(3.236.222.124) 您好!臺灣時間:2021/05/10 16:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳鵬羽
研究生(外文):Peng-Yu Chen
論文名稱:銻化鎵/砷化鎵奈米結構紅外線光偵測器在熱影像之應用
論文名稱(外文):The application of GaSb/GaAs nanostructure infrared photodetectors in thermal imaging
指導教授:林時彥
指導教授(外文):Shih-Yen Lin
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:74
中文關鍵詞:銻化鎵量子點量子環偵測器熱影像
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中我們探討了兩種不同型態之銻化鎵/砷化鎵奈米結構可能之應用。藉由成長完銻化鎵/砷化鎵量子點時使用後製銻原子浸滯(Sb post-soaking), 我們可以透過控制不同的銻與背景砷原子的比例來形成不同形貌的銻化鎵/砷化鎵奈米結構,如量子點或是量子環。從光致發光(PL)的結果可以得到隨著形貌從量子點演變到量子環時,PL的能量會有紅位移以及電子電洞對複合機率的增加。其主要的原因是由於從量子點演變到量子環時,原本陡峭的銻化鎵/砷化鎵介面因為混和了砷原子導致介面變得較不陡峭。因此這樣的介面在導帶邊界,比原來量子點的還要更低所以觀察到了紅位移現象。同時也因為此一現象增加了電子電洞對波函數的相互重疊(overlapping),進而增加了複合機率。而另外一種可能的解釋就是電子存在在量子環的表面積數量相較於量子點還要來的多,因此提昇了PL強度。因為介面的改善,利用量子環結構做成的紅外線偵測器元件特性優於量子點結構。與傳統的砷化銦/砷化鎵量子點紅外線偵測器相比,使用銻化鎵/砷化鎵量子點或銻化鎵/砷化鎵量子環紅外線偵測器配合簡單二次性反射性物鏡可提昇待側物體放大的熱影像解析度。並且藉由理論計算,我們可以得到待測物之溫度分佈,此一技術的研究對於顯微熱影像技術的開發將有很大的幫助。
The possible applications of type-II GaSb/GaAs quantum dots (QDs) and quantum rings (QRs) are investigated in this thesis. After growing GaSb/GaAs QDs, QD to QR transition is observed by changing the Sb/background As flux rations during the post-growth Sb soaking procedure. The results have indicated that either whole dot or ring morphologies can be obtained by using well controlled Sb/background As ratios. With the evolution from QD to QR, photoluminescence (PL) peak red shift and the enhancement of PL intensity are observed. One possible mechanism responsible for this phenomenon is the less abrupt GaSb/GaAs interfaces with the incorporation As atom during the dot-to-ring transition procedure. In this case, the conduction band edge of the interfaces will be lowered such that PL peak red shift is observed. The same mechanism would also enhance the recombination probabilities of electron-hole pairs. The other possible mechanism responsible for PL intensity enhancement is the increasing electron number around GaSb QRs than dots. With the modified type-II interfaces, the device performance of GaSb QR infrared photodetectors is expected to be superior to GaSb quantum dots infrared photodetectors. Compared with standard InAs/GaAs QDIPs, better thermal image resolution can be obtained for GaSb QR- and QD- IPs. By using a fitted equation, the thermal distribution of objects can be obtained, which is advantageous for the development of microscopic thermal imaging.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 簡介與實驗動機 1
1-2 論文架構 3
第二章 元件製程和量測系統 6
2-1 實驗步驟 6
2-1-1 奈米結構紅外線光偵測器製程步驟 6
2-1-2 光譜響應和電壓-電流特性系統 9
第三章 銻化鎵/砷化鎵奈米結構紅外線光偵測器元件特性分析 16
3-1 介紹 16
3-2 實驗 17
3-3 結果與討論 18
3-3-1 不同銻原子與背景砷原子的比例在Sb post soaking
時對銻化鎵量子點在AFM及PL的影響 18
3-3-2 銻化鎵奈米結構紅外線光偵測器元件比較
結果與討論 20
3-4 結論 24
第四章 單顆量子型紅外線光偵測器在顯微熱影像之應用 40
4-1 介紹 40
4-2 實驗 41
4-2-1 元件準備 41
4-2-2 顯微熱影像系統 42
4-3 結果與討論 43
4-4 結論 45
第五章 以黑體輻射理論推算熱影像溫度分佈 57
5-1 介紹 57
5-1-1 輻射能量密度頻譜 57
5-1-2 元件光電流響應 57
5-2 實驗 60
5-2-1 元件準備 60
5-2-2 熱像測溫 60
5-3 結果與討論 61
5-4 結論 62
第六章 結論 70
參考文獻 72

[1] J. Phillips, Pallab Bhattacharya, S. W. Kennerly, D. W. Beelman, and M. Dutta, IEEE J Quantum Electronics, vol. 35, pp. 936-943 (1999).
[2] S. Chakrabarti, A. D. Stiff–Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, IEEE Photonics Technol. Lett. 16, 1361 (2004).
[3] S. Y. Lin, Y. R. Tsai, and S. C. Lee, Appl. Phys. Lett. 78, 2784 (2001).
[4]S. F. Tang, S. Y. Lin, and S. C. Lee, “Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector”, Appl. Phys. Lett., vol. 78, pp. 2428-2430, (2001).
