跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 13:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許志勇
研究生(外文):Hsu Chih-Yeong
論文名稱:長期穿著高跟鞋對跨越不同高度障礙物時對動態平衡之影響
論文名稱(外文):The Effects on Dynamic Balance of Wearing High Heels with Long Term Experience to Stride Over Different Heights of Obstacle
指導教授:翁梓林翁梓林引用關係
指導教授(外文):Wong Tzu-lin
口試委員:湯文慈蔡葉榮
口試日期:2012-07-16
學位類別:碩士
校院名稱:國立臺北教育大學
系所名稱:體育學系碩士班
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:122
中文關鍵詞:鞋跟高度步態關節角度
外文關鍵詞:shoe heel heightgaitjoint angle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
目的:探討長期(十年)穿著高跟鞋與未曾穿高跟鞋之健康女性進行跨越不同高度(0%腿長、10%腿長、20%腿長、30%腿長)障礙物之步態的運動學、動力學及肌電訊號參數,以了解其對動作控制的影響。研究對象:以8位長期(10年)穿高跟鞋(年齡36±3.54歲、身高156.62±5.47公分、腿長88.25±4.86、體重51.61±4.87公斤、穿著年資10.75±1.66年、每週5.37±1.3天、每天9.5±0.92小時)及8位未曾穿高跟鞋(年齡19.5 ±0.53歲、身高164.37±4.86公分、腿長93.62±4.41、體重54.88±4.89公斤)無下肢病史之成年女性。方法與步驟:實驗儀器為一部Mega speed MS30k高速攝影機(100Hz)、二台AMTI測力板(1000Hz)、Biovision肌電儀(2500Hz),以同步方法擷取行走跨越動作完整步態週期,影片以Kwon3D動作分析軟體處理,經參考架(Kwon CC)建構(誤差值.04 cm)、人體肢段參數(BSP)建置、直接線性轉換(DLT)及濾波後,取得運動學參數。測力板原始訊號透過DASY Lab 6.0分析軟體,經濾波、模組校正得到水平和垂直反作用力,再經由積分運算獲得垂直衝量等動力學參數,並以體重倍率(B.W)作為標準化。肌電訊號由DASYLab 6.0軟體分析原始肌電訊號後,進行10-500Hz的band-pass濾波處理,經全波整流上翻、10 Hz低通率波平滑化處理,得出肌電訊號的平均肌電振幅,並以最大肌電值(100%)進行標準化處理。將參數以SPSS for windows12.0版處理,並以二因子混合設計變異數(α=.05)進行統計分析。結果:在有無穿高跟鞋和不同高度交互作用下,長期穿高跟鞋之步態時間、第一峰值、平均負荷率、最大制動力、著地期膝關節角位移及股直肌在任何高度下均顯著大於未曾穿高跟鞋,均達統計顯著水準(p<.05),而推蹬期膝關節角位移、推蹬期最大水平速度、第二峰值及最大推蹬力均顯著小於未曾穿高跟鞋,均達統計顯著水準(p<.05),因此長期穿高跟鞋者為減緩著地時產生較大的垂直分力及水平分力,則以增加膝屈曲角度提供緩衝的作用,此時徵召更大的股直肌活化程度以吸收地面反作用力之目的,在推蹬時由膝伸直轉為膝屈曲角度較小,影響第二峰值和最大推蹬力有減少的現象,引起徵召更多的腓腸肌的活化程度,在跨越策略上以延長單腳支撐時間,降低推蹬期最大水平速度,以避免身體產生過多向前動量導致重心不穩。結論:長期穿高跟鞋者行走於平地或跨越不同高度,所受衝擊力較大,可能在短時間內會有肌肉疲勞的現象發生,跨越達30%腿長高度時所受的衝擊力更大及注意推蹬力不足的現象,而造成肌肉傷害或容易被障礙物絆倒,建議因穿高跟鞋對人體正常步態影響極大,日常生活應以不穿高跟鞋為重,以維護健康生活品質。
Purpose: This study investigated the gait of kinematics, dynamics and EMG parameters of healthy females with long term (ten years ) experiences of wearing high heels and healthy females without experience of wearing high heels while they stride over different heights of obstacle ( 0%, 10%, 20% and 30% of limb length) to understand the effects on their action control.Subjects: Eight females have long term experience of wearing high heels over ten years (age: 36±3.54 years, height: 156.62±5.47 cm, limb length: 88.25±4.86 cm, weight: 51.61±4.87 kg, wearing high heels experiences: 10.75±1.66 years ( 5.37±1.3 days per week and 9.5±0.92 hours per day). Eight females do not have any experience of wearing high heels (age: 19.5±0.53, height; 164.37±4.86 cm, limb length: 93.62±4.41 cm, weight: 54.88±4.89 kg) and do not have any disease on lower extremity.Methods and procedures:Experimental instruments, a Mega speed MS30K high speed camera (100Hz), two AMTI force plateforms (100Hz) and one Biovision EMG system (2500Hz), were used to synchronously capture the movement of a complete gait cycle, stride over an obstacle. The film was analyzed by Kwon3D movement analysis software, referred the SD.04cm framed by Kwon CC, applied the body segmental parameters and direct linear transformation (DLT), filtered to obtain the kinematics parameters. The original signals received from the force platforms, processed by DASY Lab 6.0 software, were filtered and module calibrated to obtain the horizontal and vertical reaction forces. Then the body weight was used as the standardization to acquire the dynamic parameters such as vertical impulse values. The raw EMG signals were analyzed by the Dasy Lab 6.0 software to get the EMG, bandpass filtered between 10 Hz to 500 Hz, full-wave rectified and filtered smoothly using 10 Hz low pass to acquire the average EMG amplitude of EMG. Then standardized with the maximum EMG value (100%). The experimental parameters were processed by SPSS for windows 12.0 software package and analyzed statistically by the two way repeated ANOVA, the significant level was set at α=.05.Results:Under the interaction of with or without high-heel experience and different heights of obstacle, the gait cycle of female with long term experiences of high heel, the first peak force, average loading rate, maximum brake force, the knee angular displacement during the stance phase and musculi rectuss femoris of females with high-heel experiences were all significant greater (p<.05) statistically than the females without high-heel experience. The knee angular displacement and the maximum horizontal velocity during the swing phase, the second peak force and the maximum swing-phase force of females with high-heel experiences were all significant smaller (p<.05) statistically than females without high-heel experience. Thus the females with high-heel experiences will increase the function of their knee flexion angles which work as a buffer to avoid more vertical and horizontal forces and have more rectus femoris activity to absorb the ground reaction force. The smaller angular between the knee extend to flex during the swing phase will affect the second peak value, decrease the maximum swing-phase force and induce greater activity of gastrocnemius medialis. The strategy of stride over a obstacles is extend the single-limb support time to avoid the body producing more forward momemtum which might lead to an unstable center of gravity.Conclusion:Females with long term high-hell experiences might have greater impact force while walking in a flat ground or stride over different heights of obstacle and then encounter muscle fatigue in a short time. It will cause muscle injury or easy to be stumble while stride over the obstacle 30% of limb height for more impact forces and insufficient attention to the swing-phase force. This study suggest females should not wear high heels often for their significant influence to normal human gait, thus to maintain the quality of healthy life.
