跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 05:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:溫士漢
研究生(外文):Shih-Han Wen
論文名稱:Hif1α 弱化透過增強spi1的表現促進斑馬魚胚胎髓狀細胞生成
論文名稱(外文):Hif1α knockdown promotes myelopoiesis in zebrafish embryo through the enhancement of spi1 transcription
指導教授:胡清華胡清華引用關係陳秀儀陳秀儀引用關係
指導教授(外文):Chih-Hua HuShiow-Yi Chen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:44
中文關鍵詞:胚胎造血斑馬魚髓狀細胞生成紅血球生成
外文關鍵詞:hematopoiesisgata1spi1myelopoiesiserythropoiesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
先前的研究中發現Hypoxia-induced factor (hif1α) 弱化會造成GATA-binding protein 1 (gata-1) 表現下降,顯示hif1α可能調控gata-1基因的表現。相類似的情況也發生在人類血球中。gata-1的缺失會造成hematopoietic stem cells (HSCs) 的分化由gata-1所主導的erythropoiesis轉向由spleen focus forming virus proviral integration oncogene (spi1) 所主導的myelopoiesis,造成白血球增加,推測gata-1與spi1之間有著互相抑制的功能。因此本研究的目的想探討斑馬魚胚胎發育過程中,hif1α是否能透過調節gata-1間接影響spi1表現,進而控制erythropoiesis和myelopoiesis兩者的平衡。
在全覆式原位雜交的結果中,以monoocyte/macrophage 的探針lcp1 (lymphocyte cytosolic plastin 1)對spi1-mediated myeloid lineage 進行染色,發現弱化hif1α後會在22 hpf時期使 monocyte/macrophage的數量及分布區域都明顯增加,並在24 hpf時期觀察到在posterior ICM上,也有lcp1的表現。這些結果顯示當 hif1α被抑制時,會造成gata-1表現下降,間接使得spi1表現增加,促使common myeloid progenitor (CMP) 傾向於granulocyte/macrophage progenitor (GMP) 分化。目前已確認hif1α 弱化後,monocyte/macrophage確實有增加。未來將繼續以granulocyte探針mpo (myeloperoxidase)及erythrocyte探針hemoglobin進一步的分析,並進行基因救贖(gene rescue)的驗證,以確認上述推論的正確性。

Recent study revealed that depletion of hypoxia induced factor 1 alpha (hif1α) expression resulted in decrease of GATA binding protein 1 (gata1) transcription, suggesting that hif1α controls gata1 expression. Similar result was also found in humen erythrocyte. Blocking gata1 expression converted hematopoietic stem cell (HSCs) differentiation from gata1-mediated erythropoiesis to spi1-mediated myelopoiesis. There is an antagonistic regulation between gata1 and spi1 expression. It raised a possibility that spi1 transcription is controlled indirectly by hif1 through an antagonistic regulation between gata1 and spi1, which in turn specified the fate of HSC differentiation. Knockdown hif1α resulted in decrease of gata1 and increase of spil and lcp1 expression, suggesting that depleting hif1α converted HSC to spil-mediated myeloid-lineage differentiation. In summary, this study revealed that HIF1represses spi1 expression indirectly through the antagonist regulation between gata1 and spi1.
目錄
謝辭 i
摘要 ii
Abstract iv
目錄 v
壹、 緒論 1
一、 哺乳動物胚胎血液生成 1
二、 斑馬魚胚胎血液生成 1
三、 GATA結合蛋白1 (gata1)與spleen focus forming virus proviral integration oncogene (spi1/pu.1) 3
四、 研究動機與目的 4
貳、 實驗材料與方法 5
一、 實驗材料與儀器 5
二、 實驗藥品配製 8
三、 實驗方法 11
參、 實驗結果 30
一、 弱化hif1α會增加斑馬魚胚胎內單核球/巨噬細胞並減少紅血球減少 30
二、缺氧誘導因子 (hif) 1α弱化造成spi1表現上升 31
肆、 討論 33
伍、 圖表 35
圖一、弱化Hif1α會增加斑馬魚胚胎單核球/巨噬細胞lcp1的表現。 35
圖二、 hif1α弱化會抑制血紅素基因的表現。 36
圖三、hif1α 弱化對spi1表現的影響。 37
圖四、QRT-PCR分析hif1α弱化對spi1、lcp1與gata1表現的影響 38
陸、 參考文獻 39
柒、附錄 43
附錄一、初期血液生成之紅白血球分化路徑與調控基因 43
附錄二、QRT-PCR 基因引子序列 44


Adelman, D.M., Gertsenstein, M., Nagy, A., Simon, M.C., and Maltepe, E. (2000). Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes &; development 14, 3191-3203.
