跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 14:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯儀萱
研究生(外文):Ko, Yi-Hsuan
論文名稱:OECD國家的再生能源效率分析
論文名稱(外文):A Comparative Analysis of Renewable Energy Efficiency among OECD countries
指導教授:陳澤義陳澤義引用關係
指導教授(外文):Chen, Tser-yieth
口試委員:邱永和林靖葉彩蓮
口試委員(外文):Chiu, Yung-HoLin, GinYeh, Tsai-Lien
口試日期:2012-05-28
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:國際企業研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:114
中文關鍵詞:資料包絡分析法(DEA)再生能源績效評估
外文關鍵詞:Data Envelopment Analysis (DEA)Renewable EnergyPerformance Measurement
相關次數:
  • 被引用被引用:2
  • 點閱點閱:363
  • 評分評分:
  • 下載下載:63
  • 收藏至我的研究室書目清單書目收藏:2
由於能源資源的稀少,加上氣候變遷及全球暖化(溫室效應)的議題,然而在經濟持續發展的多重要求下,積極開發再生能源與發展再生能源技術來替代傳統能源就顯得相當重要;特別是對能源需求相當依賴的發展中國家。再生能源在未來的重要性與發展,不意外的引起各領域學者的關注。但是,能源使用效率仍然是很少探討的主題。本研究應用資料包絡分析法(DEA),選擇OECD國家為研究對象,分析再生能源的管理績效評估並分析各個國家對於再生能源的使用效率。
傳統上,大多數研究主要集中於發電廠的一階段營運效率評估。本研究特色為以兩階段來衡量管理效率,透過兩個子過程的DEA模型,以評估OECD國家的再生能源管理績效。第一階段為營運效率(OE),第二階段為能源密度效率(DE),這兩階段的效率分別代表OECD國家的再生能源發電與供電兩階段過程,即產出的提供與產出使用。
此外,本研究利用Tobit迴歸模型分析,影響這兩種效率的因素包括國家本身的秉賦(人口、資本與GDP),同時國家對於能源的補貼政策也包含在內。研究結果顯示,營運效率和能源密度效率間確實有顯著的差異,子過程的DEA模式來衡量管理績效更符合發電的生產過程特點。此外,再生能源補貼政策並非會顯著提升國家的再生能源用電效率。最後BCG矩陣的結果也顯示在OECD國家中規模較大的國家反而對於再生能源效率是較不顯著的。

Due to the multiple requirements for resource scarcity, climate change, global warming (greenhouse effect) control, and the sustained economic development, actively develop renewable energy and the development of renewable energy technologies to replace traditional energy sources becomes very important. Especially in developing countries highly demand for energy, so we chose to OECD countries for our study. And the importance and development of renewable energy in the future, is not surprising, aroused the attention of scholars in various fields. However, the efficiency of energy use is still rarely explored theme. The literature of renewable energy is mainly concentrated in the power plant's operating performance, operating methods and technology development. Only a handful of literature focused on the use of efficiency. Therefore, the main features of this paper, we apply data envelopment analysis (DEA) to do renewable energy management performance evaluation and analysis of the various countries for the efficient use of renewable energy.
Traditionally, the majority of research has focused on the operational efficiency of power generation evaluation. However, in this paper, we divided into two stages to measure the efficiency of management, Phase I: operational efficiency (OE), the second phase: the energy density efficiency (DE). These two types of efficiency describes the renewable energy generation and supply of two-stage process in OECD countries, that is to say provide the output and using the output. We use a DEA model of the two sub-processes, to assess the management performance of OECD countries, renewable energy.
We also use a combination of these two efficiencies. In this case, the efficient performance of energy density is no longer limited production efficiency, but a broader perspective, including not only the country's endowments (population, capital, and GDP), while the national energy subsidy policy also contains included. We found that indeed significant differences between the efficiency of operational efficiency and energy density, so the use of sub-processes of the DEA model to measure the management performance more in line with the power generation characteristics of the production process. In addition, we found that the country's subsidies for renewable energy policy is not significantly enhance the country's renewable energy power efficiency. Finally, according to the results of the BCG matrix, we also found that the more large scale country is less significant on renewable energy efficiency in the OECD.