[5]S. T. Chou, M. C. Wu, S. Y. Lin, and J. Y. Chi, “The influence of doping density on the normal incident absorption of quantum-dot infrared photodetectors”, Appl. Phys. Lett., vol. 88, pp. 173511-173513, (2006).
[6] S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, Proc. SPIE, vol. 6206, p. 62060J, (2006).
[7] G. Ariyawansa, A. G. Unil Perera, G. S. Raghavan, G. Von Winckel, A. Stintz, and S. Krishna, IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1064–1066, (2005).
[8] S. Raghavan, D. Forman, P. Hill, N.R. Weisse–Bernstein, G. von Winckel, P. Rotella, S. Krishna, S.W. Kennerly, J.W. Little, J. Appl. Phys. 96, 1036 (2004).
[9] H.S. Ling, S.Y. Wang, C.P. Lee, M.C. Lo, Appl. Phys. Lett. 92 (2008).
[10]F. Hatami, N. N. Ledentsov, m. Grundmann, J. Bohrer, F. Heinrichsdorff, M. Beer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Gosels, J. Heydenreich, U. Richter, S. V. Ivanov, B. Ya. Meltser, P. S. Kop’ev and Zh. I. Alferov, “Radiative recombination in type‐II GaSb/GaAs quantum dots”, Appl. Phys. Lett. vol. 67, pp. 656-658, (1995).
[11]M. Geller, C. Kapteyn, L. Müller-Kirsch, R. Heitz, and D. Bimberg, “450 meV hole localization in GaSb/GaAs quantum dots”, Appl. Phys. Lett. vol. 82, pp. 2706-2708, (2003).
[12] F. Hatami, N. N. Ledentsov, M. Grundmann, J. Böhrer, F. Heinrichsdorff, M. Beer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Gösele, J. Heydenreich, U. Richter, S. V. Ivanov, B. Ya. Meltser, P. S. Kop’ev, and Zh. I. Alferov, Appl. Phys. Lett. 67, 656 (1995).
[13] C.‐K. Sun, G. Wang, J. E. Bowers, B. Brar, H.‐R. Blank, H. Kroemer, and M. H. Pilkuhn, Appl. Phys. Lett. 68, 1543 (1996).
[14] S. Y. Lin, C. C. Tseng, W. H. Lin, S. C. Mai, S. Y. Wu, S. H. Chen, and J. I. Chyi, Appl. Phys. Lett. 96, 123503 (2010).
[15] C. C. Tseng, W. H. Lin, S. Y. Wu, S. H. Chen and S. Y. Lin, J. Crystal Growth 323, 466 (2011).
[16] W. H. Lin, C. C. Tseng, K. P. Chao, S. C. Mai, S. Y. Kung, S. Y. Wu, S. Y. Lin, and M. C. Wu, IEEE Photonics Technology Lett. 23, 106 (2011).
[17] Wei-Hsun Lin, Chi-Che Tseng, Kuang-Ping Chao, Shu-Cheng Mai, Shu-Yen Kung, Shug-Yi Wu, Shih-Yen Lin*, and Meng-Chyi Wu, “High-Temperature Operation GaSb/GaAs Quantum-Dot Infrared Photodetectors”, IEEE Photonics Technology Lett. vol. 23, no. 2, pp. 106-108, (2011).
[18] Chi-Che Tseng, Shu-Cheng Mai, Wei-Hsun Lin, Shung-Yi Wu, Bang-Ying Yu, Shu-Han Chen, Shih-Yen Lin*, Jing-Jong Shyue and Meng-Chyi Wu,“The Influence of As on the Morphologies and Optical Characteristics of GaSb/GaAs Quantum Dots”, IEEE J. Quantum Electronics vol. 47, no. 3, pp. 335-339, (2011).
[19] Wei-Hsun Lin, Chi-Che Tseng, Shung-Yi Wu, Meng-Hsun Wu, Shih-Yen Lin, and Meng-Chyi Wu, “The Influence of Background As on GaSb/GaAs Quantum Dots and Its Application in Infrared Photodetectors”, Physica Status Solidi C vol. 9, no. 2, pp. 314-317, (2012).
[20] R. Timm, H. Eisele, A. Lenz, L. Ivanova, G. Balakrishnan, D. L. Huffaker and M. Dahne, Phys. Rev. Lett. 101, 256101 (2008).
[21] Chi-Che Tseng, Shu-Cheng Mai, Wei-Hsun Lin, Shung-Yi Wu, Bang-Ying Yu, Shu-Han Chen, Shih-Yen Lin, Jing-Jong Shyue and Meng-Chyi Wu,“The Influence of As on the Morphologies and Optical Characteristics of GaSb/GaAs Quantum Dots”, IEEE J. Quantum Electronics 47, 335 (2011).
[22] T. Kawazu and H. Sakaki, Appl. Phys. Lett. 97, 261906 (2010)
[23] K.K Choi, “The Physics of Quantum Well Infrared Photodetectors”, World Scientific
[24] B.F. Levine, J. Appl. Phys., vol. 74, pp. R1-R81, (1993)
[25] John David Vincent, “Fundamentals of Infrared Detector Operation and Testing, ” John Wiley & Sons, Inc.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