(34.226.234.102) 您好!臺灣時間:2021/05/12 11:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:傅彥鈞
論文名稱:應用奈米壓印技術製作微結構提升上發光有機發光二極體元件出光效率
論文名稱(外文):Application of Nano-imprint Technology to Fabricate Nanostructures on Top-Emitting Organic Light Emitting Diodes for Out-Coupling EfficiencyEnhancement
指導教授:魏培坤
指導教授(外文):Pei-Kun Wei
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:74
中文關鍵詞:上發光蝕刻矽奈米壓印出光效率
相關次數:
  • 被引用被引用:1
  • 點閱點閱:278
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:0
最近幾年由於半透明陰極的沉積技術逐漸成熟,上發光式的有機
發光二極體逐漸被重視,其具有高開口率以及良好的影像品質,特別
適合應用在高解析度的顯示器上面。因此我們選擇以上發光 OLED元
件作為基礎來進行研究。
在一般的OLED發光元件中,其對於出光的限制是最大的問題。
在傳統透明基板的下發光 OLED光耦合輸出效率僅20%,還有 80%的出
光被限制在元件中。而上發光元件採用的薄金屬陰極穿透度不如 ITO
之類下發光常用的材料,另外在加上材料和基板折射率匹配等問題,
出光限制會更嚴重,我們主要目的是利用奈米壓印結構提升上發光有
機發光二極體出光效率,本文中將採用微結構矽基板壓印塑膠膜及採
用折射率漸變的原理幫助出光。
就製作方面而言,我們使用不同壓印參數壓印的微結構塑膠膜結
合TOLED的應用,和以往黃光技術不同的是,奈米壓印技術相較以往
黃光技術的光學繞射極限的問題,可以做出更微小複雜的結構,而且
大大減少黃光製程的消耗和汙染。
最後我們利用微結構聚碳酸酯作為抗反射封裝層,加上厚 NPB覆
蓋層去作折射率匹配,成功將TOLED出光效率給提高。
Application of nano-imprint structure to enhance the light
out-coupling efficiency on the top-emitting organic light-emitting diodes。 The technology of deposition semi-transparent cathode has matured in recent years. The top organic light-emitting diode is gradually being taken seriously because of high aperture ratio and good image quality. TOLED particularly is suitable for applications in high-resolution display. We choose the TOLED to be the base of our research
In general OLED light emitting devices, light trapping is the major problem. The bottom-emitting OLED out-coupling efficiency is only 20%. 80% of the light is trapped within the device. The transparency of semi-transparent cathode of TOLED is lower than the ITO anode of BOLED, and the index mismatch between material and substrate. The light trapping will be stronger. We use nano-imprint to fabricate
nano-structure on PC film to enhance TOLED out-coupling efficiency.
Nano imprint can make smaller structure than lithography because of without diffraction limit. Greatly reduce the consumption and pollution of the lithography process
Finally, we use the micro-structure of PC film packaging film, plus thick NPB cover layer to match the refractive index, and successful enhance TOLED out-coupling efficiency
摘要 ..............................................I
Abstract .........................................II
目錄 ............................................ III
圖目錄 ................................................ VI
第一章 緒論 ..................................... 1
1.1 前言 .............................................. 1
1. 2 OLED有機發光二極體 ............................ 3
1. 2. 1 有機發光二極體基本操作原理 ............... 3
1.2.2 發光二極體的材料 ................................... 5
1.2.3 有機發光二極體的結構 ............................ 6
1.2.4 元件特性量測名詞和單位 ........................... 8
1.3 OLED發光二極體發光分類 ............................ 11
1.3.1 以有機材料區別 .................................. 11
1.3.2 以發光方式區別 .................................. 13
第二章 文獻回顧與研究動機 ...............................17
2.1 基本理論 ..........................................17
2.1.1 Micro-cavity effect (微共振腔效應)理論 ........ 17
2.1.2 光學耦合出光理論 ............................... 19
2.1.3 SPR表面電漿共振理論 .......................... 22
2.2 上發光有機發光二極體的發展 ....................... 23
2.3 文獻回顧與研究動機 .............................. 27
2.4 元件設計 ...................................... 29
第三章 實驗設備與製程技術 ............................ 33
3.1 微奈米壓印技術發展和方法 ........................ 33
3.1.1 發展前言 ..................................... 33
3.1.2 壓印技術種類概述 ............................. 34
3.2 上發光元件製程和設備介紹 ........................ . 39
3.2.1 製程設備介紹.................................. . 39
3.2.2 元件製程步驟.................................. . 48
3.3 量測系統 ...................................... .. 50
3.3.1 量測系統架構................................ ... 50
第四章 高折射率漸變膜應用於上發光有機發光元件光萃取效率增
益 52
4.1抗反射密度漸變矽基板製程 ......................... 52
4.2雙面奈米壓印高折射率漸變結構 .................... 59
4.3高折射率漸變結構應用於上發光有機發光二極體 ......... 65
第五章 結果與討論 .................................... 71
第六章 參考文獻 ....................................... 72
1 Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes.