1. Introduction
1.1 Research Motivations………………………………………………………1
1.2 Research Purpose…………………………………………………………4
1.3 Research Process……………………………………………………………7
2. Literature Review
2.1 Renewable Energy Industrial Overview……………………………….….8
2.2 Data Envelopment Analysis and Performance Evaluation……………11
2.3 Data Envelopment Analysis and Power Plant Efficiency…………………13
2.4 Data Envelopment Analysis and Renewable Power Plant Efficienc………19
3. Efficiency Evaluation Model
3.1 Framework of Two Phases Data Envelopment Analysis…………………25
3.2 Methodology Model
3.2.1 Data Envelopment Analysis model……………………..……………27
3.2.2 Mann-Whitney U Test………………………………..………………36
3.2.3 BCG Matrix……………………………………………..……………37
3.2.4 Tobit Regression Model……………………………….…..…………39
3.3 The Content of Inputs and Outputs……………………………………….40
3.4 The Chosen of Inputs and Outputs………………………………………53
3.5 Hypothesis…………………………………………………………………55
3.6 Research Resource and Sample…………………..………………………..63
4. Empirical Analysis
4.1 The Principium Predication of input and Output Items
4.1.1 The Basic Statistics Analysis………………………………………..64
4.1.2 The Analysis of Isotonicity Diagnosis……………………………..65
4.1.3 The Sensitivity Analysis…………………………………………….68
4.1.4 The Rule of Thumb…………………………………………………..71
4.2 DEA Model Operation
4.2.1 DEA Results for the Evaluation Model with One-Year Data……….72
4.2.2 DEA Results for the Evaluation Model with Three-Tear Data……..82
4.3 BCG Matrix………………………………………………………...85
4.4 Tobit Regression Analysis
4.4.1 Estimated Results on Regression Analysis…………………………..91
4.4.2 Results of Hypotheses Test…………………………………………92
5. Conclusion
5.1 Conclusion of the Findings
5.1.1 Findings on Performance Evaluation….…………………………….97
5.1.2 Findings on Renewable Issue………………………………………99
5.1.3 Management Implication………………………………………….101
5.2 Suggestion
5.2.1 Practical Policy……..……………………………………………….102
5.2.2 Future Research and Limitation…………………………………..103
Reference..…………………………………………………………………………104
Appendix 1 Original Data..………………………………………………….……112


中文文獻:
1.陳澤義(2010)。服務管理。台北市:華泰文化事業股份有限公司。
2.許儷鳴(2008)。國際溫室氣體減量獎勵補助策略研析。台灣綜合研究院。
3.行政院經濟建設委員會(2002)。再生能源與其相關產業之發展策略研究。

英文文獻:
1.Agha lqbal Ali, Catherine S. Lerme and Lawrence M. Seiford (1995). Components of efficiency evaluation in data envelopment analysis. European Journal of Operational Research, 80(3), 462-473.
2.A. Azadeh, S.F. Ghaderi and M.R. Nasrollahi, 2011. Location optimization of wind plants in Iran by an integrated hierarchical Data Envelopment Analysis. Renewable Energy, Vo.36(5),1621-1631
3.A. Azadeh, M. Sheikhalishahi, S.M. Asadzadeh, 2011. A flexible neural network-fuzzy data envelopment analysis approach for location. Renewable Energy, Vol.36(12),3394-3401
4.A. Azadeh, S.F. Ghaderi and A. Maghsoudi, 2008. Location optimization of solar plants by an integrated hierarchical DEA PCA approach. Energy Policy, Vol.36(10), 3993-4004
5.Anthony D. Owen, 2004. Oil supply insecurity: control versus damage costs. Energy Policy, vol.32(16), 1879-1882
6.Atkins Oil and Gas Engineering Ltd, (1992), A Parametric Costing Model for Wave Energy Technology, ETSU Report Number WV 1685.
7.Asafu-Adjaye, J. (2000). The relationship between energy consumption, energy prices and economic growth: time series evidence from Asian developing countries. Energy Economics 22, 615-625.
8.Agrell, Per J. and Bogetoft, Peter, 2005. Economic and environmental efficiency of district heating plants. Energy Policy, Elsevier, vol. 33(10), 1351-1362
9.A. Azadeh, M. Saberi, A. Gitiforouz and Z. Saberi, 2007. A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation. Journal Expert Systems with Applications, vol.36(8), 11108-11117
10.Agrell, P J and P Bogetoft (2004). Economic and Environmental Efficiency of District Heating Plants. Energy Policy, 33(10), pp. 1351-1362.
