(3.238.173.209) 您好!臺灣時間:2021/05/08 16:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳珉儒
研究生(外文):Ming-Ru Chen
論文名稱:石墨烯之時間解析載子動力學研究
論文名稱(外文):Time-resolved carrier dynamics in graphene
指導教授:蔡宗儒蔡宗儒引用關係
指導教授(外文):Tsong-Ru Tasi
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:71
中文關鍵詞:石墨烯載子動力學時解析激發-探測技術
外文關鍵詞:graphenecarrier dynamics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
  我們以穿透式時間解析光學激發-探測光譜技術,研究石墨烯的載子動力弛散行為。我們使用飛秒鈦藍寶石雷射,雷射輸出波長790nm,脈衝寬度~70飛秒旳雷射脈衝為光源。實驗結果顯示石墨烯的載子弛散的時間可以區分成快和慢的時間。快的弛散時間約落在200-300飛秒,我們認為此時載子弛散過程是載子與載子散射機制主導。我們觀察到石墨烯在低激發載子濃度<~3×1012cm-2時,穿透光強度的變化△T會先由正值變成負值,且這負值會隨著光激發載子濃度增加而減少。負△T的弛散時間約為1.56±0.43皮秒。當光激發載子濃度高於3×1012cm-2時,就沒有觀察到負△T的現象。正△T的時間隨著光激發能量密度的上升而上升,最後趨向一個定值~1.6皮秒,應為電子-聲子散射主導。我們認為穿透光強度變化為負值的原因是光激載子躍遷到石墨烯因不平整所產生的缺陷能階所造成,而時間也與正△T擬合出的時間略為相同應也為電子-聲子散射造成。較高的光激載子濃度時則因缺陷能階被填滿因此並無負△T的現象。


We can use transmission time-resolved optical pump-probe spectroscopy to investigate the carrier dynamic relaxation behavior of graphene. We used the femtosecond Ti-sapphire laser with a laser output wavelength of 790 nm that can provide a laser pulse width of ~70 fs as the light source. The experiment results indicate that the carrier relaxation times for graphene can be classified into fast and slow relaxation times. The fast relaxation time is approximately 200 fs to 300 fs, and we assume that this carrier relaxation process was led or controlled by the carrier-carrier scattering mechanism. We found that when graphene was at a low pump carrier concentration of < ~3×1012cm-2, the change of transmission light intensity △T transformed from a positive value to a negative value, and the negative values decreased when the photo-excited carrier concentration increased. The relaxation time of negative △T was approximately 1.56 ± 0.43 ps. When the photo-excited carrier concentration was higher than 3×1012cm-2, no negative △T was found. The time of positive △T increased when the optical pump fluence increased to a fixed value of ~1.6 ps, indicating that the relaxation time was led by carrier-phonon scattering. We inferred that the negative value of transmission light intensity was caused by the deficient band gap when the photo-excited carriers transferred to the graphene and were uneven, and the approximate similarity between the relaxation time and the relaxation time fit by positive △T was caused by carrier-phonon scattering. Because the defect level was filled at a relatively high photo-excited carrier concentration, no negative △T was observed.
目錄 II
圖目錄 IV
第一章 簡介 1
1.1石墨烯的介紹 1
1.2石墨烯的激發-探測研究 3
第二章 理論 14
2.1載子鬆弛過程 14
2.2 載子半導體光學效應 16
2.2.1 能帶填充(Bandfilling)效應 16
2.2.2 能隙縮減(Bandgap renormalization)效應 18
2.2.3自由載子吸收(Free carrier absorption)效應 19
2. 3 石墨烯之性質 20
2. 3.1拉曼光譜儀(Raman Spectroscopy) 20
2.3.2 石墨烯的拉曼分析 21
2.3.3 石墨烯之能帶結構 24
2.3.4 石墨烯的摺皺(Wrinkle)、或波紋(ripple)產生出來的多餘能階 26
2.4石墨烯鬆弛過程 (GRAPHENE RELAXATION PROCESSES) 28
2.4.1聲子散射 (phonon scattering) 29
2.4.2 熱聲子效應 (hot phonon effect) 31
2.4.3 歐傑形式過程 (Auger type processes) 32
第三章 樣品介紹 40
第四章 實驗系統裝置及架構 47
4.1激發探測實驗原理 47
4.2實驗之系統架構 48
4.3雷射系統 49
4.4自相關干涉儀 49
第五章 載子鬆弛時間擬合與激發載子濃度計算 56
5.1 載子鬆弛時間擬合 56
5.2 激發載子濃度計算 59
第六章 結果與討論 61
6.1波長790變功率對石墨烯的實驗結果 61
第七章 結論 70


[1-1] A. K. Geim and K. S. Novoselov, ”The rise of graphene,” Nat Mater. 6, 183 (2007).