目次
壹、緒論 1
一、問題背景 1
二、研究目的 5
三、研究限制 6
四、名詞操作性定義 7
貳、文獻探討 9
一、身體平衡機制之生物力學影響 9
二、步態週期之生物力學影響 12
三、不同鞋跟高度之生物力學影響 20
四、跨越障礙物之生物力學分析 27
五、文獻總結 32
參、研究方法與步驟 33
一、研究對象 33
二、實驗時間與地點 33
三、研究架構 34
四、實驗儀器與設備 35
五、實驗方法與步驟 39
六、資料處理與統計分析 49
七、統計方法 53
肆、結果 55
一、跨越不同高度對人體運動學參數影響 55
二、跨越不同高度對人體動力學參數影響 68
三、跨越不同高度的跨越步態對下肢肌群平均肌電震幅特性分析 76
四、綜合討論 84
伍、討論 87
一、跨越不同高度對運動學參數之影響 87
二、跨越不同高度對動力學參數之影響 89
三、跨越不同高度對下肢肌群肌電訊號特性之影響 91
四、跨越不同高度對動力學、運動學及下肢肌群肌電訊號特性綜合討論 93
陸、結論 95
柒、參考文獻 96
一、中文部分 96
二、外文部分 99
附錄 107
附錄一、單因子變異數分析統計摘要表 107
附錄二、受試者同意書 122

表次
表3-1 測力板精確度誤差表 42
表3-2 壓力中心校正誤差表 45
表3-3表面肌電圖電極片黏貼的位置 47
表3-4 Dempster人體肢段參數表 49
表4-1 跨越不同高度之步態週期時間分配統計摘要表 55
表4-2 跨越不同高度對身體重心平衡統計摘要表 59
表4-3 著地期下肢關節角度變化量統計摘要表 63
表4-4 推蹬期下肢關節角度變化量統計摘要表 63
表4-5 軀幹前傾角位移變化量統計摘要表 67
表4-6 垂直分力統計摘要表 68
表4-7 水平分力統計摘要表 72
表4-8壓力中心偏移變化量統計摘要表 74
表4-9 著地期下肢肌群平均肌電震幅特性分析統計摘要表 76
表4-10 推蹬期下肢肌群平均肌電震幅特性分析統計摘要表 77

圖次
圖1-1 跨越障礙物步態分期示意圖 7
圖1-2跨越瞬間之前導腳和跟隨腳 8
圖1-3 軀幹角度示意圖 8
圖2-1 人體穩定策略圖 10
圖2-2 步行時人體重心的移動軌跡 11
圖2-3 行走時步態週期(gait cycle) 13
圖2-4 步態週期中足部與地面接觸的情形 13
圖2-5 支持期步姿外觀 16
圖2-6 支撐期腳底壓力分佈變化 17
圖2-7 足底壓力在步行中的運動順序 17
圖2-8 腰椎角度示意圖 21
圖2-9 LCI、Cobb、SSA測量方法 21
圖2-10 左腳足底分區圖 26
圖3-1 研究架構圖 34
圖3-2 MS30k高速攝影影 35
圖3-3反光球 35
圖3-4 Kwon 3D動作分析參考架示意圖 36
圖3-5測力板及相關儀器示意圖 36
圖3-7酒精棉片、表面電極片、刮鬍刀 37
圖3-8 儀器同步啟動裝置(trigger) 38
圖3-9 電子節拍器示意圖 38
圖3-10 障礙物示意圖 38
圖3-11 實驗場地與儀器佈置圖 40
圖3-12 測力板比例模組校正圖 42
圖3-13 力矩校正模組運算流程圖 43
圖3-14 壓力中心模組運算流程圖 44
圖3-15 同步控制器之訊號方型波標記 46
圖3-16 股直肌、股二頭肌、脛骨前肌、腓腸肌電極片黏貼位置圖 47
圖3-17 施測流程圖 48
圖3-18 股直肌MVC施測圖 51
圖3-19股二頭肌MVC施測圖 51
圖3-20 脛骨前肌MVC施測圖 51
圖3-21 腓腸肌MVC施測圖 52
圖4-1 跨越不同高度之步態時間圖 56
圖4-2 第一次雙腳支撐期步態時間百分比 57
圖4-3 單腳支撐期步態時間百分比 57
圖4-4 第二次雙腳支撐期步態時間百分比 58
圖4-5 跟隨腳擺盪期步態時間百分比 59
圖4-6 長期穿最大重心水平速度曲線變化圖 61
圖4-7未曾穿最大重心水平速度曲線變化圖 61
圖4-8 長期穿與未曾穿高跟鞋30%腿長高度最大重心水平速度曲線變化圖 61
圖4-9 長期穿最大重心垂直速度曲線變化圖 62
圖4-10 未曾穿最大重心垂直速度曲線變化圖 62
圖4-11 長期穿髖關節角度變化曲線圖 64
圖4-12 未曾穿髖關節角度變化曲線圖 64
圖4-13 長期穿膝關節角度變化曲線圖 65
圖4-14 未曾穿膝關節角度變化曲線圖 66
圖4-15長期穿踝關節角度變化曲線圖 66
圖4-16未曾穿踝關節角度變化曲線圖 67
圖4-17 長期穿跨越不同高度之垂直分力曲線變化圖 69
圖4-18 未曾穿跨越不同高度之垂直分力曲線變化圖 69
圖4-19 長期穿與未曾穿跨越20%腿長高度之垂直分力線變化圖 70
圖4-20 長期穿與未曾穿跨越30%腿長高度之垂直分立曲線變化圖 70
圖4-21 長期穿跨越不同高度之水平分力曲線變化圖 73
圖4-22 未曾穿跨越不同高度之最大制動力曲線變化圖 73
圖4-23 長期穿推蹬期前後方向偏移量 75
圖4-24 未曾穿推蹬期前後方向偏移量 75
圖4-25 長期穿跨越0%腿長高度之站立期下肢肌電訊號變化圖 80
圖4-26 長期穿跨越10%腿長高度之站立期下肢肌電訊號變化圖 80
圖4-27 長期穿跨越20%腿長高度之站立期下肢肌電訊號變化圖 81
圖4-28 長期穿跨越30%腿長高度之站立期下肢肌電訊號變化圖 81
圖4-29 未曾穿跨越0%腿長高度之站立期下肢肌電訊號變化圖 82
圖4-30 未曾穿跨越10%腿長高度之站立期下肢肌電訊號變化圖 82