11.A.S. Maiga, G.M. Chen, Q. Wang and J.Y. Xu, 2008. Renewable energy options for a Sahel country: Mali. Renewable and Sustainable Energy Reviews, vol. 12(2), 564-574
12.Banker, R. D., Charnes, A. C., & Cooper, W. W. (1984). Models for Estimation of Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science,30(9), 1078-1092.
13.Boyd G and G Tolley (2002). Plant Level Productivity, Efficiency, and Environmental Performance of the Container Glass Indus. Environmental and Resource Economics 23(1): 29-43.
14.Boud, R. and Thorpe, T., 2003. Wavenet – Section D Financing and Economics, available at: www.wave-energy.net/Library/
15.Bowlin, W. F. (1987). Evaluating the Efficiency of U.S. Air Force Real-Property Maintenance Activities. Journal of the Operational Research Society, 38(1), 127-135.
16.Berndt. E and Wood. D, (1975). Technology, prices, and the derived demand for energy. The Review of Economics and Statistics, 57(3), 259-268.
17.Bedard, R, Hagerman, G., Previsic, M, Siddiqui, O., Thresher, R, and Ram, B., 2005. Final summary report project definition study offshore wave power feasibility demonstration project. Electric Power Research Institute Inc.
18.Banker, R. D. and Chang, H. (1995). A Simulation Study of Hypothesis Tests for Differences in Efficiencies. International Journal of Production Economics, 39(1), 37-54.
19.Banker, R. D. (1996). Hypothesis Tests Using Data Envelopment Analysis. Journal of Productivity Analysis, 7(2), 139-159.
20.Boussofiance, A., Dyson, R. D., & Thanassoulis, E. (1991). Applied Data Envelopment Analysis. European Journal of Operational Research, 52(2), 1-15.
21.Boyd GA and JX Pang (2000). Estimating the Linkage between Energy Efficiency and Productivity. Energy Policy 28(5): 289-296
22.Cooper, W. W., Seiford, L. M., and Tone, K. (2000). Data Envelopment Analysis. Boston: Kluwer.
23.Chen, Y. and Zhu, J. (2004). Measuring Information Technology’s Indirect Impact on Firm Performance. Information Technology and Management. 5(1-2), 9-22.
24.Charnes, A. C., Cooper, W. W., and Rhodes, E. (1978). Measuring Efficiency of Decision Making Units. European Journal of Operations Research, 2(6), 429-444.
25.Charnes, A., Cooper, W. W., Gollany, B., Seiford, L., and Stutz, J. (1985). Foundations of Data Envelopment Analysis for Pareto-Koopmans Efficient Empirical Productions Functions. Journal of Econometrics, 30(1/2), 91-107.
26.Charnes, A., Cooper, W. W., Lewin, A. Y., Morey, R. C., and Rousseau, J. (1985). Sensitivity and Stability Analysis in DEA. Annals of Operations Research, 2(1), 139-156.
27.Chen, T. Y. (2002). Measuring Operation, Market and Financial Efficiency in the Measurement of Taiwan‟s Banks. Services Marketing Quarterly, 24(2), 15-28.
28.Caputo A. C., Palumbo M.,. Pelagagge P. M., Scacchia F. (2005). Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass and Bioenergy, Vol. 28, 35-51, 2005.
29.Chien, Taichen and Jin-Li Hu (2007). Renewable Energy and Macroeconomic Efficiency of OECD and Non-OECD Economies. Energy Policy 35, 3606-3615
30.David Hawdon, 2003. Efficiency, performance and regulation of the international gas industry-a bootstrap DEA approach. Energy Policy, vol. 31(11), 1167-1178.
31.D. R. Criswell and R. G. Thompson, 1996. Data Envelopment Analysis of space and terrestrially-based large scale commercial power systems for earth: A prototype analysis of their relative economic advantages. Solar Energy, Vol.56(1), 119-131
32.Domac, J., Richards, K., and Risovic, S. (2005). Socio-economic drivers in implementing bioenergy projects. Biomass and Bioenergy, 28(2), 97-106.
