跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/12 02:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張詠南
研究生(外文):Jung-Nan Chang
論文名稱:差值擴張技術與支援向量迴歸於可逆式資料庫浮水印技術之應用
論文名稱(外文):A Study of Reversible Database Watermarking Using Difference Expansion and Support Vector Regression
指導教授:吳憲珠
指導教授(外文):Hsien-Chu Wu
學位類別:碩士
校院名稱:國立臺中科技大學
系所名稱:資訊工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:39
中文關鍵詞:碎型浮水印技術關聯式資料庫支援向量迴歸資料探勘
外文關鍵詞:Fragile watermarkRelational databaseSupport vector regressionData mining
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來人們常將重要的資料庫放在伺服器上,提供多人使用,使得資料庫容易被非法地竄改,因此驗證資料庫內容的正確性已成為重要的研究主題。在本論文中,主要探討應用可逆式浮水印技術於關聯式資料庫保護之研究,核心技術乃使用預測誤差的方法,將數位浮水印嵌入於保護欄位值中。本論文提出的技術利用支援向量迴歸建立資料庫中欲保護欄位的預測模型,並透過支援向量迴歸預測的數值與保護數值之間的差異嵌入碎型浮水印,達到保護關聯資料庫內容之安全性及驗證。
本論文第一個提出基於支援向量迴歸預測與差值擴張方法的資料庫浮水印技術,其中支援向量迴歸預測將資料庫的欄位投影到多維空間找到迴歸的平面,藉此預測保護欄位數值。由於資料庫中許多欄位與保護欄位間並無關連性,將會造成預測數值不準確,因此本論文的方法使用FP-tree資料探勘方式找出欲保護欄位之有關聯性欄位,藉此提高支援向量迴歸預測的準確性,並且計算預測數值與保護欄位之間的差異,經由差異值擴張法將浮水印嵌入欲保護欄位中,進而達到保護資料欄位的正確性。
在第二個方法中,改良本論文第一個提出之方法,由於差異值擴張法須透過於支援向量迴歸預測數值與保護欄位的差異值進行運算,使得保護欄位會因為差異擴張的差異值大小而影響嵌入浮水印後的數值,造成保護欄位與原始欄位數值差異過大的情形,為了改良此問題,本研究進一步提出連續區域重疊差值擴張法之嵌入浮水印技術,其中本文方法分成二個步驟,首先第一個步驟為透過保護欄位區域與預測欄位區域內數值比較大小後,產生一組具有關聯性的浮水印。第二步驟將保護欄位數值轉換成二進制,由最高有效位元(MSB)區域開始嵌入浮水印,因為保護欄位與預測欄位具有MSB之區域相近值的特性,因此嵌入浮水印後原本保護欄位區域並不會變動。本文方法之連續區域重疊差值擴張法將浮水印嵌入欲保護欄位中可改善數值修改過大的情況,進而提升保護欄位之正確性。


In recent years, people usually store the important databases on the server to share the significant information among users. The sharing environment makes the database easy to be modified without authentication. Therefore, applying digital watermarking to verify the correctness of the contents in the database is necessary.
In this thesis, discussion the application of the reversible database watermarking technique and protection for the relational database. The kernel technique is the error prediction method. The protected field is embedded by the watermark information. A predictive model--- support vector regression is used to predict the protected field, and the protection of the contents of the relational database is achieved by fragile watermarking with the using of the difference between predicted value and the protected value.
The first method, a reversible fragile database watermarking technology is proposed by applying Support Vector Regression (SVR) to the relational database. SVR predicts the protected field by projecting the data fields onto the Multi-dimensional space to find regression plane. Moreover, FP-tree data mining is utilized to improve the accuracy of the prediction of support vector regression. Therefore, FP-tree data mining finds the associative fields in the database for the protected field. Watermark embedding is performed by difference expansion.
The second proposed method to improve method of first. Due to the DE technology of first method needs compute with the difference value between prediction value of SVR and original protected field. However, the embedding watermark value can be affected the DE of difference value in original protected field. Afterward, the predicted filed and original protected field has larger variation.
This thesis proposed the Continuous Region Overlap Difference Expansion (CRODE) technology to solve this problem, and the proposed method divided two steps. Firstly, create the relational watermark by comparing the protected value and the predicted value, secondly transform the protected value converted into binary, and the watermarking would be embedded orderly first from MSB region. The protected field and predicted value has the similarly value with the MSB region. Therefore, the original protected field region is not change after embedding watermarked. The proposed method of Continuous Region Overlap Difference Expansion to embed the watermarked that protected field can solve the value variation and increase the accuracy of the protected field.