圖4-31 未曾穿跨越20%腿長高度之站立期下肢肌電訊號變化圖 83
圖4-32 未曾穿跨越30%腿長高度之站立期下肢肌電訊號變化圖 83
圖4-33 跨越不同高度之步態週期生物力學參數同步圖 85


一、中文部分
王惠中(2008)。年齡和跨越前跟隨腳至障礙物距離對於跨越障礙物時動作控制的影響。未出版碩士論文,國立成功大學,臺南市。
吳慧芬(1994)。正常兒童之步態肌電訊號分析。未出版碩士論文。國立臺灣師範大學,臺北市。
吳劍,李建設(2004)。青年女性穿不同鞋行走時步態的動力學研究。北京體育大學學報,27,486- 488。
李直穎(2007)。以足壓分佈與加速規資訊分析人體行走時的動態平衡。未出版碩士論文,中原大學,桃園縣。
李詩瑋(2008)。視覺與本體感覺輸入對跟隨腳跨越障礙物時神經肌肉控制之影響。未出版碩士論文,國立成功大學,臺南市。
李侑霖(2008)。足跟墊對足跟受力之影響-有限元素分析。未出版碩士論文,國立陽明大學,臺北市。
李淑雅、羅偉、楊志鴻、吳汶蘭、林愧庭、郭藍遠(2008)。穿著高跟鞋小跑步對足底壓力的立即效應。2008台灣生物力學學會聯合年會暨學術研討會和國科會醫學工程學門成果發表會論文集,295-296。
李媛(2010)。高跟鞋鞋底改良對行走的力學影響研究。未出版碩士論文,寧波大學,浙江省。
林寶成(1994)。運動鞋結構功能之運動生物力學探討。中華體育,8(3),60-64。
林耿彰(2008)。不同鞋跟高度下階梯之生物力學分析。未出版博碩士論文,國立台北教育大學,臺北市。
邱顯光(2004)。老年人跨越不同高度障礙物之生物力學分析。未出版碩士論文,國立灣師範大學,臺北市。
洪維憲(2003)。女性高跟鞋及鞋墊的生物力學與傳力機制分析。未出版博士論文。國立台灣科技大學,臺北市。
洪維憲、李永輝、鄧復旦、陳佳玲、劉文隆、和裴育晟(2005)。高跟鞋不適度、解除不適行為及其臨床意涵。台灣負建議學雜誌,33(1),11-18。
相子元(1997)。足部運動生物力學研究。財團法人鞋類設計暨技術研究中心委託學術機構研究報告。
相子元、施偉立(1999)。不同厚度硬度足弓墊對高低足弓者運動之影響。行政院國家科學委員會專題研究成果報告( 報告編號:NSC88-2413-H179-004)。
徐婉靜(1992)。五歲和六歲幼童步態之生物力學分析。未出版碩士論文。國立臺灣師範大學,臺北市。
徐婉靜、邱靖華與王金成(1991)。地面上與原地跑步機上的二度空間步態比較,體育學報,13,211-221。
袁剛、張木勛、王中琴與張建華(2004)。正常人足底壓力分部及其影響因素分析。中華物理醫學與康復雜誌,20(2),12-15。
郭藍遠(1995)。腦性麻痺兒童的步態分析。未出版碩士論文,國立成功大學,臺南市。
郭金明、張國權、阿布米力提.阿里木江(2007)。穿高跟鞋對中青年女性腰椎生理曲度的影響。臨床骨科雜誌,10(4),332-333。
陳立元(1995)。在跑步機上後退步態的力學及肌電圖分析。未出版碩士論文,中山醫學院,臺中市。
陳克岳(2007)。足跟墊軟組織之機械特性量測與分析。未出版碩士論文,國立臺灣大學,臺北市。
陳詩珊(2008)。慣用腳與老化對平衡與跨越障礙物姿勢控制特性之影響。未出版碩士論文,長庚大學,桃園縣。
陳顥齡(2006)。正常人與退化性膝關節炎患者於行走跨越障礙物時之生物力學分析。未出版博士論文,國立臺灣大學,臺北市。
麥麗敏(2002)。SNELL臨床解剖學Clinical Anatomy: For medicial students。合記圖書出版社,總編譯,台灣。
張敬德、郝智秀、張宇、周大佛、方新(2007)。鞋跟高度對地面反力和鞋底壓力中心的影響,中國康復醫學雜誌,22(3),241-243。
黃偉耕(1994)。正常兒童之步態。未出版碩士論文,國立成功大學,臺南市。
黃世旭 李淑貞 劉謹緣 李茂昌(1996)。中國青年人步態常模之建立,中華物療痣,21,21-38。
黃詩帆(2006)。國小學童不同背重率行走之生物力學探討。未出版碩士論文,國立台北教育大學,臺北市。
黃雅婷(2008)。背向與正向行走斜坡之生物力學分析。未發表之碩士論文,國立台北教育大學,臺北市。
楊啟新(1987)。正常步態資料之建立。未出版碩士論文。國立成功大學,臺南市。
詹益坤、李淑貞、楊世偉、趙令怡、林佳貞與張惠芳(1997)。正常青年人之足底壓力分析,中華物療痣,22,81-90。
蔡正中(2002)。不同站立角度下立姿平衡能力的比較。未出版碩士論文,國立體育學院,台中市。
謝誌宇(2009)。不同鞋面形態之女性高跟鞋對拇趾外翻成因的探討。未出版碩士論文,國立陽明大學,臺北市。
魏志全(2007)。不同接觸平面角度與韌帶勁度對踝關節扭傷之影響。未出版碩士論文,國立陽明大學,臺北市。

二、外文部分
American Podiatric Medical Association. (2003). High heel survey. American Podiatric Medical Association.
Adrian, M. J., & Karpovitch, P. V. (1965). Foot instability during walking in shoes with High heel. Research Quarterly,37,168-175.
Andriacchi, T. P., Andersson, G. B. J., Fermier, R. W., Stern, D., & Galante, J. O. (1980). A study of lower-limb mechanics during stair-climbing. The Journal of Bone and Joint Surgery, 62, 749-757.
Astrand, P. O., & Rodahl, K. (1986). Textbook of Work Physiology.(3th edi), McGraw Hill Books. Company, New York, 192 , 273-292.
Alexander, R. M. (1992). The Human Machine. New York:The Columbia University Press.