33.Dismukes. D.E.. and A.N. Kleit, 1999. Cogeneration and Electric Power Industry Restructuring. Resource and Energy Economics, 21, 153- 166
34.Edward Vine and Jan Hamrin (2008). Energy savings certificates: A market-based tool for reducing greenhouse gas emissions. Energy Policy,36(1), 456-476.
35.Edward Morey, 2001. A simple model of industrial pollution. Environment Economics Econ 8545
36.Färe, R., S. Grosskopf, B. Lindgren, and P. Roos (1989). Productivity Developments in Swedish Hospitals: A Malmquist Output Index Approach.
37.Farshad Farshchi Tabrizi, Ashkan Zolfaghari Sharak, 2010. Experimental study of an integrated basin solar still with a sandy heat reservoir. Desalination, Vol.253(1–3), 195-199
38.Farrell, M. J. (1957).The Measurement of Productive Efficiency. Journal of the Royal Statistical Society, 120(3), 253-290.
39.Field, B.C., Grebenstein, C. (1980). Capital-Energy Substitution in U.S. Manufacturing, Review of Economics and Statistics, 2, 207-212.
40.Guillermo Iglesias , Pablo Castellanos and Amparo Seijas, 2010. Measurement of productive efficiency with frontier methods: A case study for wind farms. Energy Economics, Vol.32(5), 1199-1208
41.Golay, B. and Roll, Y. (1989). An Application Procedure for DEA. OMEGA, 17(3), 237-250.
42.Gerlagh, R., and Zwaan, B.C.C. van der (2004). A sensitivity analysis of timing and costs of Greenhouse gas emission reductions. Climatic Change, 65(1-2), 39-71
43.Hernandez-Sancho (2000). The environmental performance of the U.S. agricultural sector. Environmental and Resource Economics, 02/2000; 15(4).
44.Herman A., 2002. Three-dimensional structure of wave indued momentum flux in irrotational waves in combined shoaling-refraction conditions. Coastal Engng, 53, 545-555
45.Hu, Jin-Li and Chih-Hung Kao (2007). Efficient Energy-Saving Targets for APEC Economies. Energy Policy (SSCI, IF = 2.614), 35(1), 373-382
46.Hudson, E.A. y D.W. Jorgenson (1998). Economic Analysis of Alternative Energy Growth Patterns, 1975-2000. Growth. Econometric General Equilibrium Modeling, Cambridge, Mas., The MIT Press, vol. 1, pp. 191-220.
47.Heskeet, J. L., Sasser, W. E., and Schlesinger, L. A. (1997). The Service-Profit Chain. New York: The Free Press.
48.J.L. Bosch, G. Lópz and F.J. Batlles (2008). Daily solar irradiation estimation over a mountainous area using artificial neural networks. Renewable Energy, 33(7), 1622-1628.
49.Jesper Munksgaard, Lise-Lotte Pade and Peter Fristrup (2005). An analysis of energy consumption and carbon dioxide emissions in countries of the Middle East and North Africa. Energy, Vol. 30(15), 2831-2842.
50.Jin-Li Hu, Mon-Chi Lio, Fang-Yu Yeh and Cheng-Hsun Lin, 2011. Environment-adjusted regional energy efficiency in Taiwan. Applied Energy, Vol.88(8), 2893-2899
51.José Ramón San Cristóbal, 2011. A multi criteria data envelopment analysis model to evaluate the efficiency of the Renewable Energy technologies. Renewable Energy, Vol.36(10), 2742-2746
52.Joro T and EJ Viitala (2004). Weight-Restricted DEA in Action: From Expert Opinions to Mathematical Models. JORS 55(8): 814-821
53.Jayati Ghosh, 2002. Macroeconomic reforms and a labour policy framework for India. International Labour Office (Employment Straegy Papers).
54.Klaus Skytte, Peter Meibom and Thomas Capral Henriksen (2006). Electricity from biomass in the European union – with or without biomass import. Biomass and Bioenergy, 36(5), 385-392.
55.Kazuhiro Okabe, Hiroshi Mano, Yuichi Fujioka, 2010. Preliminary estimations of energy and cost for CO2 recovery by a membrane flash process utilizing waste thermal energy. International Journal of Greenhouse Gas Control, Vol.4(4),597-602
56.Kemal Sarıca and Ilhan Or, 2007. Efficiency assessment of Turkish power plants using data envelopment analysis. Energy, Vol.32(8), 1484-1499
57.Keh, H. T. & Chu, S. (2003). Retail Productivity and Scale Economies at the Firm Level: A DEA Approach. Omega, 31(2), 75-82.
