射頻電漿輔助化學氣相沉積法鍍製氮氟類鑽碳薄膜於矽基材之氧化特性及機械性質分析
6. 具溶膠-凝膠法製備SiTixOyCz混合複合中間層之類鑽碳薄膜被覆於不同基材的機械性質及微觀形貌
7. 以層對層技術被覆肝素/膠原蛋白多層複合膜之鈦金屬表面的血液相容性與結合性-多巴胺作為鈦金屬與被覆膜之中間層的探討
8. 被覆熱解雙胺及其混含聚多巴胺之中間層與最外層肝素於鈦底材的血液相容性和結合性
9. 多巴胺中間層混含熱解二胺對肝素被覆鈦金屬之血液相容性的影響
10. 以浸漬塗布法被覆熱解二胺於鈦底材的血液相容性
11. 添加奈米鑽石之鈦鋁氧化混合複合膜被覆於SUS420J2不鏽鋼底材的表面形態及微觀結構
12. 沖壓下料模具設計參數對鋁合金製品斷面品質之影響
13. 以溶膠-凝膠法被覆SiTixOy複合薄膜於鈦合金基材之機械性質與抗腐蝕性研究
14. 沖切模具設計與製程參數對鋁合金製品邊緣品質的影響
15. 以射頻電漿輔助化學氣相沉積法被覆非晶質碳氧化鈦薄膜作為含氟類鑽碳薄膜與鈦合金基材之中間層的機械性質與抗腐蝕性研究