Austin, G. P., Garrett, G. E., & Bohannon, R. W. (1999). Kinematic analysis of obstacle clearance during locomotion. Gait and Posture 10, 109-120.
Bendix, T., Sorensen, S. S., & Klausen, K. (1984). Lumbar curve, trunk muscles, and line of gravity with different heel heights. Spine, 9, 223–227.
Bronstein, A. M., Brandt, T., & Woollacott, M. H. (1996). Clinical disorders of balance, posture and gait. London : Arnold ; New York : Co-published in the USA by Oxford University Press.
Brown, M., Rudicel, S., & Esquenazi, A. (1996). Measurement of dynamic pressures at the shoe-foot interface during normal walking with various foot orthoses using the FSCAN system. Foot Ankle, 17, 152-156.
Breniere, Y., & Ribreau, C. (1998). A double-inverted pendulum model for studyingthe adaptability of postural control to frequency during human stepping in place. Biological Cybernetics, 79, 337-345.
Begg, R. K., Sparrow, W. A., & Lythgo, N. D. (1998). Time-domain analysis of foot-ground reaction forces in negotiating obstacles. Gait and Posture, 7, 99-109.
Bryant, A. R., Tinley, P. & Singer, K. P. (2000). Normal values of plantar pressure measurements determined using the EMED-SF system. Journal Am Podiatr Medicine Assoc, 90(6), 295-299.
Barton, C. J., Coyle, J. A., & Tinley, P. (2009). The effect of heel lifts on trunk muscle activation during gait: A study of young healthy females. Journal of Electromyography and Kinesiology, 19, 598–606.
Caiozzo, V. J., & Kyle, C. R. (1980). The effect of external loading upon power output in stair climbing. European Journal of Applied Physiology, 44, 217-222.
Cavanagh, P. R., Rodgers, M. M. & Iiboshi, A. (1987). Pressure distribution under symptom-free feet during barefoot standing. Foot & Ankle, 7(5), 262-276.
Chen, H. C., Ashton-Miller, J. A., Alexander, N. B., & Schultz, A. B. (1991). Stepping over obstacles: Gait patterns of healthy young and old adults. Journals of Gerontology, 46(6), 196-203.
Corrigan, J. P, Moore, D. P, & Stevens, M. M. (1993). Effect of heel height onforefoot loading. Foot Ankle , 14 (3), 148–152.
Craik, R. L., & Oatis, C. A. (1995). Gait analysis: theory and application. Mosby Inc., St. Louis, USA. 46-65.
Chen, H. C., Schultz, A. B., Ashton-Miller, J. A., Giordani, B., Alexander, N. B., & Guire, K. E. (1996). Stepping over obstacles: Dividing attention impairs performance of old more than young adults. Journal of Gerontology, 51 (3), 116-112.
Chou, L. S., & Draganich, L. F. (1997). Stepping over an obstacle increases the motions and moments of the joints of the trailing limb in young adults. Journal of Biomechanics, 30(4), 331-337.
Chou, L. S., & Draganich, L. F. (1998). Placing the trailing foot closer to an obstacle reduces flexion of the hip, knee, and ankle to increase the risk of tripping. Journal of Biomechanics, 31(8), 685-91.
Chou, L. S., Kaufman, K. R., Brey, R. H., & Draganich, L. F. (2001). Motion of the whole body's center of mass when stepping over obstacles of different heights. Gait and Posture, 13 (1), 17-26.
Cho, S. H., Park, J. M., & Kwon, O. Y. (2004). Gender differences in three dimensional gait analysis data from 98 healthy Korean adults. Clinical Biomechanics, 19, 145-152.
Chen, H. L.,& Lu, T. W. (2006). Comparisons of the joint moments between leading and trailing limb in young adults when stepping over obstacles. Gait Posture, 23(1), 69-77.
Cock, A. D., Willems, T., Witvrouw, E., Vanrenterghem, J., & Clercq, D. D. (2006). A functional foot type classification with cluster analysis based on plantar pressure distribution during jogging. Gait & Posture 23,339–347.
Cernekova, M., & Hlavacek, P., (2008). The influence of heel height on plantar pressure. Clinical Biomechanics, 23, 20-24.
Csapo, R., Maganaris, C. N., Seynnes, O. R., & Narici M. V. (2010). On muscle, tendon and high heels. Journal of Experimental Biology, 213, 2582-2588.
Diener, H. C. (1982). Stabilization of human posture during induced oscillations of the body. Exp Brain Res, 45,126-132.
Dawson, J., Thorogood, M., Marks, S. A., Juszczak, E., Dodd, C., Lavis, G., & Fitzpatrick, R. (2002). The prevalence of foot problems in order women : a cause for concern. Journal Public Health Medicine, 24, 77-84.
Engsberg, J. R., Lee, A. G., Patterson, J. L., & Harder, J. A. (1991). External loading comparisons between able-bodied and below-knee-amputee children during walking. Archives of Physical Medicine and Rehabilitation, 72, 657-661.