[1-2] K. S. Novoselov et al.” Electric Field Effect in Atomically Thin Carbon Films”, Science 306, 666 (2004).
[1-3] Lee, C. et al.. “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science 321, 5887 (2008).
[1-4] Nair, R. R. et al.. “Fine Structure Constant Defines Visual Transparency of Graphene”, Science, 320 (2008).
[1-5] 洪偉修教授. “世界上最薄的材料—石墨烯” 98康熹化學報報. 康熹文化事業股份有限公司. 11月號11, (2009).
[1-6] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei,“Graphene segregated on Ni surfaces and transferred to insulators”, Appl. Phys. Lett. 93, 113103 (2008).
[1-7] J. M. Dawlaty , S. Shivaraman, M. Chandrasekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene”, Appl. Phys. Lett. 92, 042116 (2008).
[1-8] P. Plochocka, P. Kossacki, and A. Golnik,”Slowing hot-carrier relaxation in relaxation in graphene using a magnetic field”, Phys. Rev. B 80, 245415, (2009).
[1-9] H. Wang, J. H. Strait, P. A. Geroge and S. Shivaraman, “Ultrafast relaxation dynamics of hot optical phonons in graphene”, Appl. Phys. Lett. 96, 081917 (2010).
[1-10] L. Huang, B. Gao, and G. Hartland, “Ultrafast relaxation of hot optical phonons in monolayer and multilayer graphene on different substrates”, Surf. Sci. 605, 1657 (2011).
[1-11] M. Breusing, S. Kuehn, T winzerk and E. Malic, “Ultrafast nonequilibrium carrier dynamics in a single graphene layer”, Phys. Rev. B 83, 153410 (2011).
[1-12] T. Li, L. Luo, M. Hupalo and J. Zhang, “Femtosecond population inversion and stimulated emission of dense dirac fermions in graphene”, Phys. Rev. Lett. 108, 167401 (2012).
[2-1] J. Shah, “Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures” Springer, New work, (1999).
[2-2] A. Othonos, “Probing ultrafast carrier and phonon dynamics in semiconductors,” J. Appl. Phys. 83, 1789 (1998).
[2-3] 洪勝富、齊正中,“時間解析激發-探測技術”,物理雙月刊,二十卷五期,1998年10月
[2-4] B. R. Bennett, R. A. Soref, and J. A. Del Alamo,” Carrier-induced change in refractive index of InP, GaAs and InGaAsP”, IEEE J. Quantum. Electron. QE-26, 113 (1990).
[2-5] S. S. Prabhu, and A. S. Vengurlekar, “Dynamics of the pump-probe reflectivity spectra in GaAs and GaN,” J. Appl. Phys. 95, 7803 (2004).
[2-6] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.s. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97, 187401 (2006).
[2-7] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effect”,Solid State commun. 143, 47 (2007).
[2-8] L. M. Malard, J. Nilsson, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, A. H. Castro Neto, and M. A. Pimenta, “Probing the electronic structure of bilayer graphene by Raman scattering”, Phys. Rev. B, 76, 201401 (2007).
[2-9] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtx “Raman imaging of graphene”, Sloid state Commun. 143, 44 (2007).
[2-10] L. Huang, B. Gao, G. Hartland, M. Kelly, and H. Xing, ”Ultrafast relaxation of hot optical phonons in monolayer and multilayer graphene on different substrates,” Surf. Sci. 605, (2011).
