(3.236.222.124) 您好!臺灣時間:2021/05/08 07:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:孫儒靖
研究生(外文):Ru-Jing Sun
論文名稱:製作斜向濺鍍氮化鈦基板表面電漿共振生物晶片
論文名稱(外文):Surface-Plasmon-Resonance Biosensor Based on Titanium nitride Substrate with Inclined Sputtering
指導教授:江海邦
指導教授(外文):Hai-Pang Chiang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:108
中文關鍵詞:生物晶片表面電漿氮化鈦濺鍍過渡金屬
外文關鍵詞:Surface-Plasmon-ResonanceSPRTitanium nitrideSputtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本論文目的是探討利用頻磁控濺鍍(Radio Frequency Magnetron Sputtering)的方式,斜向氮化鈦濺鍍/氮化鈦薄膜46nm (TiN Inclined sputtering 1 minute/TiN thin film 46nm) 之奈米表面電漿共振(SPR)生物晶片,在量測方面是利用表面電漿共振外差干涉式相位量測系統,針對不同折射率葡萄糖溶液量測表面電漿共振生物晶片之相位及反射率之靈敏度。(1)在入射波長為1150nm時,改變多種不同濺鍍厚度,我們可以獲得氮化鈦薄膜(46nm) 有最佳載子濃度 以及最佳反射率相位靈敏度 RIU和 RIU。;(2)改變多個不同濺鍍時間當斜向角度為50.86度時,我們可以獲得 斜向氮化鈦濺鍍1分鐘/氮化鈦薄膜46nm (TiN Inclined sputtering 1 minute/TiN thin film 46nm) 在入射波長1150nm時有最佳相位靈敏度 RIU,載子濃度可以達到 。;(3)我們將斜向氮化鈦濺鍍1分鐘/氮化鈦薄膜46nm (TiN Inclined sputtering 1 minute/TiN thin film 46nm) 兩層奈米結構之生物晶片應用在即時量測上,並具有重複使用的特性。
The goal of this thesis is to study the sensitivity of surface plasmon resonance (SPR) biochip with titanium nitrude inclined sputtering over titanium nitride thin film (46nm) nanostructures fabricated by radio frequency magnetron sputtering. The detection sensitivity of biochip with titanium nitrude inclined sputtering over tanium nitride thin film for different refractive index of glucose solution can be observed by SPR heterodyne interferometry phase interrogation system. The first case, thick of tanium nitride thin film can be tuned by controlling deposition time of radio frequency magnetron sputtering. At the incident wavelength of 1150nm,the reflectivity and the optimal sensitivity, down to and refractive index units (RIU),the carrier concentration up to can be achieved, by employing the titanium nitride thin film (46nm) nano biochip. The second case, the sensitivity can be changed via multi-angle of inclneded sputtering.At the inclined angle of 50.86 degrees, sputterinf titanium nitride Inclined sputtering 1 minute over titanium nitride thin film 46nm ,the optimal sensitivity, down to RIU,the carrier concentration up to can be achieved, by Inclined sputtering 1 minute over titanium nitride thin film 46nm nanostructures biochip. The third case, surface plasmon resonance biochip with Inclined sputtering 1 minute over titanium nitride thin film 46nm nanostructures can be applied to be reusable.
目錄
摘要 III
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XVII
第一章、緒論 1
1.1 前言 1
1.2 研究動機 4
第二章、表面電漿共振裡論 8
2.1表面電漿共振簡介 8
2.2表面電漿波傳播函數 11
2.3 色散曲線之探討 14
2.5 表面電漿多層系統的反射率及相位 17
2.5.1多層系統的反射係數 17
2.5.2 多層系統的相位 19
2.6 表面電漿與溫度的關係 20
2.6.1溫度模型 20
2.6.2溫度與介電常數的關係 21
2.7 水溶液所需旋轉角度 23
2.8量測相位方法 25
2.8.1相位量測方法簡介 25
2.8.2外差干涉術 26
2.8.3使用電光晶體調制的外差光源 27
2.9 計算靈敏度方式 30
第三章 實驗步驟與架構 31
3.1 樣品材料製程 31
3.2 SPR系統之即時量測 34
第四章 實驗結果與討論 40
4.1模擬氮化鈦薄膜結果(比較paper和中科院的介電系數) 40
4.1.1介電系數的模擬 41
4.1.2折射率的模擬 42
4.1.3反射率的模擬 43
4.1.4實際實驗與模擬 44
4.2不同厚度氮化鈦奈米生物晶片 47
4.2.1氮化鈦奈米生物晶片46nm 47
4.2.2氮化鈦奈米生物晶片50nm 50
4.2.3氮化鈦奈米生物晶片54.5nm 53
4.2.4實驗不同厚度靈敏度的比較 56
4.2.5模擬不同厚度靈敏度的比較 60
4.3 斜向濺鍍不同角度之氮化鈦奈米生物晶片 63
4.3.1 基板傾斜50.86度反射率與相位 64
4.3.2 基板傾斜50.86度反射率與相位靈敏度 71
4.3.3 基板傾斜26.28度反射率與相位 79
4.3.4 基板傾斜26.28度反射率與相位靈敏度 86
4.3.5載子濃度 94
4.4 X-Ray Diffraction分析 96
第五章 結論 98
參考文獻 99


1. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Berlin. (1988).
2. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum”, Phil. Magn. 4, 396-402 (1902).
3. R. H. Ritchie, “Plasma losses by fast electrons in thin films”, Phys. Rev. 106, 874-881 (1957).
4. A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection”, Z. Physik 216, 398-410 (1968).
5. E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflachenplasmaschwingungen”, Z. Physik 241,313-324 (1971).
6. 陳嘉芬 編著, “細胞生物學, ” 藝軒出版社 (2002).
7. 楊正義、陳吉峰、葉怡均、陳正龍、陳家俊。金屬、半導體奈米晶體在生物檢測及分析上的應用。物理雙月刊 2001, 23(6): 667-677。

8.YunWei Cao, Rongchao Jin, Chad A. Mirkin, J .Am. Chem. Soc 123, 7961(2001).
9.YunWei Cao, Rongchao Jin, Chad A. Mirkin, Science 297, 1536(2002).
10. R. Gupta, M. J. Dyer, and W. A. Weimer, J. Appl. Phys. 92, 5264 (2002).
11. L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pen˜a, M. J. Natan, Sensors and Actuators B 54, 118-124 (1999).
12. P.-T. Leung, Denise Pollard-Knight, Gordon P. Malan, Martin F. Finlan “Modelling of particle-enhanced sensitivity of the surface- plasmon- resonance biosensor” Sensors and Actuators B 22, 175-180 (1994).
13.S.J. Chen, F.C. Chien, G.Y.Lin, K.G. Lee ”Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles”
14. H.-P. Chiang, H.-T. Yeh, C.-M. Chen, J.-C. Wu, S.-Y. Su, R. Chang,
Y.-J. Wu, D.P. Tsai, S.U. Jen, P.T. Leung, “ Surface plasmon resonance monitoring of temperature via phase measurement”Optics Communications 241 409–418 (2004).
15. Hai-Pang Chiang, Jing-Lun Lin, Railing Chang, and Sheng-Yu Su “High-resolution angular measurement using surface- plasmon-
resonance via phase interrogation at optimal incident wavelengths” Optics Letters 30, 2727-2729 (2005).
16. Hai-Pang Chiang, Jing-Lun Lin, and Zhi-Wei Chen, “High sensitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths” Applied Physics Letters 88, 141105 (2006).
17. S. M. Ma, B. M. Han, J. H. Jo and S. Chang “Optical Excitation Conditions for Surface Plasmons at an Aluminum-Liquid Interface” Journal of the Korean Physical Society, Vol. 37, No. 5, November 2000, 788792 (2000).
18. 邱進忠, “多通道多層膜衰逝全反射生物感測器”, 國立中央大學機械所博士班。(2001).
19. 王俊涵, “新型光纖式表面電漿共振折射計之研發”, 國立成功大學機械所碩士班。(2001)
20. Charles Kittel, “Introduction to solid state physics”, (2004).
21. H.-P. Chiang, Y.-C. Wang, P. T. Leung and Wan-Sun Tse, “A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance”, Opt. Communications 188, 283-289 (2001).
22. Brueck, S. R. J., Diadihk, V., Jones, T., and Lenth, W., “Enganced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves”, Appl. Phys. Lett. 46(10), 915 (1985).
23. Grant R. Fowles, “Introduction to Modern Optics”, second edition, New York: Dover Publications (1975).
24. H.-P. Chiang, P. T. Leung and Wan-Sun Tse, “Optical Properties of Composite Materials at high Temperature”, Solid State Communications, 101, 45-50 (1997).
25. H.-P. Chiang, P. T. Leung and Wan-Sun Tse, “The Surface Plasmon Enhancement Effect on Adsorbed Molecules at Elevated Temperatures”, J. Chem. Physics 108(6), 2659-2660 (1998).
26. H.-P. Chiang, P. T. Leung and Wan-Sun Tse, “Remark on the Substrate-temperature Dependence of Surface-enhanced Raman Scattering”, J. Phys. Chem. B. 104(10), 2348-2350(2000).