Ebbeling, C. J., Hamill, J., & Crussemeyer, J. A. (1994). Lower extremity mechanics and energy cost of walking in highheeled shoes. Journal of Orthopedics Sports Physical Therapy ,19, 190-196.
Eisenhardt, J. R., Cook, D., Pregler, I., & Foehl, H. C. (1996). Changes in temporalgait characteristics and pressure distribution for bare feet versus various heel heights. Gait Posture, 4, 280–286.
Esenyel, M., Walsh, K., Walden, J. G., & Gitter, A. (2003). Kinetics of high-heeled gait. Journal of the American Podiatric Medical Association, 93, 27–32.
Edwards, L., Dixon, J., Kent, J. R., Hodgson, D., & Whittaker, V. J. (2008). Effect of shoe heel height on vastus medialis and vastuslateralis electromyographic activity during sit to stand. Journal of Orthopaedic Surgery and Research, 3, 2.
Frey, C., Thompson, F., Smith, J., Sanders, M., & Horstman, H. (1993).American Orthopaedic Foot and Ankle Society women’s shoe survey. Foot Ankle, 14, 292-293.
Fisher, N. M., & Pendergast, D. R. (1997). Reduced muscle function in patients with osteoarthritis. Scand J Rehab Med, 29, 213-221.
Gollhofer, A., Schmidtbleicher, D., & Dietz, V. (1984). Regulation of muscle stiffness in human locomotion. International Journal of Sportsmedicine, 5, 156-159.
Greer, N. L. (1988). Dynamics of children’s gait. Unpublished doctoral dissertation, University of Massachusetts.
Goh, J. H., Thambyah, A., & Bose, K. (1998). Effects of varying backpack loads on peak forces in the lumbosacral spine during walking. Clinical Biomechanics, 13(1), 26-31.
Gajdosik, R. L., Linden, D. W. V., & Williams A. K. (1999). Influence of age on length and passive elastic characteristics of the calf muscle-tendon unit of women. Phys ther, 79, 827-838.
Gefen, A., Megido-Ravid, M., Itzchak, Y., & Arcan, M. (2002). Analysis of muscular fatigue and foot stability during high-heeled gait. Gait and Posture,15, 56–63.
Horak, F. (1986). Central progrmming of postural movements: adaptation to altered support surface configurations. Joumal of Neurophysiol, 55, 1372.
Hayashi, R. (1998). Afferent feedback in the triphasic EMG pattern of leg muscles associated with rapid body sway. Brain Res, 119, 171-178.
Han, T. R., Paik, N. J., & Im, M. S. (1999). Quantification of the path of center of pressure(COP) using an F-scan in-shoe transducer. Gait Posture, 10, 248-254.
Hennington, G., Johnson, J., Penrose, J., Barr, K., McMulkin, M. L., & Vander Linden, D. W. (2004). Effect of bench height on sit-to-stand in children without disabilities and children with cerebral palsy. Archives of Physical Medicine & Rehabilitation, 85, 70-76.
Hahn, M. E., & Chou, L. S. (2004). Age - related reduction in sagittal plane center of mass motion during obstacle crossing. Journal of Biomechanics, 37, 837-844.
Hahn, M. E., Lee, H. J., & Chou, L. S. (2005). Increased muscular challenge in older adults during obstructed gait. Gait Posture. 22(4), 356-61.
Hessert, M. J., Vyas, M., Leach, L., Hu, K., Lipsitz, L. A., & Novak, V. (2005). Foot pressure distribution during walking in young and old adults. BMC Geriatrics, 5, 8.
Hong, W. H., Lee, Y. H., & Chen, H. C. (2007). The effect of insert on muscle activities during high-heeled gait. Journal of Biomechanics, 40, 111.
Huang, S. C., Lu, T. W., Chen, H. L., Wang, T. M., & Chou, L. S. (2008). Age and height effects on the center of mass and center of pressure inclination angles during obstacle-crossing. Medical Engineering and Physics, 30, 968-975.
Jahss, M. H., Kummer, F., & Michelson, J. D. (1992). Investigationis into the fat pads of thesole of the foot: heel pressure studies. Foot Ankle, 13, 227-232.
Jacobson, G. P., Newman, C. W., & Kartush, J. M. (1997). Handbook of Balance Function Testing. Singular Publishing Group Inc, 261-272.
Jang, N., & Kim, Y. (1998). Human Physiology(3th.ed)., Sumunsa, Seoul, Korea, 73-80.
Kralj, A., Jaeger, R. J. & Munih, M. (1990). Analysis of standing up and sitting downin humans: definitions and normative data presentation. Journal of Biomechanics, 23, 1123-1138.
Kotake, T. N. D., Kajiwara, T., Sumi, N., Koyama, Y., & Miura, T. (1993). An analysis of Sit-to-Stand movements. Archives of Physical Medicine and Rehabilitation, 74, 1095-1099.
Kernozek, T. W., & LaMott, E. E. (1995). Comparisons of plantar pressures between the elderly and young adults. Gait & Posture, 3, 143-148.
