(3.238.235.155) 您好!臺灣時間:2021/05/11 03:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:賴奇鉉
研究生(外文):Chyi-Shiuan Lai
論文名稱:以光激發光光譜及光反射調制光譜研究鍺/矽0.15鍺0.85應力補償多重量子井之特性
論文名稱(外文):Photoluminescence and photoreflectance study of strain-compensated Ge/Si0.15Ge0.85 multiple-quantum-well structures
指導教授:林泰源林泰源引用關係
指導教授(外文):Tai-Yuan Lin
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:60
中文關鍵詞:多重量子井光激發光光譜光反射調制光譜高溫
外文關鍵詞:Gemultiple quantum wellphotoluminescencephotoreflectanceabove room temperature
相關次數:
  • 被引用被引用:1
  • 點閱點閱:134
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文中,我們主要以光激發螢光光譜(photoluminescence, PL)及光反射調制光譜(photoreflectance, PR)量測技術探討應力補償型鍺/矽0.15鍺0.85(Ge/Si0.15Ge0.85)多重量子井之光學特性。從溫度相依光激發螢光光譜實驗結果中,可以觀察鍺量子井的直接復合與間接復合的放光現象,同時探討兩者之間競爭性的發光復合機制。在高於室溫之溫度相依光激發螢光光譜實驗結果中,L點的載子受到熱躍至Γ點再以直接復合型式發光,此發光強度隨溫度升高而增強。另外我們利用光反射調制光譜觀測到量子井中的光學躍遷訊號。而在高於室溫之溫度相依光反射調制光譜實驗結果中,計算了鍺量子井躍遷訊號的與溫度依存性,與光激發螢光光譜之實驗結果相似,並且估算輕電洞(Light Hole)與重電洞(Heavy Hole)受應力影響而分裂的差異量。
A detailed optical characterization of strain-compensated Ge/Si0.15Ge0.85 multiple-quantum-well (MQW) structures was carried out by using photoluminescence (PL) and photoreflectance (PR) measurements. PL of strain-compensated Ge/Si0.15Ge0.85 MQW structures was studied under different temperatures. Both direct and indirect recombination of PL were observed in Ge/Si0.15Ge0.85 MQW and the competitive radiative recombination between direct and indirect recombination were discussed. For temperature dependent PL measurement above room temperature (RT), the relative intensity of direct to indirect recombination markedly increases with the increase of temperature. The enhancement of PL from direct recombination above RT has been attributed to the thermal excitation of carriers from L-type to Γ-type confined states. In addition, the possible transitions of MQW structures were observed in PR measurement above RT. The energy shift coefficient of Ge QW observed in PR was similar with that in PL. And, the energy splitting of light hole (LH) and heavy hole (HH) influenced by strain in MQW was also investigated.
中文摘要 I
Abstract II
致謝 III
目錄 V
圖索引 VII
表索引 X
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的與方法 4
1.3 論文架構 6
第二章 樣品結構與介紹 7
2.1 樣品結構資訊 7
2.2 矽鍺的基本性質 12
2.3 鍺/矽鍺多重量子井之基本介紹 16
第三章 實驗原理及方法 18
3.1 光激發螢光光譜量測 18
3.1.1 光激發螢光光譜源理 18
3.1.2 PL實驗方法與系統架構 20
3.2 光反射調制光譜相關理論 23
3.2.1 前言 23
3.2.2 反射率與介電函數之關係 24
3.2.3 未束縛態電場調制反射光譜 26
3.2.4 光反射調制光譜實驗方法與系統架構 28
第四章 結果與討論 33
4.1 樣品A與B鍺/矽鍺多重量子井之光激發螢光光譜實驗結果 33
4.2 樣品A鍺/矽鍺多重量子井之光反射調制光譜實驗結果 47
第五章 結論 54
參考文獻 56

[1] G. T. Reed, "Device physics - The optical age of silicon," Nature, vol. 427, pp. 595-596, 2004.
[2] O. I. Dosunmu, D. D. Cannon, M. K. Emsley, B. Ghyselen, L. Jifeng, L. C. Kimerling, and M. S. Unlu, "Resonant cavity enhanced Ge photodetectors for 1550 nm operation on reflecting Si substrates," IEEE J. Quantum Electron., vol. 10, pp. 694-701, 2004.
[3] http://www.ioffe.ru/SVA/NSM/Semicond/.
[4] L. Vivien, M. Rouviere, J. M. Fedeli, D. Marris-Morini, J. F. Damlencourt, J. Mangeney, P. Crozat, L. El Melhaoui, E. Cassan, X. Le Roux, D. Pascal, and S. Laval, "High speed and high responsivity germanium photodetector integrated in a Silicon-on-insulator microwaveguide," Opt. Express, vol. 15, pp. 9843-9848, 2007.
[5] Y. H. Kuo, Y. K. Lee, Y. S. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature, vol. 437, pp. 1334-1336, 2005.
[6] M. Casalino, L. Sirleto, L. Moretti, F. Della Corte, and I. Rendina, "Design of a silicon RCE Schottky photodetector working at 1.55μm," J. Lumines., vol. 121, pp. 399-402, 2006.
[7] L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, "Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si," Appl. Phys. Lett., vol. 72, pp. 3175-3177, 1998.
[8] H. Tanoto, S. F. Yoon, W. K. Loke, E. A. Fitzgerald, C. Dohrman, B. Narayanan, M. T. Doan, and C. H. Tung, "Growth of GaAs on vicinal Ge surface using low-temperature migration-enhanced epitaxy," J. Vac. Sci. Technol. B, vol. 24, pp. 152-156, 2006.
