跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 21:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡依庭
研究生(外文):Tsai, Yi-Ting
論文名稱:UAV航拍影像點雲產生DSM之研究
論文名稱(外文):The Study on DSM Generated from Point Clouds by UAV Image
指導教授:黃金聰黃金聰引用關係
指導教授(外文):Hwang, Jin-Tsong
口試委員:黃灝雄陳連晃詹進發林玉菁黃金聰
口試委員(外文):Huang, Hao-HsiungChen, Lian-HuangJan, Jihn-FaLin, Yu-ChingHwang, Jin-Tsong
口試日期:2012-06-27
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:不動產與城鄉環境學系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:120
中文關鍵詞:無人飛行載具數值地表模型尺度不變特徵轉換點雲
外文關鍵詞:UAVDSMSIFTPoint Cloud
相關次數:
  • 被引用被引用:28
  • 點閱點閱:4068
  • 評分評分:
  • 下載下載:481
  • 收藏至我的研究室書目清單書目收藏:0
  無人飛行載具( Unmanned Aerial Vehicle, UAV )因為機動性高、飛行高度低,同時可快速安全的獲取地面上高解析度的影像,現今常用在防救災的規劃與環境監測。但因UAV飛行的穩定度不如傳統固定翼航拍,所以拍攝時影像之間旋轉角度常差異較大,在影像匹配上較不容易。由於尺度不變特徵轉換 (Scale-Invariant Feature Transform, SIFT)具有尺度不變特徵的特性,可以克服拍攝時角度、亮度、像片解析度不一致的問題,故本研究採用SIFT進行特徵點萃取與匹配,以建立相鄰影像的相對關係,再運用移動獲取空間結構 (Structure from Motion, SfM)的方法,解算與建立相機與所拍攝物體之間的空間結構關係。
  Photosynth為Microsoft在2008年開放使用的軟體,即運用SIFT與SfM的方式建立每張像片之間的空間關係,並產生具有三維坐標與色彩資訊的點雲資料。本研究以台北大學三峽校區宿舍旁,植被區與土石區這兩塊土丘為實驗區進行UAV航拍,將航拍影像以傳統航空攝影測量方法產生的數值地表模型(Digital Surface Model, DSM)為高程精度比較的依據,與Photosynth點雲產生的DSM進行比較。精度指標為兩組DSM資料高程的RMSE值,透過精度指標的計算,以了解Photosynth點雲產生地表高程的可達精度,並分析植被與土石這兩種不同地表覆蓋時,對高程精度的影響。
  由實驗可知,以航空攝影測量自率光束法解算的檢核點精度中,x、y、z方向精度分別為±0.032m、±0.025m、±0.098m,換算為航高比值為1/1377,解算的精度與文獻回顧數據(1:500~1:2600)相仿,故可以做為後續DSM高程的比較依據。另外,以Photosynth產生DSM高程的實驗結果顯示,植被區高程的RMSE值為±0.5050m,裸露礫石的土石區高程的RMSE值為±0.6086m,就本研究所使用的影像而言,當地表覆蓋物不同時以Photosynth方法獲得的高程確實有所不同,其中,以植被區的高程精度優於裸露礫石區的精度。

  Unmanned Aerial Vehicle (UAV) has high mobility and low flight altitude char-acteristic so it can take high-resolution images faster and safer, usually used in disasters prevention, protection, and environmental monitoring. However, UAV flight stability degree worse than traditional fixed-wing aerial photography, lead to generate large rotation angle between images, cause images matching not easier. Scale-Invariant Feature Transform(SIFT) is robust and invariant for spatial scale, rotation angle or brightness of the image. Therefore this study uses SIFT for feature point extraction and build the relative relationship of the photos, then use Structure from Motion (SfM) analysis the relative or absolute orientation of several photos, build the spatial structure between the camera and shooting objects.