Kramers, I. A., Quervain, M. D., Benz, D. A.,Muller, R., & Stussi, E. (1996). Trunk and pelvic postural adaptation during high heeled gait. Gait and Postur, 4, 196-197
Kerrigan, D. C., Todd, M. K., & Riley, P. O. (1998). Knee osteoarthritis and high-heeled shoes. The Lancet, 351(9), 1399–1401.
Kaufman, K. R., Hughes, C., Morrey, B. F., Morrey, M., & An, K. N. (2001). Gait characteristics of patients with knee osteoarthritis. Journal of Biomechanics, 34(7), 907-15.
Kathleen, J. G., & Christopher, M. P. (2005). Gait kinematics and kinetics of 7-year-old children: a comparison to adults using age-specific anthropometric data. Gait and Posture, 21, 141-145.
Lund, J. P., Donga, R., Widmer, C. G., & Stohler, C. S. (1991). The pain-adaptation model: A discussion of the relationship betweenchronic musculoskeletal pain and motor activity. Canadian Journal of Physiology and Pharmacology, 69, 683–694.
Lateur, B. J., Giaconi, R. M., Questad, K., Ko, M., & Lehmann, J. F. (1991). Footwear and posture: compensatory strategies for heel heigt. American Joumal of Physical Medicine and Rehabilitation 70, 246-254.
Linder, M., & Saltzman, C. L. (1998). A history of medical scientists on high neels International Joumal of health Services, 28, 201-22.
Liao Y. H. (2000). Care of your Feet. (Translate and Edit). Taiwan International Si-Shu Books Publisher.
Lee, C., Jeong, E., & Frievalds, A. (2001). Biomechanical effects of wearing high-heeled shoes. International Journal of Industrial Ergonomics, 28, 321–326.
Lee, Y. H., & Hong, W. H. (2005). Effects of shoe inserts and heel height on foot pressure, impact force,and perceived comfort during walking.Applied. Ergonomic, 36, 355–362.
Mathews, D. K., & Wooten, E. P. (1963). Analysis of oxyen consumption of women while walking in different styles of shoes. Archives of Physical Medicine and Rehabilitation, 99, 569-571.
Murray, P. M., Kory, R. C., & Sepic, S. B. (1970). Walking patterns of normal women. Archives of Physical Medicine and Rehabiliation,51,637.
Mcfadyen, B. J., & Winter, D. A. (1991). Anticipatory locomotor adjustments during obstructed human walking. Neuroscience Research Communications. 9(1), 37-44.
Michael, W. W. (1991). Gait Analysis An Introduction. Oxford: The University of Tennessee at Chattanooga.
Mcauley, E. (1991). Injuries in women’s gymnastics-The state of the art. The American Joural of Sports Medicine, 15, 558-565.
Messier, S. P., Loeser, R. F., Hoover, J. L., Semble, E. L., & Wise, C. M. (1992). Osteoarthritis of the knee: effects on gait, strength, and flexibility. Archives of Physical Medicine and Rehabiliation, 73, 29-36.
Mueller, M. J. (1999). Application of plantar pressure assessment in footwear and insert design. Journal Opthop Sports Physical Therapy, 29, 747-755.
Mandato, M. G., & Nester, E. (1999). The effects of increasing heel height on forefootpeak pressure. J Am Podiatr Med Assoc ,89(2),75–80.
Norkin, C. C., & Levangie, P. K. (1992). Joint Structure & Function:A Comprehensive Analysis(2nd). 448-493. Ohio:Philadelphia. F.A. Davis Company.
Nuber, G. W. (1998). Biomechanics of the foot and ankle during gait. Clinical Sports Medicine, 7, 1-13.
Nordin, M., & Frankel, V. H. (2001). Basic Biomechanics of the Musculoskeletal System, (3rded). Philadelphia: Lea & Febiger
Neumann, D. A. (2002). Kinesiology of the musculoskeletal system (1st ed.). St. Louis: Mosby.
Nadeau, S., McFadyen, B. J., & Malouin, F. (2003). Frontal and sagittal plane analyses of the stair climbing task in healthy adults aged over 40 years: what are the challenges compared to level walking? Clinical Biomechanics, 18, 950-959.
Opila-Correia, K. A. (1990). Kinematics of high heeled gait. Archives of PhysicalMedicine and Rehabilitation , 71, 304–309.
Patla, A. E., Robinson, C., Samways, W., & Armstrong, C. J. (1989). Visual control of step length during over ground locomotion: ask-specific modulation of the locomotor synergy. Journal of Experimental Psychology, 15 (3), 603-617.
Patla, A. E. (1991). Visual control of human locomotion. In Patla, A. E. (Ed.), 26 Adaptability of human gait. North-Holland: Elsevier, 55-95.
Patla, A. E., Prentice, S., Robinson, C., & Neufeld, J. (1991). Visual control of locomotion: Strategies for changing direction and for going over obstacles. Journal of Experimental Psychology, 17 (3). 603-634.
Perry, J. (1992). Gait analysis: normal and pathological function. McGraw-Hill Inc., New York, USA. 1-149.