Amarilio, R., Viukov, S.V., Sharir, A., Eshkar-Oren, I., Johnson, R.S., and Zelzer, E. (2007). HIF1alpha regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. Development 134, 3917-3928.
Bennett, C.M., Kanki, J.P., Rhodes, J., Liu, T.X., Paw, B.H., Kieran, M.W., Langenau, D.M., Delahaye-Brown, A., Zon, L.I., Fleming, M.D., et al. (2001). Myelopoiesis in the zebrafish, Danio rerio. Blood 98, 643-651.
Chen, H., Ray-Gallet, D., Zhang, P., Hetherington, C.J., Gonzalez, D.A., Zhang, D.E., Moreau-Gachelin, F., and Tenen, D.G. (1995). PU.1 (Spi-1) autoregulates its expression in myeloid cells. Oncogene 11, 1549-1560.
Compernolle, V., Brusselmans, K., Franco, D., Moorman, A., Dewerchin, M., Collen, D., and Carmeliet, P. (2003). Cardia bifida, defective heart development and abnormal neural crest migration in embryos lacking hypoxia-inducible factor-1 alpha. Cardiovasc Res 60, 569-579.
Cramer, T., Yamanishi, Y., Clausen, B.E., Forster, I., Pawlinski, R., Mackman, N., Haase, V.H., Jaenisch, R., Corr, M., Nizet, V., et al. (2003). HIF-1 alpha is essential for myeloid cell-mediated inflammation. Cell 112, 645-657.
Cumano, A., and Godin, I. (2007). Ontogeny of the hematopoietic system. Annual review of immunology 25, 745-785.
de Jong, J.L.O., and Zon, L.I. (2005). Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu Rev Genet 39, 481-501.
Detrich, H.W., 3rd, Kieran, M.W., Chan, F.Y., Barone, L.M., Yee, K., Rundstadler, J.A., Pratt, S., Ransom, D., and Zon, L.I. (1995). Intraembryonic hematopoietic cell migration during vertebrate development. Proc Natl Acad Sci U S A 92, 10713-10717.
Dunwoodie, S.L. (2009). The Role of Hypoxia in Development of the Mammalian Embryo. Dev Cell 17, 755-773.
Fujiwara, Y., Browne, C.P., Cunniff, K., Goff, S.C., and Orkin, S.H. (1996). Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. P Natl Acad Sci USA 93, 12355-12358.
Galloway, J.L., Thisse, C., Zhou, Y., Beltre, R., Thisse, B., and Zon, L.I. (2004). Conversion of erythropoiesis to myelopoiesis in gata1-deficient zebrafish embryos. Blood 104, 759a-759a.
Galloway, J.L., Wingert, R.A., Thisse, C., Thisse, B., and Zon, L.I. (2005a). Gata-independent regulation of red cell specific gene expression. Blood 106, 494a-494a.
Galloway, J.L., Wingert, R.A., Thisse, C., Thisse, B., and Zon, L.I. (2005b). Loss of Gata1 but not Gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos. Developmental Cell 8, 109-116.
Haase, V.H. (2010). Hypoxic regulation of erythropoiesis and iron metabolism. Am J Physiol-Renal 299, F1-F13.
Hogan, B.M., Layton, J.E., Pyati, U.J., Nutt, S.L., Hayman, J.W., Varma, S., Heath, J.K., Kimelman, D., and Lieschke, G.J. (2006). Specification of the primitive myeloid precursor pool requires signaling through Alk8 in zebrafish. Current Biology 16, 506-511.
Hsu, K., Traver, D., Kutok, J.L., Hagen, A., Liu, T.X., Paw, B.H., Rhodes, J., Berman, J.N., Zon, L.I., Kanki, J.P., et al. (2004). The pu. 1 promoter drives myeloid gene expression in zebrafish. Blood 104, 1291-1297.
Ivnitski-Steele, I.D., Sanchez, A., and Walker, M.K. (2004). 2,3,7,8-Tetrachlorodibenzo-p-dioxin reduces myocardial hypoxia and vascular endothelial growth factor expression during chick embryo development. Birth Defects Res A 70, 51-58.
Iwasaki, H., Mizuno, S., Wells, R.A., Cantor, A.B., Watanabe, S., and Akashi, K. (2003). GATA-1 converts lymphoid and myelomonocytic progenitors into the megakaryocyte/erythrocyte lineages. Immunity 19, 451-462.
Iyer, N.V., Kotch, L.E., Agani, F., Leung, S.W., Laughner, E., Wenger, R.H., Gassmann, M., Gearhart, J.D., Lawler, A.M., Yu, A.Y., et al. (1998). Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes &; development 12, 149-162.
Jowett, T., and Lettice, L. (1994). Whole-mount in situ hybridizations on zebrafish embryos using a mixture of digoxigenin- and fluorescein-labelled probes. Trends in genetics : TIG 10, 73-74.
Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). Stages of Embryonic-Development of the Zebrafish. Dev Dynam 203, 253-310.
Ko, C.Y., Tsai, M.Y., Tseng, W.F., Cheng, C.H., Huang, C.R., Wu, J.S., Chung, H.Y., Hsieh, C.S., Sun, C.K., Hwang, S.P., et al. (2011). Integration of CNS survival and differentiation by HIF2alpha. Cell death and differentiation 18, 1757-1770.
Kohler, T., Reizis, B., Johnson, R.S., Weighardt, H., and Forster, I. (2012). Influence of hypoxia-inducible factor 1 alpha on dendritic cell differentiation and migration. Eur J Immunol 42, 1226-1236.
Kozak, K.R., Abbott, B., and Hankinson, O. (1997). ARNT-deficient mice and placental differentiation. Dev Biol 191, 297-305.
Krishnan, J., Ahuja, P., Bodenmann, S., Knapik, D., Perriard, E., Krek, W., and Perriard, J.C. (2008). Essential Role of Developmentally Activated Hypoxia-Inducible Factor 1 alpha for Cardiac Morphogenesis and Function. Circ Res 103, 1139-1146.
Lieschke, G.J., Oates, A.C., Paw, B.H., Thompson, M.A., Hall, N.E., Ward, A.C., Ho, R.K., Zon, L.I., and Layton, J.E. (2002). Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis: Implications for axial patterning. Dev Biol 246, 274-295.
Monteiro, R., Pouget, C., and Patient, R. (2011). The gata1/pu.1 lineage fate paradigm varies between blood populations and is modulated by tif1 gamma. Embo J 30, 1093-1103.
Muhlegger, K., Huber, E., von der Eltz, H., Ruger, R., and Kessler, C. (1990). Non-radioactive labeling and detection of nucleic acids. IV. Synthesis and properties of digoxigenin-modified 2'-deoxyuridine-5'-triphosphates and a photoactivatable analog of digoxigenin (photodigoxigenin). Biological chemistry Hoppe-Seyler 371, 953-965.
Orkin, S.H., and Zon, L.I. (2008). Hematopoiesis: An evolving paradigm for stem cell biology. Cell 132, 631-644.
Paik, E.J., and Zon, L.I. (2010). Hematopoietic development in the zebrafish. International Journal of Developmental Biology 54, 1127-1137.
Palis, J., and Yoder, M.C. (2001). Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp Hematol 29, 927-936.
Peyssonnaux, C., Datta, V., Cramer, T., Doedens, A., Theodorakis, E.A., Gallo, R.L., Hurtado-Ziola, N., Nizet, V., and Johnson, R.S. (2005). HIF-1 alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest 115, 1806-1815.
Provot, S., Zinyk, D., Gunes, Y., Kathri, R., Le, Q., Kronenberg, H.M., Johnson, R.S., Longaker, M.T., Giaccia, A.J., and Schipani, E. (2007). Hif-1alpha regulates differentiation of limb bud mesenchyme and joint development. The Journal of cell biology 177, 451-464.
Rhodes, J., Hagen, A., Hsu, K., Deng, M., Liu, T.X., Look, A.T., and Kanki, J.P. (2005). Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev Cell 8, 97-108.
Rius, J., Guma, M., Schachtrup, C., Akassoglou, K., Zinkernagel, A.S., Nizet, V., Johnson, R.S., Haddad, G.G., and Karin, M. (2008). NF-kappa B links innate immunity to the hypoxic response through transcriptional regulation of HIF-1 alpha. Nature 453, 807-U809.
Scott, E.W., Simon, M.C., Anastasi, J., and Singh, H. (1994). Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573-1577.
Tsiftsoglou, A.S., Vizirianakis, I.S., and Strouboulis, J. (2009). Erythropoiesis: Model Systems, Molecular Regulators, and Developmental Programs. Iubmb Life 61, 800-830.
Weiss, M.J., and Orkin, S.H. (1995). Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis. Proc Natl Acad Sci U S A 92, 9623-9627.
Zampell, J.C., Yan, A., Avraham, T., Daluvoy, S., Weitman, E.S., and Mehrara, B.J. (2012). HIF-1 alpha coordinates lymphangiogenesis during wound healing and in response to inflammation. Faseb J 26, 1027-1039.
Zhang, F.L., Shen, G.M., Liu, X.L., Wang, F., Zhao, Y.Z., and Zhang, J.W. (2011). Hypoxia-inducible factor 1-mediated human GATA1 induction promotes erythroid differentiation under hypoxic conditions. Journal of cellular and molecular medicine.
Zon, L.I., Youssoufian, H., Mather, C., Lodish, H.F., and Orkin, S.H. (1991). Activation of the erythropoietin receptor promoter by transcription factor GATA-1. Proc Natl Acad Sci U S A 88, 10638-10641.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top