跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/29 13:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王攸慈
研究生(外文):Wang,Yu-Tzu
論文名稱:歐債危機期間全球股市非對稱動態相關性之探討
論文名稱(外文):Asymmetric Dynamics in the Correlations of Global Equity Returns: A Empirical Study during the European T-bond crisis period
指導教授:蕭榮烈蕭榮烈引用關係
指導教授(外文):Hsiao,Junglieh
口試委員:蕭榮烈杜玉振王凱立李彥賢邱麗卿
口試委員(外文):Hsiao,JungliehTu,YuchenWang,KailiLee,YenhsienChiu,lichin
口試日期:2012-06-15
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:國際企業研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:61
中文關鍵詞:波動度非對稱條件相關性單變量GARCH模型AG-DCC模型
外文關鍵詞:Volatilitydynamic conditional correlationAG-DCC GARCH modelUnivariate GARCH model
相關次數:
  • 被引用被引用:1
  • 點閱點閱:395
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
股票在金融市場中是常見的的投資工具之一,許多學者與金融機構皆對股票市場加以研究。此外,在全球經濟危機期間,如亞洲金融危機、網路泡沫、次級房貸與金融風暴,以及最近的歐債危機中間可發現,全球股票市場間皆有頻繁的互動關係。危機事件的影響不只是單一國家,進而影響區域間的國家或全世界。

本研究的目的是研究全球股市之間的動態相關性,包括兩部分:歐豬五國PIIGS(葡萄牙、義大利、愛爾蘭、希臘和西班牙)與其他非歐豬五國(澳洲、加拿大、法國、德國、香港、日本、新加坡、台灣、美國)。本研究選取每個國家的最適ARMA模型,使用的SBC法選出最適單變量GARCH模型。透過AG-DCC模型估計股市之間的相關性。本研究分析歐豬五國與非歐豬五國間的關係,以及非歐豬五國之間的相關性。

本研究證實,歐債危機期間對全球市場有重要的影響,全球股市間有共變性現象,股票市場間有緊密的關聯性。投資者可藉由投資多角化能降低投資組合的風險。投資者應於重大金融事件發生時,檢視其投資組合,避免曝露於過多風險中受到傷害。

The equity is the most famous investment instrument for the investment in the financial markets. However, it is such an interesting relationship between the equity markets that many scholars and financial institutions want to research more. Moreover, there is a frequent interaction in the global economics, such as the Asian financial crisis, dot-com bubble, financial turmoil caused by the subprime mortgage and the European debt crisis in recent years. The influence is not only on a single country, but on the regional or even on the whole world.

The objective of this study is to investigate the dynamic correlation between global stock markets, which includes two segments. One is PIIGS (Portugal, Italy, Ireland, Greece and Spain) area and the other is non-PIIGS area. This study used the ARMA model of each stock market with the conditional mean equation and the conditional variance equations as univariate GARCH model and estimated the correlations between stock markets through developing the AG-DCC model, analyzing the relationship between PIIGS area and non-PIIGS area, and the correlation between non-PIIGS areas.

This study suggests important effects of the European crisis and the regional factors in the whole market. Investors may reduce their investment portfolio by diversifying them into other stock markets.

During the European crisis, there are significant comovements in stock market volatility and strong linkages among the stock markets. Investors should have attention to the performance, diversify the investment portfolio risk and build the advantageous investment and arbitrage portfolios.

Chapter Ⅰ Introduction
1.1 Research Background and Motivation
1.2 Research Objective
1.3 Research Contribution
1.4 Organization of Dissertation
Chapter Ⅱ Literature Review
2.1 The Correlation between Equity Markets
2.2 The Volatility Effect between Equity Markets
2.3 The Development of the Methodologies- AG-DCC Model
Chapter Ⅲ Methodologies
3.1 Tests of Time Series Data
3.2 The Asymmetric Generalized Dynamic Conditional Correlation (AG-DCC) Model
Chapter Ⅳ Empirical Results and Analysis
4.1 Data Description
4.2 Stationary and ARCH test
4.3 The results of Two-step AG-DCC model
4.3.1 Univariate GARCH Model
4.3.2 Estimates of the AG-DCC model
4.4 Volatility and Correlation of Results
CHAPTER Ⅴ Conclusions and Suggestions
5.1 Conclusions
5.2 Suggestions for further researchers
References

