(3.230.154.160) 您好!臺灣時間:2021/05/08 00:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李彥飛
研究生(外文):Yen-Fei Lee
論文名稱:利用金奈米粒子薄膜於比色法檢測重金屬離子
論文名稱(外文):Colorimetric Detection of Heavy Metal Ions by Nanogold-Modified Membrane
指導教授:黃志清黃志清引用關係
指導教授(外文):Chih-Ching Huang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:106
中文關鍵詞:金奈米粒子比色法重金屬
外文關鍵詞:gold nanoparticlescolorimetricheavy metal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:468
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:0
本研究開發以比色法為基礎的試紙,於水溶液中檢測鉛離子(Pb2+)和銅離子(Cu2+)。利用具有奈米孔洞硝化纖維膜(nitrocellulose membrane; NCM)吸附已修飾牛血清蛋白(bovine serum albumin; BSA)之金奈米粒子(gold nanoparticles; 13.3 nm)成為複合材料(BSA-Au NPs/NCM)。在硫代硫酸根離子(S2O32–)和2-硫基乙醇(2-mercaptoethanol; 2-ME)浸析(leaching) BSA-Au NPs/NCM,Pb2+可加速浸析的速率。故由Pb2+加速BSA-Au NPs/NCM浸析後顏色變化來定量溶液中Pb2+濃度。另外,可利用微波來縮短浸析Au NPs的反應時間(於10分鐘之內完成)。在最佳化條件5 mM glycine-NaOH (pH 10)、100 mM S2O32-、250 mM 2-ME和75 W 的微波功率下,試紙對於檢測Pb2+具有高靈敏度(偵測極限; LOD = 80 pM) 和高專一性(高於其它金屬至少100倍)。試紙同時也可檢測Cu2+,利用Cu2+沉積Au NPs後降低浸析效率來達偵測目的,在最佳化條件下5 mM glycine-NaOH (pH 12)、25 mM pyridine 2,6-dicarboxylic acid (PDCA)、Pb2+ (50 μM) 和2-ME (1 M),試紙具有高專一性(至少100倍),其檢測Cu2+的偵測極限(LOD)為50 nM。於本研究成功開發出低價、便利和快速的檢測Pb2+和Cu2+的試紙,並應用於尿液與血液樣品的檢測。
We have developed simple paper-based colorimetric membrane for sensing lead ions (Pb2+) and copper ions (Cu2+) in aqueous solutions. The nitrocellulose membrane (NCM) was used to trap bovine serum albumin (BSA)-modified 13.3-nm Au NPs (BSA-Au NPs), leading to the preparation of a nanocomposite film of BSA-Au NP-decorated membrane (BSA-Au NPs/NCM). The BSA-Au NPs/NCM operates on the principle that Pb2+ ions accelerate the rate of leaching of Au NPs induced by thiosulfate (S2O32–) and 2-mercaptoethanol (2-ME). The BSA-Au NPs/NCM allowed for the detection of Pb2+ in nanomolar aqueous solutions in the presence of leaching agents such as S2O32- and 2-ME by the naked eye. We employed the assistance of microwave irradiation to shorten the reaction time (< 10 min) for leaching the Au NPs. Under optimal solution conditions (5 mM glycine-NaOH (pH 10), S2O32- (100 mM), and 2-ME (250 mM), microwaves (75 W)), the BSA-Au NPs/NCM allowed the detection of Pb2+ at concentrations as low as 80 pM with high selectivity (at least 100-fold over other metal ions). The BSA-Au NPs probe operates on the principle that Cu deposition on the surface of BSA-Au NPs inhibits their leaching ability, which is accelerated by Pb2+ ions in the presence of 2-ME. Under optimal solution conditions (5 mM glycine–NaOH (pH 12.0), Pb2+ (50 M), and 2-ME (1.0 M)), the Pb2+/2-MEBSA-Au NPs/NCM enabled the detection of Cu2+ at nanomolar concentrations in aqueous solutions by the naked eye with high selectivity (at least 100-fold over other metal ions). In addition, this cost-effective probe allowed for the rapid and simple determination of Pb2+ and Cu2+ ions in not only natural water samples but also complex biological samples (blood and urine samples).
