(3.235.191.87) 您好!臺灣時間:2021/05/13 15:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃羿霖
研究生(外文):Yi-Lin Huang
論文名稱:鐵鎵薄膜之微探刻紋研究
論文名稱(外文):Nano-indentation stusies of Fe-Ga films
指導教授:任盛源
指導教授(外文):Shien-Uang Jen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:90
中文關鍵詞:鐵鈷鎵薄膜楊氏係數硬度有限元素分析法柏松比
外文關鍵詞:iron-cobalt gallium filmYoung's modulushardnessfinite element analysisPoisson ratio
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本論文是利用濺鍍方式將單層鐵鈷鎵薄膜沉積於Si(100)基板上,其成分為Fe81-XCoXGa19(X=0、3、7、11、15、19、)改變Co的含量,在鍍膜參數方面使用P=80(功率)、Ar=5mtorr(氬壓)、Tf=150nm~200nm。樣品製備完畢,奈米壓痕試驗儀得到薄膜楊氏係數(Ef)及硬度(Hf),並使用不同的柏松比0.3和-0.55來量測鐵鈷鎵數值,一般我們定義膜厚在50 nm之前皆為島狀成長的型態,薄膜厚度達100 nm以上時,薄膜已進行平面成長,楊氏係數較不受基材效應之影響,故得到較為單純薄膜的機械性質。
最後使用有限元素分析法(FEA)模擬Fe81Ga19奈米壓痕負載-深度曲線,在力學分析過程當中,有限元素分析(FEA)原理為將物體切成許多元素(element),且元素由相互連結節點(node)構成,在力學分析過程當中,元素必須滿足平衡方程式。
並且觀察FEA圖形當ν=0.3(柏松比)和ν=-0.55(柏松比)時,FEA圖形有不同的受力分部,ν=0.3從圖形觀察所受的力比較均勻,當ν=-0.55時在薄膜上受力有向外擴張的向發生,且留在樣品上的殘力也有所不同。

This paper adapts sputtering to grow single-layer Fe-Co-Ga films deposited on Si (100) substrate, the composition Fe81-XCoXGa19 (X = 0,3,7,11,15,19) change of the Co content,used in the coating parameters P = 80 (power), Ar the = 5mtorr (argon pressure), Tf = 150nm ~ 200nm.

Sample preparation is completed, the nanoindentation tester thin film Young's modulus (Ef) and hardness (Hf), and using different Poisson ratio 0.3 and -0.55 to measure iron cobalt gallium values generally, we define the thickness of 50 nm before are the patterns of island growth, film thickness of 100 nm, the film has a flat growth, the Young's modulus is less susceptible to the effect of the substrate effect, it is relatively simple mechanical properties of the films.

Finally, the finite element analysis (FEA) simulation Fe81Ga19 nanoindentation load - depth curve in the process of mechanical analysis, finite element analysis (FEA) principles for the object to cut a lot of elements (element), and the elements from each link node (node) constitute, in the process of mechanical analysis, the element must satisfy the equilibrium equations.

And observed FEA graphics ν = 0.3 (Poisson ratio) and ν = -0.55 (Poisson ratio), FEA graphics have a different segment of the force, ν = 0.3 observed from the graph the force is uniform, when ν = -0.55 in the film by the force of outward expansion to occur, and the residual force to remain in the sample are different.

目 錄
第一章 簡介 ……………………………………………………………1
1.1 Fe-Ga特性介紹......................................1
1.2第三元素添加Fe-Ga............................3
第二章 文獻回顧 ………………………………………………………5
2.1 薄膜成長………………………………………….….…………5
2.1.1 薄膜成長機制..…………………………….….…………5
2.1.2 奈米晶粒/非晶結構的強化機構………….…..…………7
2.2奈米壓痕試驗..……………………………….…………………9
2.2.1基材效應與壓痕大小效應……….……………………...10
2.2.2原子撞擊效應………………….………………………...11
2.2.3有限元素分析……………….…………………………...12
第三章 實驗儀器與原理………………………………………………17
3.1高真空磁濺鍍系統及高溫蒸鍍系統……………….…………17
3.1.1高真空磁濺鍍系統………………………….…………17
3.1.2高溫蒸鍍系統……………………………….…………17
3.1.3濺鍍原理……………………………………….………18
3.1.4本濺鍍系統與設備…………………………….………19
3.2分析檢測設備…………………………………………….……20
3.2.1探針式膜厚測定儀 .……………………………….……20
3.2.2奈米壓痕試驗儀簡介 .……………………………….…21
3.2.3鑽石探針種類 .……………………………………….…23
3.2.4奈米壓痕試驗儀實驗原理...……………………….……24
3.2.5奈米壓痕試驗儀架構..…………………………….……26
3.2.6奈米壓操作……………………………………….……..27
第四章 實驗流程與方法………………………………………………36
4.1實驗流程………………………………………………………36
4.2濺鍍機操作步驟………………………………………………36
4.2.1濺鍍機抽真空步驟………………………….…………36
4.2.2濺鍍機鍍膜步驟…………………………….…………38
4.3探針式膜厚測定儀……………………………………………40
4.4奈米壓痕儀……………………………………………………41
第五章 結果與討論……………………………………………………51
5.1使用柏松比0.3和-0.55來量測鐵鈷鎵的楊氏係數…………51
5.2使用柏松比0.3和-0.55來量測鐵鈷鎵的硬度……….……52
5.3 FEA模擬出奈米壓痕之變化…………………………………53
5.4 FEA比較Fe81Ga19使用柏松比0.3和-0.55所受的應力比較…54