Applied Physics Letters 51, 913, doi:10.1063/1.98799 (1987).
2 Ziemelis, K. Science 399, 408 (1999).
3 Lee, J. Y., Kwon, J. H. & Chung, H. K. High efficiency and low
power consumption in active matrix organic light emitting diodes.
Organic Electronics 4, 143-148, doi:10.1016/j.orgel.2003.08.013
(2003).
4 Junji Kido, M. K., Katsutoshi Nagai. Multilayer White
Light-Emitting Organic Electroluminescent Device. Science 267,
1332-1334, doi:10.1126/science.267.5202.1332 (1995).
5 Zilan Shen, P. E. B., Vladimir Bulović, Stephen R. Forrest, Mark E.
Thompson. Three-Color, Tunable, Organic Light-Emitting Devices.
Science 276, 2009-2011 (1997).
6 Wolfgang Brütting, S. B., Anton G. Mückl. Device physics of
organiclight-emitting diodes based on molecular materials. Organic
Electronics 2, 1-36 (2001).
7 D. Braun and A. J. Heeger. Visible light emission from
semiconducting polymer diodes. Appl. Phys. Lett 58, 1982-1984
(1991).
8 Masanao Era, C. A., Tetsuo Tsutsui, Shogo Saito.
Double-heterostructure electroluminescent device with
cyanine-dye bimolecular layer as an emitter Chemical Physics
Letters 178, 3 ( 1991).
9 J. H. Burroughes, D. D. C. B., A. R. Brown, R. N. Marks, K.
Mackay, & R. H. Friend, P. L. B. A. B. H. Light-emitting diodes
based on conjugated polymers. Nature 4(1990).
10 Simone Hofmann ., M. T., Bj¨ orn L¨ ussem, and Karl Leo.
Top-emitting organic light-emitting diodes. OPTICS EXPRESS 19,
1250-1264 (2011).
11 V. BULOVIC, G. G., P. E. BURROWS, S. R. FORREST & M. E.
THOMPSON. Transparent light-emitting devices. Nature 380
(1996).
12 Liang-Sun Hung, J. M. Radiationdamage and
transmissionenhancement in
surface-emittingorganiclight-emittingdiodes. Thin Solid Films 410,
73

101-106 (2002).
13 Chung, C.-H. et al. Improvement in performance of transparent
organic light-emitting diodes with increasing sputtering power in
the deposition of indium tin oxide cathode. Applied Physics Letters
86, 093504, doi:10.1063/1.1869534 (2005).
14 Kim, H.-K., Lee, K.-S. & Kwon, J. H. Transparent indium zinc
oxide top cathode prepared by plasma damage-free sputtering for
top-emitting organic light-emitting diodes. Applied Physics Letters
88, 012103, doi:10.1063/1.2159577 (2006).
15 Han, S., Feng, X., Lu, Z. H., Johnson, D. & Wood, R.
Transparent-cathode for top-emission organic light-emitting diodes.
Applied Physics Letters 82, 2715, doi:10.1063/1.1567048 (2003).
16 Parthasarathy, G., Burrows, P. E., Khalfin, V., Kozlov, V. G. &
Forrest, S. R. A metal-free cathode for organic semiconductor
devices. Applied Physics Letters 72, 2138, doi:10.1063/1.121301
(1998).
17 Parthasarathy, G., Adachi, C., Burrows, P. E. & Forrest, S. R.
High-efficiency transparent organic light-emitting devices. Applied
Physics Letters 76, 2128, doi:10.1063/1.126275 (2000).
18 Yamamori, A., Hayashi, S., Koyama, T. & Taniguchi, Y.
Transparent organic light-emitting diodes using metal
acethylacetonate complexes as an electron injective buffer layer.
Applied Physics Letters 78, 3343, doi:10.1063/1.1359485 (2001).
19 Hung, L. S., Tang, C. W., Mason, M. G., Raychaudhuri, P. &
Madathil, J. Application of an ultrathin LiF/Al bilayer in organic
surface-emitting diodes. Applied Physics Letters 78, 544,
doi:10.1063/1.1327273 (2001).
20 Riel, H., Karg, S., Beierlein, T., Ruhstaller, B. & Rieß, W.
Phosphorescent top-emitting organic light-emitting devices with
improved light outcoupling. Applied Physics Letters 82, 466,
doi:10.1063/1.1537052 (2003).
21 Huang, Q. et al. Highly efficient top emitting organic light-emitting
diodes with organic outcoupling enhancement layers. Applied
Physics Letters 88, 113515, doi:10.1063/1.2185468 (2006).