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 vi
表目錄 viii
第一章 1
奈米材料簡介與研究動機 1
1. 金奈米粒子感測器介紹 1
2. 金奈米粒子感測器應用 3
2.1金奈米粒子感測器之重金屬感測器 4
2.1.1 修飾之金奈米子感測器 4
2.1.1.1 DNA修飾之金奈米粒子感測器 5
2.1.1.2 蛋白質修飾之金奈米粒子感測器 6
2.1.1.3 小分子修飾之金奈米粒子感測器 7
2.1.1.4 其它修飾之奈米子感測器 9
2.2.1 未修飾之金奈米子感測器 10
2.2.1.1 DNA應用於未修飾之金奈米粒子感測器 10
2.2.1.2 蛋白質應用於未修飾之金奈米粒子感測器 11
2.2.1.3 小分子應用於未修飾之金奈米粒子感測器 12
2.2.1.4 其它未修飾之金奈米粒子感測器 14
3. 研究動機 16
4. 參考文獻 17
第二章 22
利用金奈米粒子薄膜之比色法於生物樣品檢測鉛離子 22
1. 前言 22
2. 實驗材料與方法 25
2.1 實驗藥品 25
2.2 儀器設備 26
2.3 金奈米粒子合成 27
2.4 Glycine-NaOH緩衝溶液配製 27
2.5 BSA-Au NPs/NCM製備 28
2.6 BSA-Au NPs/NCM檢測鉛離子 29
2.7 BSA-Au NPs/NCM分析於SALDI-MS 29
2.8 BSA-Au NPs/NCM分析海水、尿液和血液樣品 29
3. 結果與討論 31
3.1 製備BSA-Au NPs/NCM 31
3.2 檢測鉛離子 32
3.3 2-ME的影響 33
3.4 於微波下檢測鉛離子 34
3.5 金屬選擇性 35
3.6 於真實樣品中檢測鉛離子 36
4. 結論 37
5. 參考文獻 38
6. 本章圖表 50

第三章 68
控制浸析牛血清蛋白修飾的金奈米粒子於血液樣品中檢測銅離子 68
1. 前言 68
2. 實驗材料與方法 70
2.1 實驗藥品 70
2.2 儀器設備 71
2.3 金奈米粒子合成 72
2.4 BSA-Au NPs/NCM的製備 72
2.5 BSA-Au NPs檢測銅離子 72
2.6 BSA-Au NPs/NCM檢測銅離子 72
2.7 BSA-Au NPs/NCM分析於SALDI-MS 73
2.8 分析全血樣品 73
3. 結果與討論 74
3.1 BSA-Au NPs檢測銅離子 74
3.2 2-ME和鉛離子的影響 76
3.3 PDCA在選擇性上的影響 76
3.4 於真實樣品檢測銅離子 77
4. 結論 78
5. 參考文獻 80
6. 本章圖表 96

[1] Horn, D.; Barrientos, A. IUBMB Life 2008, 60, 421–429.
[2] Brown, N. L.; Camakaris, J.; Lee, B. T. O.; Williams, T.; Morby, A. P.; Parkhill, J.; Rouch, D. A. J. Cell. Biochem. 1991, 46, 106–114.
[3] Krupanidhi, S.; Sreekumar, A.; Sanjeevi, C. B. Indian J. Med. Res. 2008, 128, 448–461.
[4] Uriu-Adams, J. Y.; Keen, C. L. Mol. Asp. Med. 2005, 26, 268–298.
[5] Stern, B. R. ; Solioz, M.; Krewski, D.; Aggett, P.; Aw, T.-C.; Baker, S.; Crump, K.; Dourson, M.; Haber, L.; Hertzberg, R.; Keen, C.; Meek, B.; Rudenko, L.; Schoeny, R.; Slob, W.; Starr, T. J. Toxicol. Environ. Health Part B Crit. Rev. 2007, 10, 157–222.
[6] Lagos, G. World Metall. Erzmetall 2005, 58, 279–282.
[7] Howe, P. D.; Becking, G. C.; Callan, P.; Dameron, C.; Tomaska, L. Environ. Health Criteria 1998, 1–11.
[8] Hellal, M. E. A.; Hellal, F.; Khemissi, Z. E.; Jebali, R.; Dachraoui, M. Bull. Environ. Toxicol. 2011, 86, 194–198.
[9] Luna-Andrade, A.; Aguilar-Duran, R.; Nandini, S.; Sarma, S. S. S. Water Air Soil Pollut. 2002, 141, 143–153.