Abstract in Chinese.................................... I
Abstract in English.................................... III
Contents................................................VII
List of Tables..........................................IX
List of Figures........................................ X
Chapter 1 Introduction ................................1
1.1 Background......................................1
1.2 Database Watermarking...........................2
1.3 Thesis Organization.............................4
Chapter 2 Preliminaries..........................5
2.1 Difference Expansion Technique......................5
2.2 Support Vector Regression...........................7
Chapter 3 Reversible Fragile Database Watermarking Technology using Difference Expansion Based on SVR Prediction..............................................10
3.1 The Proposed Scheme.................................11
3.1.1 FP-tree Feature Mining............................13
3.1.2 SVR Training Algorithm............................15
3.1.3 Database Watermark Embedding......................15
3.1.4 Database Watermark Extractions....................16
3.2 Experimental Results................................18
Chapter 4 Region-Associated Integer Transform for Reversible Database Watermarking Technology ............21
4.1 SVR Training........................................22
4.2 The Database Watermark Generation...................23
4.3 Database Watermark Embedding........................24
4.4 SVR Training and Database Watermark Extractions.....26
4. 5 Comparing Watermark with Suspected Watermark.......27
4.6 Experimental Results................................29
Chapter 5 Conclusions and Future Works..........33
Bibliography............................................35


[1]M. Alattar, “Reversible Watermark Using the Difference Expansion of a Generalized Integer Transform,” IEEE Transactions on Image Process, Vol. 13, No. 8, 2004, pp. 1147-1156.
[2]R. Agrawal and J. Kiernan, “Watermarking Relational Databases,” in Proceedings of the 28th International Conference on Very Large Databases, 2002, pp. 155-166.
[3]R. Agrawal, P. J. Haas, and J. Kiernan, “Watermarking Relational Data: Framework, Algorithms and Analysis,” The VLDB Journal, Vol. 12, No. 2, 2003, pp. 157-169.
[4]R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order Preserving Encryption for Numeric Data,” in Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, 2004, pp. 563-574.
[5]A. Asuncion and D.J. Newman, UCI Machine Learning Repository, Irvine, CA: University of California, School of Information and Computer Science, 2007, available at http://www.ics.uci.edu/~mlearn/MLRepository.html.
[6]E. Bertino, S. Jajodia, and P. Samarati, “Database Security: Research and Practice,” Information Systems, Vol. 20, No. 7, 1995, pp. 537-556.
[7]F. Bao, R. H. Deng, B. C. Ooi, and Y. Yang, “Tailored Reversible Watermarking Schemes for Authentication of Electronic Clinical Atlas,” IEEE Transactions on Information Technology in Biomedicine, Vol. 9, No. 4, 2005, pp. 554-564.
[8]C. C. Chang and C. J. Lin, LIBSVM: a library for support vector machines, 2001, software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
[9]D. Coltuc, “Low Distortion Transform for Reversible Watermarking,” IEEE Transactions on image processing, Vol. 21, No. 1, 2012, pp. 412-417.
[10]M. Chen, Z. Chen, X. Zeng, and Z. Xiong, “Reversible Data Hiding using Additive Prediction Error Expansion,” in Proceedings of ACM multimedia and security, 2009, pp. 19-24.
[11]M. Chen, Z. Chen, X. Zeng, and Z. Xiong, “Reversible Image Watermarking Based on Full Context Prediction,” Image Processing (ICIP), 16th IEEE International Conference, 2009, pp.4253-4256.
[12]G. I. Divada and D. L. Wells, “A Database Encryption System with Subkeys,” ACM Transactions on Database Systems, Vol. 6, No. 2, 1981, pp. 312-328.
[13]J. Fridrich, J. Goljan, and R. Du, “Invertible authentication,” in SPIE Proceedings of Security and Watermarking of Multimedia Content, 2002, pp. 197-208.
[14]G. Gupta and J. Pieprzyk, “Reversible and Blind Database Watermarking Using Difference Expansion,” International Journal of Digital Crime and Forensics, Vol. 1, No. 2, 2009, pp. 42-54.
[15]H. Guo, Y. Li, A. Liu, and S. Jajodia, “A Fragile Watermarking Scheme for Detecting Malicious Modifications of Database Relations,” Information Sciences, Vol. 176, No. 10, 2006, pp. 1350-1378.
[16]F. Hartung and M. Kutter, “Multimedia Watermarking Techniques,” in Proceedings of the IEEE : special issue on Protection of Multimedia Content, Vol. 87, No. 7, 1999, pp. 1079-1107.
[17]J. Han, J. Pei and Y. Yin, “Mining Frequent Patterns Without Candidate Generation,” in The 2000 ACM SIGMOD International Conference on Management of Data, 2000, pp. 1-12.
[18]M. S. Hwang and W. P. Yang, “Multilevel Secure Database Encryption with Subkeys,” Data and Knowledge Engineering, Vol. 22, No. 2, 1997, pp. 117-131.
[19]I. Kamel, “A Schema for Protecting the Integrity of Databases,” The Journal of Computers and Security, Vol.28, No. 7, 2009, pp.698-709.