[9] C. L. Andre, J. A. Carlin, J. J. Boeckl, D. M. Wilt, M. A. Smith, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, and S. A. Ringel, "Investigations of high-performance GaAs solar cells grown on Ge-Si1-xGex-Si substrates," IEEE T. Electron. Dev., vol. 52, pp. 1055-1060, 2005.
[10] M. A. Green, J. H. Zhao, A. H. Wang, P. J. Reece, and M. Gal, "Efficient silicon light-emitting diodes," Nature, vol. 412, pp. 805-808, 2001.
[11] J. Sturm, H. Manoharan, L. Lenchyshyn, M. Thewalt, N. Rowell, J. P. Noël, and D. Houghton, "Well-resolved band-edge photoluminescence of excitons confined in strained Si1-xGex quantum wells," Phys. Rev. Lett., vol. 66, pp. 1362-1365, 1991.
[12] J. Mathews, R. T. Beeler, J. Tolle, C. Xu, R. Roucka, J. Kouvetakis, and J. Menéndez, "Direct-gap photoluminescence with tunable emission wavelength in Ge1−ySny alloys on silicon," Appl. Phys. Lett., vol. 97, 221912 (3pp), 2010.
[13] M. H. Liao, T. H. Cheng, and C. W. Liu, "Infrared emission from Ge metal-insulator-semiconductor tunneling diodes," Appl. Phys. Lett., vol. 89, 261913 (3pp), 2006.
[14] J. F. Liu, X. C. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, "Ge-on-Si laser operating at room temperature," Opt. Lett., vol. 35, pp. 679-681, 2010.
[15] A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, R. E. Leibenguth, S. P. Hui, C. J. Zydzik, K. W. Goossen, J. D. Wynn, B. J. Tseng, J. Lopata, J. A. Walker, J. E. Cunningham, and L. A. D'Asaro, "Vertical-cavity surface-emitting lasers flip-chip bonded to gigabit-per-second CMOS circuits," IEEE Photonic. Tech. L., vol. 11, pp. 128-130, 1999.
[16] K. W. Goossen, J. A. Walker, L. A. D'Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, "GaAs MQW Modulators Integrated with Silicon CMOS," IEEE Photonic. Tech. L., vol. 7, pp. 360-362, 1995.
[17] H. Presting, T. Zinke, A. Splett, H. Kibbel, and M. Jaros, "Room-temperature electroluminescence from Si/Ge/Si1−xGex quantum-well diodes grown by molecular-beam epitaxy," Appl. Phys. Lett., vol. 69, pp. 2376-2378, 1996.
[18] E. Gatti, E. Grilli, M. Guzzi, D. Chrastina, G. Isella, and H. von Känel, "Room temperature photoluminescence of Ge multiple quantum wells with Ge-rich barriers," Appl. Phys. Lett., vol. 98, 031106 (3pp), 2011.
[19] http://lness.como.polimi.it/lepecvd.php.
[20] C. Rosenblad, H. R. Deller, A. Dommann, T. Meyer, P. Schroeter, and H. von Kanel, "Silicon epitaxy by low-energy plasma enhanced chemical vapor deposition," J. Vac. Sci. Technol. A, vol. 16, pp. 2785-2790, 1998.
[21] F. Schaffler, "High-mobility Si and Ge structures," Semicond. Sci. Tech., vol. 12, pp. 1515-1549, 1997.
[22] E. A. Fitzgerald, Y. H. Xie, M. L. Green, D. Brasen, A. R. Kortan, J. Michel, Y. J. Mii, and B. E. Weir, "Totally relaxed GexSi1-x layers with low threading dislocation densities grown on Si substrates," Appl. Phys. Lett., vol. 59, pp. 811-813, 1991.
[23] J. H. Li, G. Springholz, J. Stangl, H. Seyringer, V. Holy, F. Schaffler, and G. Bauer, "Strain relaxation and surface morphology of compositionally graded Si/Si1-xGex buffers," J. Vac. Sci. Technol. B, vol. 16, pp. 1610-1615, 1998.
[24] C. Rosenblad, H. von Kanel, M. Kummer, A. Dommann, and E. Muller, "A plasma process for ultrafast deposition of SiGe graded buffer layers," Appl. Phys. Lett., vol. 76, pp. 427-429, 2000.
[25] T. Hackbarth, H. J. Herzog, M. Zeuner, G. Hock, B. A. Fitzgerald, M. Bulsara, C. Rosenblad, and H. von Kanel, "Alternatives to thick MBE-grown relaxed SiGe buffers," Thin Solid Films, vol. 369, pp. 148-151, 2000.
[26] S. M. Sze, Physics of Semiconductor Devices, 2nd ed.: Wiley, New York, 2007.
[27] M. V. Fischetti and S. E. Laux, "Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys," J. Appl. Phys., vol. 80, pp. 2234-2252, 1996.
[28] D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and O. Fidaner, "Ge Quantum Well Modulators on Si," ECS Transactions, vol. 16, pp. 851-856, 2008.
[29] B. O. Seraphin, The effect of an electric field on reflectivity of germanium, Proc. 7th Int. Conf. Phys. Semicond., 1964.
[30] P. H. Wu, D. Dumcenco, Y. S. Huang, H. P. Hsu, C. H. Lai, T. Y. Lin, D. Chrastina, G. Isella, E. Gatti, and K. K. Tiong, "Above-room-temperature photoluminescence from a strain-compensated Ge/Si0.15Ge0.85 multiple-quantum-well structure," Appl. Phys. Lett., vol. 100, 141905 (3pp), 2012.
[31] H. P. Hsu, P. H. Wu, Y. S. Huang, D. Chrastina, G. Isella, H. von Känel, and K. K. Tiong, "Photoreflectance study of direct-gap interband transitions in Ge/SiGe multiple quantum wells with Ge-rich barriers," Appl. Phys. Lett., vol. 100, 041905 (4pp), 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