Patla, A. E. (1993). Age-related changes in visually guided locomotion over different terrains: major issues. In Stelmach, G. E. & Homberg, V. (Eds.), Adaptability of human gait Sensorimotor impairment in the elderly. Netherlands: Kluwer Academic, 231-252.
Patla, A. E., & Rietdyk, S. (1993). Visual control of limb trajectory over obstacles during locomotion: Effect of obstacle height and width. Gait and Posture, 1, 45-60.
Pijnappels, M., Bobbert, M. F., & Van-Dieen, J. H. (2004). Contribution of the support limb in control of angular momentum after tripping. Journal of Biomech, 37, 1811-1818.
Pijnappels, M., Bobbert, M. F., & Van Dieen, J. H. (2005). How early reactions in the support limb contribute to balance recovery after tripping. Biomechanices. 38, 627-634.
Parka, K. M., Chuna, S. M., Oha, D. W., Kima, S. Y., & Chonb, S. C. (2010). The change in vastus medialis oblique and vastus lateralis electromyographic activity related to shoe heel height during treadmill walking. Journal of Back and Musculoskeletal Rehabilitation, 23, 39–44.
Ragnarsdottir, M. (1996). The concept of balance. Physiotherapy, 82 (6), 369-375.
Rome, K. (1998). Mechanical properties of the heel pad: current theory and review ofthe literature. The Foot, 8, 179-185.
Riener, R., Rabuffetti, M., & Frigo, C. (2002). Stair ascent and descent at different inclinations. Gait & Posture, 15, 32-44.
Scholl, W. (1931).The Human Foot: Anatomy, Physiology,Mechanics, Deformities and Treatment. Charles C.Thomas, Springfield, IL.
Soames, R. W., & Clark, C. (1985). Heel height induced changes in metatarsal loading patterns during gait. In Winter D.A., Norman R.W., & Wells R.P.(Eds). Biomeckanics IX-A(446). Champaign, IL: Human Kinetics Publishers.
Sims, D. S., Cavanagh, P. R. & Ulbrecht, J. S. (1988). Risk factors in the diabetic foot. Physical Therapy, 68(12), 1887-1902.
Schenkman, M., Berger, R. A., Riley, P. O., Mann, R. W., & Hodge, W. A. (1990). Whole-body movements during rising to standing from sitting. Physical Therapy, 70, 638-651.
Snow, R. E., Williams, K. R., & Holmes, C. B. (1992). The effects of wearing high heeled shoes on pedal pressure in women. Foot Ankle, 13, 85-92.
Scherer, P. R., & Sobiesk, G. A. (1994). The center of pressure index in the evaluation of foot orthoses in shoes. Clin Pediatr Med Surg, 11, 355-363.
Snow, E. E., & Williams, K. R. (1994). High heeled shoes:their effect on center of mass position, posture, three-dimensional kinematics, rearfoot motion, and ground reaction force. Archives of Physical Medicine and Rehabilitation, 75, 568-576.
Sneyers, C. J. L., Lysens, R., Feys, H., & Andries, R. (1995). Influence of Malalignment of Foot on the Plantar Pressure Pattern in Running. Foot & Ankle International, 16(10), 624-632.
Sparrow, W. A., Shinkfield, A. J., Chow, S., & Begg, R. K. (1996). Characteristics of gait in stepping over obstacles. Human Movement Science, 15, 605-622.
Stefanyshyn, D. J., Nigg, B. M., Fisher, V. B., & Liu, W. (2000).The influence of high heeled shoes on kinematics ,kinetics,and muscle EMG of normal female gait. Journal of Applied Biomechanic , 16, 309-319.
Shumway-Cook, A., & Woollacott, M. H. (2001). Motor Control Theory and Practical Applications. Baltimore, Lippincott Williams & Wilkins, Philedelphia, USA.
Steijns, J. A., & Smits-Engelsman, B. C. (2005). Control of support limb muscles in recovery after tripping in young and older subjects. Experimental Brain Research, 160, 326-333.
Tessier-Lavigne, M. (2000). Visual processing by the retina. In: Kandel, E.R., Schwartz, J.H., & Jessel, T.M., Principles of Neural Science, 4th ed. McGraw-Hill, New York, 507-516.
Vellas, B. J., Wayne, S. J., Romero, L., Baumgattner, R. N., Rubenstein, L. Z., & Garry, P. J. (1997). One-leg Balance is Important Predictor of Injurious Falls in Older Persons. Journal of the American Geriatrics Society, 45(6), 733-8.
Wang, T. M., Chen, H. L., & Lu, T. W. (2007). Effects of obstacle height on the control of the body center of mass motion during obstructed gait. Journal of the Chinese Institute of Engineers, 30, 471-479.
Yoe, H. (1994). A study on the compatibility of women’shoes. Master Thesis, Pusan University, Pusan, Korea.
Yung-Hui, L., & Wei-Hsien, H. (2005). Effects of shoe inserts and heel height on foot pressure, impact force, and perceived comfort during walking. Applied Ergonomics, 36, 355–362.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top