  Microsoft released a free software of Photosynth in2008. It used SIFT and SfM theory to build the coordinates of the object in 3D modeling, with color information. This study choose two of mound near the dormitory which at National Taipei University in Sanxia as experimental area. The aerial photography image used traditional aerial photohrammetry assessment by generated Digital Surface Model(DSM) which as the reference of accuracy Photosynth 3D point cloud genered DSM. The accuracy index of values were adopted for two DSM data. Based on the RMSE of two DSM data, the accuracy of Photosynth point cloud generated DSM would be estimated. As well as analysis the land cover of influence in DSM accuracy.
  The result of experiment show, aerial photogrammetry use Self-Calibration methods count, the accuracy of x, y, z is ±0.032m, ±0.025m and ±0.098m respectively. Conversion ratio of flying height is 1/1377, based on the research the accuracy satisfied, can be as the reference of DSM accuracy assessment. In addition, in the case of grass cover mound DSMZ ±0.5050m while the mound cover with gravel shows DSMZ value of ±0.6086m. In this study, land cover on the mound has indeed different at height accuracy, and the mound covered with grass of height accuracy is better than the mound covered with gravel.

第一章 緒論
1.1 前言
1.2 研究動機與目的
1.3 文獻探討
1.3.1 無人飛行載具( UAV )應用及精度探討
1.3.2 SIFT與SfM應用及精度探討
1.4 研究方法與流程
1.5 論文架構
第二章 研究相關理論基礎
2.1 PHOTOSYNTH影像匹配原理
2.1.1 SIFT尺度不變特徵轉換
2.1.2 SfM移動獲取空間結構
2.1.3 相關實驗驗證
2.2 航空攝影測量採用之數學模式
2.2.1 共線式
2.2.2 自率光束法( Self-Calibration )平差
2.2.3 附加參數自率光束法(Additional Parameters for Self-Calibration)平差
2.3 DSM記錄方式及內插方法
2.3.1 DSM的記錄方式
2.3.2 DSM內插方法
2.3.3 Kriging內插
2.4 DSM解析度
第三章 實驗設計
3.1 實驗區
3.2 研究使用設備
3.2.1 UAV介紹
3.2.2 相機介紹與率定結果
3.2.3 量測控制點儀器介紹
3.3 試驗場佈設
3.4 飛航規劃
3.5 實驗影像
3.6 DSM產製流程
3.6.1 航空攝影測量產生DSM
3.6.2 Photosynth產生DSM
3.7 精度檢核方法
第四章 實驗成果與分析
4.1 航空攝影測量建置DSM之成果
4.1.1 LPS與ORIMA空中三角測量之精度
4.1.2 航空攝影測量DSM產製與編修
4.1.3 DSM內插
4.1.4 航空攝影測量建置DSM成果小結
4.2 PHOTOSYNTH建置DSM之成果
4.2.1 Photosynth三維點雲產生與編修
4.2.2 編修Photosynth控制點的三維點雲
4.2.2 選擇Photosynth坐標轉換的控制點
4.2.2.1 植被區的坐標轉換控制點
4.2.2.2 土石區的坐標轉換控制點
4.2.3 濾除Photosynth的大誤差點雲
4.2.3.1 濾除植被區的大誤差點雲
4.2.3.2 濾除土石區的大誤差點雲
4.2.4 Photosynth建置DSM成果小結
4.3 PHOTOSYNTH產生DSM精度分析
4.3.1 RMSE趨勢分析
4.3.2 解析度影響分析
4.3.3 植被區分析
4.3.4 土石區分析
4.3.5 斷面高程分析
4.3.5.1 橫斷面高程分析
4.3.5.2 縱斷面高程分析
4.3.6 DSM分析小結
第五章 結論與建議
5.1 結論
5.2 建議
參考文獻
附錄一

一、中文文獻
王宇、王涌天、劉越,2009,基於SIFT和小波變換的圖像拼接算法。北京理工大學學報,第29卷第5期,頁423-426。
王勁峰、廖一蘭、劉鑫,2010,空間數據分析教程。北京:科學出版社,頁93。
何維信,1995,航空攝影測量學。大中國圖書公司。
何維信,2009,測量學。宏泰出版社,頁 567-572。