第六章 結 論 …………………………………………………………66
參考文獻 ………………………………………………………………68
附錄 ……………………………………………………………………71


[1]. J. Musil, “Hard and superhard nanocomposite coatings”, Surface and Coatings Technology 125, pp. 322, (2000).

[2]. S.Veprek and S.Reiprich, “A concept for the design of novel superhard coating” Thin Solid Films 268, pp.64, (1995).

[3]. S. Veprek, “New development in superhard coatings: the superhard nanocrystalline-amorphous composites”, Thin Solid Films 317, pp. 449, (1998.)

[4]. S. Veprek, “Electronic and mechanical properties of nanocrystalline composites when approaching molecular size”, Thin Solid Films 297, pp. 145,( 1997).

[5]L. Dai, J. Cullen, M. Wuttig, T.A. Lograsso, and E. Quandt, J. Appl. Phys. 93, 8627 (2003).

[6]. R. Saha and W. D. Nix, “Effects of the substrate on the determination of thin film mechanical properties by nanoindentation,” Acta Mater.,Vol.50,pp. 23,38, (2002).

[7]. Tony Fischer-Cripps, UMIS user’s handout, CSIRO (2000).

[8]. 何恕德,”以導電性原子力顯微術研究矽在奈米壓痕下之相變化行為”,清華大學材料科學工程學系碩士論文(2003)。

[9]. H. Hertz, J. Reine. Angew. Math. 92, 156 (1882).

[10]. 施孟君, 何恕德, 林鶴南,“基材效應對薄膜奈米壓痕量測之影響”, 中國材料學會年會論, (2002).

[11]. B.D. Fabes, W.C. Oliver, “The determination of film hardness from the composite response of film and substrate to nanometer scale indentations”, Journal of Materials Research 7, No. 11, pp. 3056, (1992).

[12]. Ranjana Saha, William D.Nix, “Effect of substrate on the determination of thin film mechanical properties by nanoindentation”, Acta Materials 50, pp. 23, (2002).

[13]. S. Veprek, Ali S. Argon, “Mechanical properties of superhard nanocomposites”, Surface and Coatings Technology 146-147, pp. 175, (2001).

[14]. J. Musil, F. Kunc, H. Zeman, H. Polakova, “Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposites coatings”, Surface and Coatings Technology 154, pp. 304, (2002).

[15]. Q. Ma and D.R. Clarke, “Size Dependence of the Hardness of Silver Single Crystals”, Journal of Materials Research 10, pp. 853, (1995) .

[16]. M.B. Daia, P. Aubert, S. Labdi, C. Sant, F.A. Sadi, Ph. Houdy, and J.L. Bozet, “Nanoindentation investigation of Ti/TiN multilayers films”, Journal of Applied Physics 87, pp.7753,( 2000).

[17]A.C. Fishcher-Cripps, UMIS Nanoindentation user’s handout, CSIRO (2000).

[18]. D. S. Gardner and P.A. Flinn, “Mechanical stress as a function of temperature for aluminum alloy films, “ J. Appl. Phys., 67, pp.1831-1843,(1990).

[19].W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).

[20]. J.M. Gaudet, T.D. Hatchard, S.P. Farrell, R.A. Dunlap, Properties of Fe–Ga based powders prepared by mechanical alloying, Journal of Magnetism and Magnetic Materials,320,821-829,(2008).

[21]. Pinai Mungsantisuk, Robert P. Corson, and Sivaraman Guruswamy,Influence of Be and Al on the magnetostrictive behavior of FeGa alloys J. Appl. Phys.98,123907 (2005).

[22]. Mungsantisuk P, Corson R, Guruswamy S In: Chandra D, Bautista RG, Schlapbach L (eds) Advanced materials for energy conversion II. TMS, p 275,(2004).

[23]. Mungsantisuk P, Corson R, Guruswamy S J Appl Phys 98,123907,(2005).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