[2-11] 林永昌、呂俊頡、鄭碩方、邱博文 “石墨烯之電子能帶特性與其元件應用”, 物理雙月刊, 33卷2期, 2011
[2-12] P. Avouris, Z. Chen, , and Perebeinos, “ Carbon-based electronics” Nat. Nanotechnol. 2, 605 (2007).
[2-13] P. R.Wallace, “The Band Theory of Graphite”, Phys. Rev. B, 71, 622 (1947).
[2-14] J. C. Charlier, P. C. Eklund, J. Zhu, and A. C. Ferrari, “Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes. from Carbon Nanotubes”, Top. Appl. Physics. 111, 673 (2008).
[2-15] H. Wang, J. H. Strait, P. A. George, S. Shivaraman, and V. B. Shields, “ Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96, 081907 (2010).
[2-16] P. Avouris, “Graphene: Electronic and Photonic Properties and Devices”, Nano Lett. 10, 4285 (2010).
[2-17] A. N. Obraztsov, E. A .Obraztsova. A. V. Tyurnina, and A.A.Zolotukhin, “Chemical vapor deposition of thin graphite films of nanometer thickness”, Carbon. 45, 2017 (2007).
[2-18] K. Xu, P. Cao, and J. R. Heath, “Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers”, Nano Lett. 9, 4446 (2009).
[2-19] F. Guinea, M. I.Katsnelson, M. A. H. Vozmediano, “Midgap states and charge inhomogeneities in corrugated graphene”, Phys. Rev. B 77, 075422 (2008).
[2-20] J.M.Dawlaty, , et al., Measurement of ultrafast carrier dynamics in epitaxial graphene”, Appl. Phys. Lett. 92, 042116 (2008).
[2-21] F. Rana, P. A. George, and J. H. Strait, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene” Phys. Rev. B. 79, 115446 (2009).
[2-22] R. Kim, V. Perebeinos, and P. Avouris.”Relaxation of optically excited carrier in graphene”, Phys. Rev. B 84, 075449 (2011).
[2-23] L. Huang, G. V. Harland, and Li-Qiang Chu, “Ultrafast Transient Absorption Microscopy Studies of Carrier Dynamics in Epitaxial Graphene”, Nano Lett. 10, 1308 (2010).
[2-24] D. Song, F. Wang, and G. Dukovic, “Direct Measurement of the Lifetime of Optical Phonons in Single-Walled Carbon Nanotubes”, Phys. Rev. Lett. 100, 225503 (2008).
[2-25] F. Rana. “Electron-hole generation and recombination rates for Coulomb scattering in graphene”, Phys. Rev. B 76, 155431 (2007).
[2-26] T. Winzer, A. Knorr, and E. Malic, “Carrier multiplication in graphene”, Nano Letters. 10. 4839 (2010).
[3-1] X. Li, Y. Zhu and W. Cai,” Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes,” Nano Lett. 9, 4359 (2009).
[3-2] A. Das , S. Pisana , B. Chakraborty , and Piscanec S. ” Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor”, Phys. Rev. Lett. 97, 187401 (2006).
[3-3] J.Y. Hwang, C. C. Kuo, L. C. Chen, and K. H. Chen .”Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density” Nanotechnol. 21, 465705. (2010).
[4-1] 羅志偉,” 以極化飛秒光譜研究釔鋇銅氧化物之各向異性超快動力學”,交通大學電子物理系,中華民國九十二年十月。
[5-1] 洪勝富、齊正中,"時間解析激發-探測技術”,物理雙月刊,二卷五期,1998年10月
[5-2] F. Rana. “Electron-hole generation and recombination rates for Coulomb scattering in graphene”, Phys. Rev. B 76, 155431 (2007).
[6-1] 洪勝富、齊正中,"時間解析激發-探測技術”,物理雙月刊,二卷五期,1998年10月
[6-2] H. Wang, J. H. Strait, P. A. Geroge and S. Shivaraman, “Ultrafast relaxation dynamics of hot optical phonons in graphene” Appl. Phys. Lett. 96, 081917 (2010).
[6-3] L. Huang, B. Gao, and G. Hartland, “Ultrafast relaxation of hot optical phonons in monolayer and multilayer graphene on different substrates”, Surf. Sci. 605, 1657 (2011).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