吳究、張奇、劉銘哲,2009,基於尺度不變特徵點轉換之精密多元影像套合。航測及遙測學刊,第十四卷第二期,頁141-155。
周啟鳴、劉學軍,2008,數字地形分析。北京:科學出版社,頁71。
呼艷、耿國华、王小鳳、趙璐璐,2007,一種用於未標定圖像三為重建的立體匹配算法。計算機應用研究,第27卷第10期,頁3964-3967。
施錦揮、游政恭、鄒慶敏、蔡季欣、林志清、林燕山,2010,無人飛行載具應用於防救災圖資供應之研究--以北二高崩塌地為例。地籍測量,29卷(3期),頁17-36。
高超、張鑫、王云麗、王暉,2007,一種基於SIFT特徵的航拍圖像序列自動拼接方法。計算機應用,第27卷第11期,頁2789-2792。
曹鼎志、許志豪、簡榮興、楊永祺,2010,舊潭二號橋野溪於莫拉克颱風後之調查與防災規劃。第三屆水保技術研討會,彰化,論文集第17-21頁。
陳思翰,2011,未校正影像三維模型建構與定位精度之研究。國立台北大學不動產與城鄉環境學系碩士論文。
黃昭雄、徐逸祥、朱子豪,2005,無人載具(UAV)應用於海岸濱線追蹤調查以鹽寮福隆沙灘為例。2005年台灣地理資訊學會年會暨學術研討會論文集。
賈世杰、王鵬翔、姜海洋、曾洁,2010,基於SIFT的圖像匹配算法。大連交通大學學報,第31卷第2期,頁17-21。
蔡孟倫、羅正方、吳昌暉、林燕山、林奕翔、蔡季欣、江凱偉、黃芸玟,2010,無人機載航測應用之適用性評估。第二十九屆測量及空間資訊研討會論文集。
蕭震洋、謝寶珊、冀樹勇,2011,應用非常規攝影量測評估國道3號3.1公里崩塌事件之土方量。中華水土保持學報, 42(2),頁120-130。
謝幸宜,2011,以自率光束法提升四旋翼UAV航拍影像之定位精度。國立政治大學地政學系碩士論文。
龔健彬、史天元,2000,Kodak DCS210數位相機量測特性之探討。航測及遙測學刊,5卷(4期),頁39-54.


二、英文文獻
Abdel-Hakim, A. E., and A. A. Farag, 2006, CSIFT: A SIFT Descriptor with Color Invariant Characteristics. Computer Society Conference on Computer Vision and Pattern Recognition , 2, pp. 1978–1983.
Chang, K.T., 2007, Introduction to Geographic Information Systems.( 4th ed. ), New York: McGraw-Hill, pp. 51-52 & 279-281& 327-347.
Doneus, M., G. Verhoeven, M. Fera, Ch. Briese, M. Kucera, and W. Neubauer, 2011, From deposit to point cloud – A study of low-cost computer vision approaches for the straightforward documentation of archaeological excavations.(XXIIIrd International CIPA Symposium) Geoinformatics, 6, pp. 81–88.
Douterloigne, K., S. Gautama, and W. Philips, 2010, On the accuracy of 3D landscapes from UAV image data. Paper presented at the Geoscience and Remote Sensing Symposium (IGARSS) IEEE International, pp. 589-592.
Eisenbeiss, H., 2006, Applications of photogrammetric processing using an autono-mous model helicopter, ISPRS Commission I Symposium, Paris, France, 03.-06. July, In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVI(1/B), (CD-ROM).
Eisenbeiss, H., 2009, UAV photogrammetry. Diss. ETH No. 18515, Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland, Mitteilungen Nr.105, p.69
Eisenbeiss, H., L. Zhang, 2006, Comparison of DSMs generated from mini UAV im-agery and terrestrial laser scanner in a cultural heritage application. ISPRS Commission V Symposium, Image Engineering and Vision Metrology. Dres-den, Germany, 2006, 25.-27. September. In:International Archives of Photo-grammetry, Remote Sensing and Spatial Information Sciences, XXXVI(5), pp. 90-96.
ESRI, 2007, ArcGIS Desktop Help, Release 9.2. Environmental Systems Research Institute, Redlands, CA:USA.