58.K. Dowaki and S. Mori, 2005. A system analysis of a biomass research proceeding.
59.Lawrence M. Seiford and Robert M. Thrall (1990). Recent developments in DEA: The mathematical programming approach to frontier analysis. Journal of Econometrics, 46(1-2), 7-38.
60.Lam and Shiu, 2004. Electricity consumption and economic growth in China. Energy Economics, Vol. 29(6), 1179-1191.
61.L. Reijnders, 2006. Conditions for the sustainability of biomass based fuel use. Energy Policy, vol.34(7), 863-876
62.Mark G. Dugan and David H. Autor, 2002. The growth in the social security disability rolls; A fiscal crisis unfolding. Journal of Economic Perspective, vol.20(3), 71-96
63.Nand Kishor, R.P. Saini and S.P. Singh (2007). A review on hydropower plant models and control. Renewable and Sustainable Energy Reviews, 11(5), 776-796.
64.Narayan, P.K., Smyth, R. (2005). Electricity consumption, employment and real income in Australia: evidence from multivariate Granger causality tests. Energy Policy 33, 1109-1116
65.Olatubi WO and DE Dismukes (2000). A Data Envelopment Analysis of the Levels and Determinants of Coal-Fired Electric Power Generation Performance. Utilities Policy 9(2): 47-59.
66.Olsen, Ole Jess and Munksgaard, Jesper, 1998. Cogeneration and taxation in a liberalized Nordic power market. Utilities Policy, Elsevier, vol. 7(1), 23-33
67.P. Zhou, B.W. Ang, K.L. Poh, 2008. A survey of data envelopment analysis in energy and environmental studies. European Journal of Operational Research, Vol.189(1), 1-18
68.Per J. Agrell, and Peter Bogetoft, 2005. Economic and environmental efficiency of district heating plants. Energy Policy, Vol.33(10), 1351-1362
69.Peter E. Glaser, 1977. Editorial. Solar Energy, vol.19(1), 1
70.Previsic, Mirko, Omar Siddiqui and Roger Bedard, 2004. Economic Assessment Methodology for offshore wave power plants. Renewable Energy, vol.35(12), 2781-2791
71.Peter J. Marcotullio and Niels B. Schulz, 2007. Urbanization and global environmental change. International Working paper serives
72.P. Lam and A. Shiu, (2001). A data envelopment analysis of the efficiency of China’s thermal power generation. Utilities Policy, 10, 75–83.
73.Pombo, Carlos and Taborda, Rodrigo, 2006. Performance and efficiency in Colombia's power distribution system: Effects of the 1994 reform. Energy Economics, Elsevier, vol. 28(3), 339-369
74.Quetzalcoatl Hernandez-Escobedo, Francisco Manzano-Agugliaro, Jose Antonio Gazquez-Parra and Antonio Zapata-Sierra (2011). Is the wind a periodical phenomenon? The case of Mexico. Renewable and Sustainable Energy Reviews, 15(1), 721-728.
75.Reinhard Madlener, Carlos Henggeler Antunes and Luis C. Dias, 2009. Assessing the performance of biogas plants with multi-criteria and data envelopment analysis. European Journal of Operational Research, Vol.197(3), 1084-1094
76.Ramanathan, P., 2006. Energy efficient transmission scheme for data-gathering in mobile sensor networks. In Proceedings of IEEE SECON
77.Semih O¨ nu¨ t and Selin Soner, 2007. Analysis of energy use and efficiency in Turkish manufacturing sector SMEs. Energy Conversion and Management, Vol.48(2), 384-394
78.Seyed Hashem Mousavi-Avval, Shahin Rafiee, Ali Jafari and Ali Mohammadi, 2011. Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach. Energy, Vol.36(5),2765-2772
79.Seiford, L. M. and Zhu, J. (1999). Marketability and Profitability of the Top 55 US Commerical Banks. Management Service, 45(9), 1270-1288.
80.Surmit K Majumdar, 1998. Slack in the state-owned enterprise: An evaluation of the impact of soft-budget constraints. International Journal of Industrial Organization, vol.16(3), 377-394
81.Sinton JE, Fridley DG, 2002. Comments on recent energy statistics from China; Available from: http:// china.lbl.gov/publications/sintonfridley_sinosphere- oct03. pdf.