[20]G. Langelaar, I. Setyawan, and R. Lagendijk. “Watermarking Digital Image and Video Data: A State-of-the-Art Overview,” IEEE Signal Proceeding Magazine, Vol. 17, No. 5, 2000, pp. 20-46.
[21]Y. Li, V. Swarup, and S. Jajodia, “Fingerprinting Relational Databases: Schemes and Specialties,” IEEE Transactions on Dependable and Secure Computing, 2005, pp. 34-45.
[22]Z. Ni, Y. Q. Shi, N. Ansari, and W. Su, “Reversible Data Hiding,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 16, No. 3, 2006, pp. 354-362.
[23]H. Peng, J. Wang, and W. Wang, “Image Watermarking Method in Multi wavelet Domain Based on Support Vector Machines,” The Journal of Systems and Software, Vol. 83, No. 8, 2010, pp.1470-1477.
[24]M. Swanson, M Kobayashi, and A. Tewfik, “Multimedia Data Embedding and Watermarking Technologies,” in Proceedings of the IEEE, Vol. 86, No. 6, 1998, pp.1064-1087.
[25]R. M. Shen, Y. G. Fu, and H. T. Lu, “A Novel Image Watermarking Scheme Based on Support Vector Regression,” The Journal of Systems and Software, Vol. 78, No. 1, pp. 1-8.
[26]R. M. Shen, Y. G. Fu, and H. T. Lu, “A Novel Image Watermarking Scheme Based on Support Vector Regression,” The Journal of Systems and Software, Vol. 78, No. 1, 2005, pp.1-8.
[27]R. Sion, M. Atallah, and S. Prahakar, “Rights Protection for Relational Data,” IEEE Transactions on Knowledge and Data Engineering, Vol. 16, No. 12, 2004, pp. 1509-1525.
[28]R. Sion, M. Atallah, and S. Prahakar, “Rights Protection for Categorical Data,” IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 7, 2005, pp. 912-926.
[29]W. C. Tao, Z. Y. Li, and H. F. Li, “Reversible and Blind Database Watermark Algorithm Based on Polar Angle Expansion,” Computer Engineering, Vol. 36, No. 22, 2010, pp. 155-157.
[30]H. H. Tsai and D. W. Sun, “Color Image Watermark Extraction Based on Support Vector Machines,” Information Sciences, Vol. 177, No. 2, 2007, pp. 550-569.
[31]J. Tian, “Reversible Watermarking by Difference Expansion,” in Proceedings Workshop on Multimedia and Security, 2002, pp. 19-22.
[32]J. Tian, “Reversible Data Embedding Using a Difference Expansion,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 8, 2003, pp. 890-896.
[33]W. L. Tai, C. M. Yeh, and C. C. Chang, “Reversible Data Hiding Based on Histogram Modification of Pixel Differences,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 19, No. 6, 2009, pp. 906-910.
[34]D. M. Thodi and J. J. Rodriguez, “Expansion Embedding Techniques for Reversible Watermarking,” IEEE Transactions on Image Process, Vol. 16, No. 3, 2007, pp. 721-730.
[35]H. C. Wu, S. Y. Shih, and Y. H. Lai, “A Dual Database Watermarking Scheme for Malicious Tampering Detection and Copyright Protection,” GESTS International Transactions on Computer Science and Engineering, Vol. 34, No. 1, 2006, pp. 151-163.
[36]S. Weng, Y. Zhao, J. S. Pan, and R. Ni, “Reversible Watermarking Based on Invariability and Adjustment on Pixel Pairs,” IEEE Signal Processing Letters, Vol. 5, 2008, pp. 721–724.
[37]X. T. Wang, C. Y. Shao, X. G. Xu, and X. M. Niu, “Reversible Data-Hiding Scheme for 2-D Vector Maps Based on Difference Expansion,” IEEE Transactions on Information Forensics and Security, Vol. 2, No. 3, 2007, pp. 311-320.
[38]X. Y. Wang, H. Y. Yang, and C. Y. Cui, “An SVM-based Robust Digital Image Watermarking Against Desynchronization Attacks,” Signal Processing, Vol. 88, No. 9, 2008, pp. 2193-2205.
[39]X. Y. Wang, Z. H. Xu, and H.Y. Yang, “A Robust Image Watermarking Algorithm Using SVR Detection,” Expert Systems with Applications, Vol. 36, No. 5, 2009, pp. 9056-9064.
[40]X. Wang, X. Li, B. Yang, and Z. Guo, “Efficient Generalized Integer Transform for Reversible Watermarking,” IEEE Signal Processing Letters, Vol. 17, No. 6, 2010, pp. 567-570.
[41]Y. Zhang, X. Niu, D. Zhao, J. Li, and S. Liu, “Relational Databases Watermark Technique Based on Content Characteristic,” in Proceedings of the First International Conference on Innovative Computing, Information and Control, 2006, pp. 677-680.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