[10] Lehman, J. T.; Bazzi, A.; Nosher, T.; Nriagu, J. O. Can. J. Fish. Aquatic Sci. 2004, 61, 1871–1880.
[11] Eklund, B. T.; Kautsky, L. Mar. Pollut. Bull. 2003, 46, 171–181.
[12] Cervantes, C.; Gutierrez-Corona, F. FEMS Micorobiol. Rev. 1994, 14, 121–138.
[13] Molteni, C.; Abicht, H. K.; Solioz, M. Appl. Environ. Microbiol. 2010, 76, 4099–4101.
[14] Mikolay, A.; Huggett, S.; Tikana, L.; Grass, G.; Braun J.; Nies, D. H. Appl. Environ. Microbiol. 2010, 87, 1875–1879.
[15] Sekhar, K.; Priyanka, B.; Reddy, V. D.; Rao, K. V. Environ. Exp. Bot. 2011, 72, 131–139.
[16] Trevors, J. T. Microbiol. Sci. 1987, 4, 29–31.
[17] Borkow, G.; Gabbay, J. Curr. Med. Chem. 2005, 12, 2163–2175.
[18] Brown, N. L.; Rouch, D. A.; Lee, B. T. O. Plasmid 1992, 27, 41–51.
[19] Orell, A.; Navarro, C. A.; Arancibia, R.; Mobarec, J. C.; Jerez, C. A. Biotechnol. Adv. 2010, 28, 839–848.
[20] Grass, G.; Rensing, C.; Solioz, M. Appl. Environ. Microbiol. 2011, 77, 1541–1547.
[21] Eroy-Reveles, A. A.; Mascharak, P. K. Chemtracts 2005, 18, 87–92.
[22] Osman, D.; Cavet, J. S. Adv. Appl. Microbiol. 2008, 65, 217–247.
[23] Walsh, J. M. QJM-An Int. J. Med. 2011, 104, 775–778.
[24] Ohncilla, M.; A Mitchell, K. Semin. Liver Dis. 2011, 31, 239–244.
[25] Butterworth, R. F. Neurotox Res 2010, 18, 100–105.
[26] Tuormaa, T. E. J. Orthomol. Med. 2000, 15, 145–156.
[27] Allen, K. G. D.; Klevay, L. M. Curr. Opin. Lipidology 1994, 5, 22–28.
[28] Rivera-Mancía, S.; Pérez-Neri, I.; Ríos, C.; Tristán-López, L.; Rivera-Espinosa, L.; Montes, S. Chem. Biol. Interact. 2010, 186, 184–199.
[29] Turski, M. L.; Thiele, D. J. J. Biol. Chem. 2009, 284, 717–721.
[30] Bremner, I.; Beattie, J. H. Proc. Nutr. Soc. 1995, 54, 489–499.
[31] Chan, S.; Gerson, B.; Subramaniam, S. Clin. Lab. Med. 1998, 18, 673–685.
[32] Klevay, L. M. J. Am. Coll. Nutr. 1998, 17, 322–326.
[33] Copper in Drinking-water; World Health Organization: Geneva, Switzerland, 1998
[34] http://water.epa.gov/drink/contaminants/basicinformation/copper.cfm (accessed September 2011).
[35] Lin, S.-J.; Lee, C.-F.; Tseng, W.-C.; Huang, Y.-L.; Wu, H.-L. Biol. Trace Elem. Res. 2006, 111, 255–263.
[36] Babich, P. S.; Tsymbalenko, N. V.; Klotchenko, S. A.; Platonova, N. A.; Masalova, O. O.; Zatulovski, E. A.; Shavlovskii, M. M.; Sapronov, N. S.; Puchkova, L. V. Bull. Exp. Biol. Med. 2009, 148, 529–597.
[37] Zeyrek, D.; Soran, M.; Cakmak, A.; Kocyigit, A.; Iscan, A. Indian Pediatr. 2009, 46, 675–680.
[38] Singh, R. R.; Kumar, S.; Nada, R.; Prasad, R. Mol. Cell. Biochem. 2006, 282, 13–21.
[39] Bo, S.; Durazzo, M.; Gambino, R.; Berutti, C.; Milanesio, N.; Caropreso, A.; Gentile, L.; Cassader, M.; Cavallo-Perin, P.; Pagano, G. J. Nutrition 2008, 138, 305–310.