1.Ang, A., and J. Chen, (2002). “Asymmetric Correlations of Equity Portfolios.” Journal of Financial Economics 63, 443–494.
2.Bollerslev, T, (1986). “Generalized Autoregressive Conditional Heteroskedasticity.” Journal of Econometrics, Vol. 31, 307-327.
3.Bollerslev, T., and R. F. Engle, and J. M. Wooldridge, (1988). “A Capital Asset Pricing Model with Time Varying Covariances.” Journal of Political Economy 96, 116-31.
4.Bollerslev, T., (1990). “Modeling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model.” Review of Economics and Statistics 72, 498-505.
5.Box, G. E. P., and D. A. Pierce, (1970). “Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models.” Journal of the American Statistical Association 65, 1509-1526.
6.Cappiello, L., and R. F. Engle, and K. Sheppard, (2006). “Asymmetric Dynamics in the Correlation of Global Equity and Bond Returns.” Journal of Financial Econometrics 4, 537-572.
7.Chordia, T., and A. Sarkar, and A. Subrahmanyam, (2005). “An Empirical Analysis of Stock and Bond Market Liquidity.” Review of Financial Studies 18, 85-129.
8.Chris, B., (2002). “Introductory Econometrics for Finance.” The Press syndicate of the University of Cambridge. Cambridge, U.K.
9.Connolly, R., and C. Stivers, and L. Sun, (2005). “Stock Market Uncertainty and theStock-Bond Return Relation.” Journal of Financial and Quantitative Analysis 40, 161-194.
10.David, A., and P. Veronesi, (2001). “Inflation and Earnings Uncertainty and the Volatility of Asset Prices: An Empirical Investigation.” Working Paper, University of Chicago.
11.Dickey, D. and W. Fuller (1979). “Distribution of the Estimators for Autoregressive Time Series with a Unit Root. “ Journal of the American Statistical Association, Vol. 74, 427-431.
12.Durbin, J., and G. S. Watson, (1950). “Testing for Serial Correlation in Least Squares Regression.” Biometrika Vol. 37, 409-428.
13.Engle, R. F., and V. K. Ng, (1993). “Measuring and Testing the Impact of News on Volatility.” Journal of Finance, 48, 1749-1778.
14.Engle, R. F., (2002). “Dynamic Conditional Correlation: A Simple Class of Multivariate GARCH Models.” Journal of Business and Economic Statistics 20, 339-350.
15.Fleming, J., and C.Kirby, and B. Ostdiek, (1998). “Information and Volatility Linkages in the Stock, Bond, and Money Markets.” Journal of Financial Economics 49, 111-137.
16.Fuller, W., (1976). “Introduction to Statistical Time Series.” New York:John Wiley.
17.Glosten, L.R.,and R. Jagannathan,, and D. E. Runkle, (1993). “On the Relation between the Expected Value and the Volatility on the Nominal Excess Returns on Stocks.” Journal of Finance 48, 1779-1801.
18.Grenadier, S.R., and G. Bekaert (2001), “Stock and Bond Pricing in an Affine Economy.” Working Paper, Columbia University.
19.Gupta, R., and A. T. Mollik, (2008). “Volatility, Time Varying Correlation and International Portfolio Diversification: An Empirical Stusy of Australia and Emerging Markets.” International Research Journal of Finance and Economics 18.
20.Hashimi, A. R., and A. S. Tay, (2007). “Global and Regional Sources of Risk in Equity Markets: Evidence from Factor Models With Time-Varying Conditional Skewness.” Journal of Money and Finance 26, 430-453.
21.Ilmanen, A., (2003). “Stock-Bond Correlations.” Journal of Fixed Income 13, 55-66.
22.Jo´n. D., (1998). “Multivariate stochastic volatility models: Estimation and a comparison with VGARCH models.” Journal of Empirical Finance 5, 155–173.
23.Kroner, K. F., and V. K. Ng, (1998). “Modeling Asymmetric Comovements of Asset Returns,” The Review of Financial Studies 11, 817-844.
24.Li, L., (2002). “Macroeconomic Factors and the Correlation of Stock and Bond Returns.” Yale ICF working paper No. 02-46.
25.Ljung, G. and G. Box, (1978). “On a Measure of Lack of Fit in Time Series Models.” Biometrika, Vol. 65, 297-303.
26.Longin, F., and B. Solnik, (2001). “Extreme Correlation of International Equity Markets.” The Journal of Finance 56, 649-676.
27.Mamaysky, H., (2002). “Market Prices of Risk and Return Predictability in a Joint Stock-Bond Pricing Model.” Working Paper No. 2002-25, Yale School of Management.
28.Maria. K., and P. Simon, (2001). “Volatility in the transition markets of Central Europe.” Applied Financial Economics 11, 93-105.
29.Nelson, D. B., (1991). “Conditional Heteroskedasticity in Asset Returns: A New Approach.” Econometrica 59, 347-70.
30.Phillips, P. and P. Perron, (1988), “Testing for Unit Root in Time Series Regression.” Biometrika, Vol. 75, 335-346.
31.Syllignakis, M. N. and G. P. Kouretas, (2011). “Dynamic correlation analysis of financial contagion: Evidence from the Central and Eastern European markets.” International Review of Economics and Finance 20 ,717–732.
32.Young, P. J., and R. R. Johnson, (2004). “Bond market volatility vs. Stock Market Volatility: The Swiss Experience.” Financial Markets and Portfolio Management 18, 8-23.
33.Zakoian, J. M., (1994). “Threshold Heteroskedastic Models.” Journal of Economic Dynamics and Control 18, 931-955.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top