22 Riel, H., Karg, S., Beierlein, T., Rieß, W. & Neyts, K. Tuning the
emission characteristics of top-emitting organic light-emitting
devices by means of a dielectric capping layer: An experimental
and theoretical study. Journal of Applied Physics 94, 5290,
74

doi:10.1063/1.1605256 (2003).
23 Parker, I. D. & Kim, H. H. Fabrication of polymer light-emitting
diodes using doped silicon electrodes. Applied Physics Letters 64,
1774, doi:10.1063/1.111804 (1994).
24 Hunt, N. E. J. et al. Increased fiber communications bandwidth
from a resonant cavity light emitting diode emitting at λ=940 nm.
Applied Physics Letters 63, 2600, doi:10.1063/1.110443 (1993).
25 E. F. Schubert, N. E. J. H., M. Micovic, R. J. Malik, D. L. Sivco, A.
Y. Cho, G. J. Zydzik. Highly Efficient Light-Emitting Diodes with
Microcavities. 265, 943-945, doi:10.1126/science.265.5174.943
(1994).
26 陳金鑫&黃孝文. OLED Material And Devices of Dream Displays 夢幻顯
示器 OLED 材料與元件. 1 edn, 1 (五南圖書出版股份有限公司, 2007).
27 Neil C. Greenham, D. R. H. F., Dr. Donal D. C. Bradley*. Angular
Dependence of the Emission from a Conjugated Polymer
Light-Emitting Diode: Implications for efficiency calculations.
Advanced Materials 6, 491-494, doi:10.1002/adma.19940060612
(1994).
28 陳金鑫&陳錦地&吳忠幟. 白光OLED 照明 White OLED for Lighting.
(五南圖書出版有限公司, 2009).
29 Wood, R. W. On a remarkable case of uneven distribution of light
in the diffraction grating spectrum. philosophical magazine 4,
396-402 (1902).
30 Fano, U. The theory of anomalous diffraction gratings and of
quasi-stationary waves on metallic surface. Optical Society of
America (1941).
31 Oliner, A. H. a. A. A. New Theory of Wood's Anomalies on Optical
Gratings. Applied Optics 4, 1275-1297 (1965).
32 Yu Jin, J. F., Xu-Lin Zhang, Yan-Gang Bi, Yu Bai, Lu Chen, Tian
Lan, Yue-Feng Liu, & Qi-Dai Chen, a. H.-B. S. Solving
Efficiency–Stability Tradeoff in Top-Emitting Organic
Light-Emitting Devices by Employing Periodically Corrugated
Metallic Cathode. Advanced Materials 24, 1187-1191,
doi:10.1002/adma.201103397 (2012).
33 Moon, D. G., Pode, R. B., Lee, C. J. & Han, J. I. Transient
electrophosphorescence in red top-emitting organic light-emitting
devices. Applied Physics Letters 85, 4771, doi:10.1063/1.1815372
(2004).
75

34 Pode, R. B., Lee, C. J., Moon, D. G. & Han, J. I. Transparent
conducting metal electrode for top emission organic light-emitting
devices: Ca–Ag double layer. Applied Physics Letters 84, 4614,
doi:10.1063/1.1756674 (2004).
35 Lee, C. J., Pode, R. B., Han, J. I. & Moon, D. G. Green
top-emitting organic light emitting device with transparent Ba∕Ag
bilayer cathode. Applied Physics Letters 89, 123501,
doi:10.1063/1.2355464 (2006).
36 Chen, S. et al. Improved performances in a top-emitting green
organic light-emitting device with light magnification. Thin Solid
Films 516, 3364-3367, doi:10.1016/j.tsf.2007.08.120 (2008).
37 Z. Y. Xie , L. S. H., F. R. Zhu Chem. Phys. Lett, 381 , 691 . (2003).
38 S. F. Chen , Z. Y. Z., Z. H. Jie , W. F. Xie , Y. Zhao , R. L. Song , &
C. N. Li , B. F. Q., S. Y. Liu Appl. Phys, 3738 (2006).
39 J. Gru ¨ ner, F. C., and R. H. Friend. Emission enhancement in
single-layer conjugated polymer microcavities. American Institute
of Physics 80, 9 (1996).
40 Jin Cao, X. L., M.A. Khan, WenQing Zhu, XueYin Jiang, ZhiLin
Zhang, ShaoHong Xu. RGB tricolor produced by white-based
top-emitting organic light-emitting diodes with microcavity
structure. Current Applied Physics 7, 300-304 (2007).
41 S. F. Hsu, C. C. L., S. W. Hwang , H. H. Chen ,C. H. Chen , A.T.
Hu Color-saturated and highly efficient top-emitting organic
light-emitting devices. Thin Solid Films 478, 271-274 (2005).