82.Sanhueza, E., Holzinger, R., Kleiss, B., Donoso, L., and Crutzen, P. J., 2004. New insights in the global cycle of acetonitrile: release from the ocean and dry deposition in the tropical savanna of Venezuela. Atmos. Chem. Phys., 4, 275-280
83.Steenblik, R. and P. Coroyannakis (1995). Reform of Coal Policies in Western and Central Europe. Energy Policy, Vol. 23, No. 6, pp. 537-553
84.Shah, A. and B. Larsen (1992). “Carbon Taxes, the Greenhouse E¤ect, and Developing Countries. ”Policy Research Working Paper Series 957, The World Bank.
85.Tyteca D., 1997. On the measurement of the environment Performance of Firms— A Literature Review and a Productive Efficiency Perspective. Journal of Environment Managemeent, vol. 46, 281-308.
86.Tripta Thakur and S.G. Deshmukh and S.C. Kaushik (2006). Efficiency evaluation of the state owned electric utilities in India. Energy Policy, Vol.34(17), 2788-2804.
87.Toshiyuki Sueyoshi, MikaGoto and TakahiroUeno, 2009. Performance analysis of US coal-fired power plants by measuring three DEA efficiencies. Energy Policy, Vol.38(4), 1675-1688
88.Toshiyuki Sueyoshi and Mika Goto, 2010. DEA approach for unified efficiency measurement: Assessment of Japanese fossil fuel power generation. Energy Economics, Vol.33(2), 292-303
89.Toshiyuki Sueyoshi and Mika Goto, 2011. Efficiency-based rank assessment for electric power industry: A combined use of Data Envelopment Analysis (DEA) and DEA-Discriminant Analysis (DA). Energy Economics, Vol.34(3), 634-644
90.T. Stallard, R. Rothschildand G.A. Aggidis, 2008. A comparative approach to the economic modeling of a large-scale wave power scheme. European Journal of Operational Research, Vol.185(2), 884-898
91.T Jamasb, M Pollitt, 2001. Benchmarking and regulation: international electricity experience. Utilities policy, vol.9(3), 107-130
92.Tooraj Jamasb, Paul Nillesen and Michael Pollitt, 2004. Strategic behaviour under regulatory benchmarking. Energy Economics, vol26(5), 825-843
93.Thorpe, T W, (1999). Wave Energy Potential in the UK. Report Number AEAT-3028 for the DTI, February 1998.
94.Toshiyuki Sueyoshi, Mika Goto, 2010. Measurement of a linkage among environmental, operational, and financial performance in Japanese manufacturing firms: A use of Data Envelopment Analysis with strong complementary slackness condition. European Journal of Operational Research (EOR) 207(3):1742-1753
95.Uwe A. Schneider and Bruce A. McCarl, 2003. Energy sorghum as a biofuel feedstock: Effects on GHG offsets and sector performance.
96.Wade D. Cook and Joe Zhu, 2007. Within-group common weights in DEA: An analysis of power plant efficiency. European Journal of Operational Research, Vol.178(1), 207-216.
97.Xiao-Dan Guo, Lei Zhu, Ying Fan and Bai-Chen Xie, 2010. Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA. Energy Policy, Vol.39(5), 2352-2360
98.Yiwen Bian and Feng Yang, 2009. Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon’s entropy. Energy Policy, Vol.38(4), 1909-1917
99.Zhou, P. and Ang, B.W. and Poh, K.L., 2008. A survey of data envelopment analysis in energy and environment studies. European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, august.

網站:
1.再生能源網 http://www.re.org.tw/
2.經濟部能源局 http://www.moeaboe.org.tw/
3.中華經濟研究院 http://www.cier.edu.tw/
4.台灣綜合研究院 Taiwan Research Institute (TRI) http:// www.tri.org.tw
5.International Energy Agency http://www.iea.org/
6.Tan Chong Industrial Equipment http://www.tcie.com.my/
7.Renewable Energy http://www.guardian.co.uk/environment/renewableenergy
8.Environmental Energy Technologies Division (EETD) http://eetd.lbl.gov/
9.Global Ministerial Environment Forum http://www.environmentalgoverment.org
10.National Renewable Energy Laboratory http://www.nrel.gov/

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top