27. J. Homola, S.S. Yee, G. Gauglitz,” Special issue: Surface plasmon resonance (SPR) optical sensors, current technology and applications – Preface”, Sensors and Actuators B 54(1-2), 3-15 (1999).
28. B. Liedberg, C. Nylander, I. Lundstr om, “Biosensing with surface-plasmon resonance-how it all started”, Sensors and Actuators 4, 299 (1995).
29. W.E. Lawrence, “Detailed balance, quantum distribution functions, and equilibrium of mixtures”, American Journal of Physics 67 (12) , 1132-1139 (1999).
30. T.Holstein, “Studies of polaron motion Part I. The molecular-crystal model (Reprinted from Annals of Physics, 8, 325-342, 1959)”, Annals of Physics 281 (1-2), 706-724 (2000).
31. T. Holstein, “Studies of polaron motion Part II. The "small" polaron (Reprinted from Annals of Physics, 8, 343-389, 1959)”, Annals of Physics 281 (1-2): 725-773 (2000).
32. S. G. Nelson, K. S. Johnston, S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection”, Sensors and Actuators B 35-36, 187-191 (1996).
33. A.A.Kruchinin, Yu. G. Vlasov, “Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosenor”, Sensors and Actuators B, 30, 77-80 (1996).
34. P. I. Nikitin, A. A. Beloglaziv, V. E. Kochergin, M.V. Valeiko, T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing”, Sensors and Actuators B, 54, 43-50 (1999).
35. A. V. Kabashin, P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications”, Quantum Electronics, 27(7), 653-654 (1997).
36. P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M.V. Valeiko, A. I. Savchuk, O.A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, R. Salzer., “Surface plasmon resonance interferometry for micro-array biosensing”, Sensors and Actuators, 85, 189-193 (2000).
37. Rebecca J. Whelan and Richard N. Zare, “Surface plasmon resonance detection for capillary electrophoresis separations”, Anal. Chem., 75, 1542-1547 (2003).
38. Shuai Shen, Tong Liu, and Jihua Guo, “Optical phase-shift detection of surface plasmon resonance”, Applied Optics, Vol.37, No.10, 1747-1751 (1998).
39. P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals”, Physicial Review B 6(11), 4370-4379 (1972).
40.G. Naik, J. Schroeder, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible wavelengths,” [physics.optics] arXiv:1011.4896 (2010).
41. Gururaj V. Naik, Jongbum Kim, and Alexandra Boltasseva ,” Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]”, Optical Materials Express, Vol. 1, Issue 6, pp. 1090-1099 (2011).
42. N. C. Chen, W. C. Lien, C. R. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W.Ho,”Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry”, Journal of Applied Physics 109, 043104 (2011).
43.K. Kishor Kumar , P.M. Raole, P.A. Rayjada, N.L. Chauhan, S. Mukherjee,” Study of structure development of Titanium Nitride on inclined substrates”, Surface & Coatings Technology 205 (2011) S187–S191
44. Reference:Tzu-Cheih Peng ,Wen-Chi Lin,Chih-Wei Chen,Din Ping Tsai,Hai-Pang Chiang, “Enhanced Sensitivity of Surface Plasmon Resonance Phase-Interrogation Biosensor by Using Silver Nanoparticles ” Plasmonics (2011) 29–34
45. 楊志信,”固態物理學講義”,海洋大學,2011,21page。
46.R. Zakharian, J. V. Moloney, and M. Mansuripur,” Surface plasmon polaritons on metallic surfaces” OPTICS EXPRESS 183, 8 January 2007.
47.蕭健男,” 真空技術發展”, 儀科中心簡訊, No.92 2009/04 4-5。
48.林郁洧、林建寶、蕭健男”廣域型真空計校正系統不確定度評估”,科儀新知, No.162 2008/02 95-100。
48. Bo-Huei Liao、Chien-Cheng Kuo、 Pin-Jen Chen and Cheng-Chung Lee,”Fluorine-doped tin oxide films grown by pulsed direct current magnetron sputtering with an Sn target”, APPLIED OPTICS / Vol. 50, No. 9 / 20 March 2011.
49. 邱國斌、蔡定平,” 金屬表面電漿簡介”, 物理雙月刊(廿八卷二期)2006 年4 月。
50. W. C. Kuo, H. J. Huang, C. M. Lai, G. J. Jan, C. Chou, ” Polarization sensitive optical coherence tomography using only linearly polarized light”, Optical and Quantum Electronics Vol. 37, pp. 1213-1223, 2005. (SCI)
51. Daniel Hoche、 Hendrik Schikora、Hayo Zutz,Andreas Emmel、Robert Queitsch、Peter Schaaf,” TiN-coating formation by pulsed Nd:YAG laser irradiation of titanium in nitrog”, J. Coat. Technol. Res.,5 (4) 505–512, 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