42 M. Furno, R. M., M. Thomschke, S. Hofmann, B. L¨ ussem, and K.
Leo. Outcoupling efficiency in smallmolecule OLEDs: from theory
to experiment,. Proc. SPIE 7616 (2010).
43 Smith, L. H., Wasey, J. A. E. & Barnes, W. L. Light outcoupling
efficiency of top-emitting organic light-emitting diodes. Applied
Physics Letters 84, 2986, doi:10.1063/1.1712036 (2004).
44 Chen, X.-W., Choy, W. C. H., He, S. & Chui, P. C. Comprehensive
analysis and optimal design of top-emitting organic light-emitting
devices. Journal of Applied Physics 101, 113107,
doi:10.1063/1.2739220 (2007).
45 Meerheim, R., Furno, M., Hofmann, S., Lüssem, B. r. & Leo, K.
Quantification of energy loss mechanisms in organic light-emitting
diodes. Applied Physics Letters 97, 253305,
doi:10.1063/1.3527936 (2010).
76

46 Chen, C.-W. et al. Top-emitting organic light-emitting devices
using surface-modified Ag anode. Applied Physics Letters 83, 5127,
doi:10.1063/1.1635076 (2003).
47 Jin, Y. et al. Solving Efficiency-Stability Tradeoff in Top-Emitting
Organic Light-Emitting Devices by Employing Periodically
Corrugated Metallic Cathode. Advanced Materials 24, 1187-1191,
doi:10.1002/adma.201103397 (2012).
48 Stößel, M. et al. Space-charge-limited electron currents in
8-hydroxyquinoline aluminum. Applied Physics Letters 76, 115,
doi:10.1063/1.125674 (2000).
49 Stephen Y. Chou, P. R. K., and Preston J. Renstrom. Nanoimprint
lithography. Vacuum Science & Technology 14, 5, doi:
10.1116/1.588605 (1996).
50 M. Bender, M. O., B. Hadam, B. Vratzov*, B. Spangenberg, H.
Kurz. Fabrication of nanostructures using a UV-based imprint
technique. Microelectronic Engineering 53, 4 (2000).
51 Whitesides, Y. X. a. G. M. SOFT LITHOGRAPHY. Annual Review,
32 (1998).
52 Stephen Y. Chou, C. K. J. G. Ultrafast and direct imprint of
nanostructures in silicon. letters to nature (2002).
53 Yu-Hsuan Ho, C.-C. L., Shun-Wei Liu, Hsun Liang, Chih-Wei Chu,
and Pei-Kuen Wei. Efficiency enhancement of flexible organic
light-emitting devices by using antireflection nanopillars. Optics
Express 19, A295-A302 (2010).
54 Y.-H. Ho, S.-W. L., H. Liang, K.-H. Ting, W.-C. Tian and P.-K.
Wei,. Luminous and Conversion Efficiency Improvement in
OLED/OPV Tandem Device with Omnidirectional Antireflection
Nanopillars. SID2012 (2012).
55 Y.-H. Ho, C.-W. C., C.-C. Liu, C.-W. Chu, and P.-K. Wei.
Conversion Efficiency Enhancement of Organic Solar Cell with
Nanoimprinted Antireflection Nanorod Structures. IPC2011,
Tainan, Taiwan, (2011).
56 Y.-H. Ho, C.-C. L., Y.-T. Chang, H. Liang, W.-C. Tian, and P.-K.
Wei. Efficiency and Contrast Enhancement in Organic Light
Emitting Device with Omnidirectional Antireflection Nanopillars.
(2011).
57 H. M. Branz, V. E. Y., S. Ward, K. M. Jones, B. To, and P.
Stradins, . Nanostructured black silicon and the optical reflectance
77 of graded-density surfaces. Appl. Phys. Lett 94 (2009).
58 H.-C. Yuan, V. E. Y., M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, . Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules. Appl. Phys. Lett. 95 (2009).
59 F. Toor, H. M. B., M. R. Page, K. M. Jones, and H.-C. Yuan. Multi-scale surface texture to improve blue response of nanoporous
black silicon solar cells. Appl. Phys. Lett. 99 (2011).
60 M. Zhang, P. D., J.T. Chen, T.P. Russell, J. Olmo, and A. Merry. Wetting Transition in Cylindrical Alumina Nanopores with Polymer Melts. Nano Lett. (2006).
61 C.-J. Yang, S.-H. L., H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C.
Wu. Microcavity top-emitting organic light-emitting devices
integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution. Appl. Phys. Lett. 91 (2007).
62 M. Thomschke, S. R., B. Lüssem, and K. Leo. Highly Efficient
White Top-Emitting Organic Light-Emitting Diodes Comprising
Laminated Microlens Films. Nano Letters 12, 424 (2012)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