[40] Olivares, M.; Pizarro, F.; López de Romaña, D.; Ruz, M. Biol. Trace Elem. Res. 2010, 136, 180–186.
[41] Garmizo, G.; Frauens, B. J. Optom. Vis. Sci. 2008, 85, 802–807.
[42] Liu, J.; Shi, H.; Shen, C.; Zhou, W.; Dai Q.; Jiang, Y. Biol. Trace Elem. Res. 2010, 135, 31–37.
[43] Maia, P. A.; Figueirdo, R. C. B.; Anastácio, A. S.; Porto da Silveira, C. L.; Donangelo, C. M. Nutrition 2007, 23, 248–253.
[44] Amancio, O. S.; Chaud, D. A.; Yanaguibashi, G.; Hilário, M. E. Eur. J. Clin. Nutr. 2003, 57, 706–712.
[45] Thakur, S.; Gupta, N.; Kakkar, P. Eur. J. Pediatr 2004, 163, 742–744.
[46] Shaw, J. C. L. Arch. Dis. Child. 1988, 63, 448–455.
[47] Zhang, Y.; Lin, Z. X.; Li, W. Q.; Zhang, Q. X.; Li, H.; Luo, H. J.; Luo, W. H. Spectrosc Spectral Anal. 2009, 29, 2864–2866.
[48] Zhang, Y.; Lin, Z. X.; Li, H.; Peng, L.; Luo, H. J.; Li, W. Q.; Luo, W. H. Spectrosc Spectral Anal. 2010, 30, 816–819.
[49] Jakmunee J.; Junsomboon, J. Talanta 2008, 77, 172–175.
[50] Kobayashi, K.; Katsuya, Y.; Abdulah, R.; Koyama, H. Biol. Trace Elem. Res. 2007, 115, 87–93.
[51] Sardans, J.; Montes, F.; Peñuelas, J. Spectrochim. Acta Part B 2010, 65, 97–112.
[52] Pourreza, N.; Hoveizavi, R. Anal. Chimica Acta 2005, 549, 124–128.
[53] Ammann, A. A. J. Mass Spectrom. 2007, 42, 419–427.
[54] Beauchemin, D. Anal. Chem. 2008, 80, 4455–4486.
[55] Hardcastie, J. L.; Compton, R.G. Electroanalysis 2002, 14, 753–759.
[56] Klein, G.; Kaufmann, D.; Schürch, S.; Reymond, J.-L. Chem. Commun. 2001, 561–562.
[57] Boiocchi, M.; Fabbrizzi, L.; Licchelli, M.; Sacchi, D.; Vázquez, M.; Zampa, C. Chem. Commun. 2003, 1812–1813.
[58] Xu, X.; Daniel, W. L.; Wei, W.; Mirkin, C. A. small 2010, 5, 623–626.
[59] Liu, J.; Lu, Y. Chem. Commun. 2007, 4872–4874.
[60] Yin, B.-C.; Zuo, P.; Huo, H.; Zhong, X.; Ye, B.-C. Anal. Biochem. 2010, 401, 47–52.
[61] Zhou, Y.; Wang, S.; Zhang K.; Jiang, X. Angew. Chem. Int. Ed. 2008, 47, 7454–7456.
[62] Wang, Y.; Yang, F.; Yang, X. Nanotechnology 2010, 21, 205502.
[63] Liu, J.; Lu, Y. Chem.Commun. 2007, 46, 4872–4874.
[64] Liu, J.; Lu, Y. J. Am. Chem. Soc. 2007, 129, 9838–9839.
[65] Yin, B.-C.; Ye, B.-C.; Tan, W.; Wang, H.; Xie, C.-C. J. Am. Chem. Soc. 2009, 131, 14624–14625.
[66] Hasoň, S.; Vetterl, V. Anal. Chem. 2006, 78, 5179–5183.
[67] Wang, C.; Wang, J.; Liu, D.; Wang, Z. Anal. Methods 2010, 2, 1467–1471.
[68] Guo, Y.; Wang, Z.; Qu, W.; Shao, H.; Jiang, X. Biosens. Bioelectron.2011, 26, 4064
[69] Chen, W.; Tu, X.; Guo, X. Chem. Commun. 2009, 1736–1738.
[70] Tu, X.; Chen, W.; Guo, X. Nanotechnology 2011, 22, 095701.
[71] Lin, Y.-W.; Huang, C.-C.; Chang, H.-T. Analyst 2011, 136, 863–871.