Hinsken, L., 2008, CAP-A─Combined Adjustment Program Aerial Version, Norcross, Georgia. Erdas Inc.
Johnston, K., M. Jay, V. Hoef, K. Krivoruchko, and N. Lucas, 2001, Using ArcGIS Geostatistical Analyst. Environmental Systems Research Institute, Inc., Red-lands, California, pp. 137-172.
Lambers, K., H. Eisenbeiss, M. Sauerbier, D. Kupferschmidt, T. Gaisecker, S. Sotoodeh, and T. Hanusch, 2007, Combining photogrammetry and laser scan-ning for the recording and modeling of the Late Intermediate Period site of Pinchango Alto, Palpa, Peru. Journal of Archaeological Science, 34(10), pp.1702–1712.
Lowe, D. G., 2004, Distinctive image features from scale-invariant keypoints. Inter-national Journal of Computer Vision, 60(2), pp. 91-110.
Ollero, A., J. R. Martínez-de-Dios, and L. Merino, 2006, Unmanned aerial vehicles as tools for forest-fire fighting. V International Conference on Forest Fire Research D. X. Viegas (Ed.)
Park, U., S. Pankanti, and A. K. Jain, 2008, Fingerprint Verification Using SIFT Fea-tures. SPIE Defense and Security Symposium, 6944: 69440K-69440K-9.
Pueschel, H., M. Sauerbier, and H. Eisenbeiss, 2008, A 3D model of Castle Landemberg (CH) from combined photogrammetric processing of terrestrial and UAV-based images. In:IAPRS&SIS, 37(B6-b), Beijing, China, pp. 96-98.
Vallet, J., F. Panissod, and C. Strecha, 2011, Photogrammetric Performance of an Ul-tra Light Weight Swinglet “UAV”. International Archives of the Photogram-metry, Remote Sensing and Spatial Information Sciences, XXXVⅢ-1(C22).
Wang, X., and J.Gao, 2010, Stomach Epidermis Tumor Cell Matching Based on SIFT. Journal of Communication and Computer, 7(5), pp. 60-63.
Weng, J. S., Y. T. Tsai, and J. T. Hwang, 2011, The study on 3D model reconstruction software on the internet— A case study of photosynth and photofly. Asian Conference on Remote Sensing of the 32nd, Taipei.
Zhang, C., and A. Elaksher, 2012, An Unmanned Aerial Vehicle-Based Imaging System for 3D Measurement of Unpaved Road Surface Distresses1. Computer-Aided Civil and Infrastructure Engineering, 27(2), pp.118-129.
Zhou, K., 2010, Structure & Motion. Structure in Pattern Recognition, Vienna Uni-versity of Technology, Faculty of Informatics, Institute of Computer Graphics and Algorithms, Pattern Recognition and Inage Processing Group.

三、網路
Canon announces ELPH 300 HS / IXUS 220 HS ultra-compact, 2011, Digital Pho-tography Review, Retrieved February 15,2012, from http://www.dpreview.com/news/2011/2/7/canonixus220hs
Swinglet CAM, 2011, senseFly, Retrieved February 16, 2012, from http://www.sensefly.com/products/swinglet-cam
How to create a Digital Elevation Model from Photosynth point clouds, 2010, Markaeology, Retrieved April 5,2012, from http://palentier.blogspot.com/2010/12/how-to-create-digital-elevation-model.html
G3-A1 Antenna, 2008, TOPCON, Retrieved Jun 14, 2012, from http://www.topconpositioning.com/en/products/gps/antennas/g3-a1
GRS-1 Any Accuracy, One Device, 2011, TOPCON, Retrieved Jun 14, 2012, from
http://www.topconpositioning.com/en/products/hand-held-devices/gnssgis-devices/grs-1
Leica TPS700 Automated Series, 2005, Leica Geosystems, Retrieved Jun 14, 2012, from
http://hds.leica-geosystems.com/en/15412.htm
LPS, 2012, ERDAS, Retrieved Jun 14, 2012, from http://geospatial.intergraph.com/products/LPS/LPS/Details.aspx

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top