[72] Yang, X.; Wang, E. Anal. Chem. 2011, 83, 5005–5011.
[73] Zhang, Y.; Li, B.; Xu, C. Analyst 2010, 135, 1579–1584.
[74] Durgadas, C. V.; Sharma, C. P.; Sreenivasan, K. Analyst 2010, 136, 933–940.
[75] Muhanmmed, M. A. H.; Verma, P. K.; Pal, S. K.; Retnakumari, A.; Koyakutty, M.; Nair, S.; Pradeep, T. Chem, Eur. J. 2010, 16, 10103–10112.
[76] Koneswaran, M.; Narayanaswamy, R. Sens. Actuators B Chem. 2009, 139, 104–109.
[77] Knecht, M. R.; Sethi, M. Anal. Bioanal. Chem. 2009, 46, 394–351.
[78] Kneipp, J.; Kneipp, H.; Wittig, B.; Kneip, K. Nanomed. Nanotechnol. Biol. Med. 2010, 6. 214–226.
[79] El-Ansary, A.; Faddah, L. M. Nanotechnology Sci. Appl. 2010, 3, 65–76.
[80] Sannomiya, T.; Vörös, J. Trends Biotechnol. 2011, 29, 343–351.
[81] Han, B.; Wang, E. Anal. Bioanal. Chem. DOI 10.1007/s00216-011-5307-6.
[82] Guo, S.; Wang, E. Nano. Today 2011, 6, 240–264.
[83] Jin, R. Nanoscale 2010, 2, 343–362.
[84] Lin, C.-A. J.; Lee, C.-H.; Hsieh, J.-T.; Wang, H.-H.; Li, J. K.; Shen, J.-L.; Chan, W.-H.; Yeh, H.-I.; Chang, W. H. J. Med. Biol. Eng. 2009, 29, 276–283.
[85] Seydack, M. Biosens. Bioelectron. 2005, 20, 2454–2469.
[86] Ferreira da Silva, B.; Pérez, S.; Gardinalli, P.; Singhal, R. K.; Mozeto, A. A.; Barceló, D. Trends Anal. Chem. 2011, 30, 528–540.
[87] Garcia, M. A. J. Phys. D: Appl. Phys. 2011, 44, 283001.
[88] Shim, S.-Y.; Lim, D.-K.; Nam, J.-M. Nanomedicine 2008, 3, 215–232.
[89] Mustafa, D. E.; Yang, T.; Xuan, Z.; Chen, S.; Tu, H.; Zhang, A. Plasmonics 2010, 5, 221–231.
[90] Wu, A.; Jin, R. Nano. Lett. 2010, 10, 2568–2573.
[91] Aikens, C. M. J. Phys. Chem. Lett. 2011, 2, 99–104.
[92] Diez, I.; Ras, R. H. A. Nanoscale 2011, 3, 1963–1970.
[93] Yao, H. Curr. Nanosci. 2008, 4, 92–97.
[94] Wilcoxon, J. P.; Abrams, B. L. Chem. Soc. Rev. 2006, 35, 1162–1194.
[95] Matheu, P.; Lim, S. H.; Derkacs, D.; McPheeters, C.; Yu, E. T. Appl. Phys. Let. 2008, 93, 113108.
[96] Qu, D.; Liu, F.; Yu, J.; Xie, W.; Xu, Q.; Li, X.; Huang, Y. Appl. Phys. Let. 2011, 98, 113119–1113121.
[97] West, J. L.; Halas, N. J. Ann. Rev. Biomed. Eng. 2003, 5, 285–292.
[98] Ali, M. E.; Hashim, U.; Mustafa, S.; Che Man, Y. B.; Yusop, M. H. M.; Bari, M. F.; Islam, K. N.; Hasan, M. F. Nanotechnology 2011, 22, 195503.
[99] Grier, D. G. Nature 2003, 424, 810–816.
[100] Psaltis, D.; Quake, S. R.; Yang, C. Nature 2006, 442, 381–386.
[101] Ozbay, E. Science 2006, 311, 189–193.
[102] Engheta, N. Science 2007, 317, 1698–1702.
[103] Mizuno, S.; Benino, Y.; Fujiwara, T.; Komatsu, T. Japan Society Appl. Phys. 2006, 45, 6121–6125.
[104] Beqa, L.; Singh, A. K.; Khan, S. A.; Senapati, D.; Arumugam, S. R.; Ray, P. C. ACS Appl. Mater. Interfaces 2011, 3, 668–673.
[105] Mashhadizadeh, M. H.; Talemi, R. P. Anal. Chin. Acta 2011, 692, 109–115.
[106] Tan, Z.-Q.; Liu, J.-F. Anal. Chem. 2010, 82, 4222–4228.
[107] Kim, Y.-R.; Mahajan, R. K.; Kim, J. S. ; Kim, H. ACS Appl. Mater. Interfaces 2010, 2, 292–295.
[108] Wang, Y.; Yang, F.; Yang, X. Nanotechnology 2010, 21, 205502.
[109] Cho, Y.; Lee, S. S.; Jung, J. H. Analyst 2010, 135, 1551–1555.
[110] Hung, Y.-L.; Hsiung, T.-M.; Chen, Y.-Y.; Huang, C.-C. Talanta 2010, 82, 516–522.
[111] Li, Y.; Wu, P.; Xu, H.; Zhang, Z.; Zhong, X. Talanta 2011, 84, 508–512.
[112] Lou, T.; Chen, Z.; Wang, Y.; Chen, L. ACS Appl. Mater. Interfaces 2011, 3, 1568–1573.
[113] Chai, F.; Wang, C.; Wang, T.; Li, L.; Su, Z. ACS Appl. Mater. Interfaces 2010, 2, 1466–1470.
[114] Zhang, F. Q.; Zeng, L. Y.; Zhang, Y. X.; Wang, H. Y.; Wu, A. G. Nanoscale 2011, 3, 2150–2154.
[115] Lee, J.-S.; Han, M. S.; Mirkin, C. A. Angew. Chem. Int. Ed. 2007, 46, 4093–4096.
[116] Yu, C.-J.; Tseng, W.-L. Langmuir 2008, 24, 12717–12722.
[117] Lan, G.-Y.; Huang, C.-C.; Chang, H.-T. Chem. Commun. 2010, 46, 1257–1259.
[118] Durgadas, C. V.; Sharma, C. P.; Sreenivasan, K. Analyst 2011, 136, 933–940.
[119] Lin, Y.-H.; Tseng, W.-L. Anal. Chem. 2010, 82, 9194–9200.
[120] Pu, K.-Y.; Luo, Z.; Li, K.; Xie, J.; Liu, B. J. Phys. Chem. C 2011, 115, 13069–13075.
[121] Su, Y.-T.; Lan, G.-Y.; Chen, W.-Y.; Chang, H.-T. Anal. Chem. 2010, 82, 8566–8572.
[122] Liu, S.; Lu, F.; Zhu, J.-J. Chem. Commun. 2011, 47, 2661–2663.
[123] Tu, X.; Chen, W.; Guo, X. Nanotechnology 2011, 22, 095701.
[124] Shang, L.; Dong, S. J. Mater. Chem. 2008, 18, 4636–4640.
[125] Yu, X.; Wang, Q. Microchim. Acta 2011, 173, 293–298.
[126] Guo, C.; Irudayaraj, J. Anal. Chem. 2011, 83, 2883–2889.
[127] Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T. Angew. Chem. Int. Ed. 2007, 46, 6824–6828.
[128] Wei, H.; Wang, Z.; Yang, L.; Tian, S.; Hou, C.; Lu, Y. Analyst 2010, 135, 1406–1410.
[129] Bootharaju, M. S.; Pradeep, T. Langmuir 2011, 27, 8134–8143.
[130] Li, T.; Zhang, L.; Ai, J.; Dong, S.; Wang, E. ACS Nano. Org. 2011, 5, 6334–6338.
[131] Kawasaki, H.; Yoshimura, K.; Hamaguchi, K.; Arakawa, R. Anal. Sci. 2011, 27, 591–596.
[132] Hu, D.; Sheng, Z.; Gong, P.; Zhang, P.; Cai, L. Analyst 2010, 135, 1411–1416.
[133] Chen, Y.-Y.; Chang, H.-T.; Shiang, Y.-C.; Hung, Y.-L.; Chiang, C.-K.; Huang, C.-C. Anal. Chem. 2009, 81, 9433–9439.
[134] Lee, Y.-F.; Huang, C.-C. ACS Appl. Mater. Interfaces 2011, 3, 2747–2754.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