(34.204.185.54) 您好!臺灣時間:2021/04/11 06:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林致佑
研究生(外文):Chih-Yu Lin
論文名稱:利用啟發式演算法於手機通話費率最適組合之研究
論文名稱(外文):The Best Mobile Phone Account Billing System Base on Metaheuristic Algorithms
指導教授:陳同孝陳同孝引用關係陳民枝陳民枝引用關係
指導教授(外文):Tung-Shou ChenJeanne Chen
學位類別:碩士
校院名稱:國立臺中科技大學
系所名稱:資訊工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:74
中文關鍵詞:啟發式演算法模擬退火演算法基因演算法手機費率
外文關鍵詞:metaheuristic algorithmssimulated annealinggenetic algorithmbillingmobile phone carriescall rates
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The problem of call rates combination has been plaguing everyone around. From the smallest individual users to the biggest scaled companies, the quantity of monthly calls could cause your mobile phone bill a considerable calling fee. However, how to save fees and how to dial can spend the least amount of calling fees are very important issues. The call rate combination is a very complex optimization problem. In a number of rate promotional plans, you must find one that suits your habit of calling behaviors the most. The more plans the telecommunication companies promote, the harder you make the best decision. The degree of difficulties arises with exponential growth which results not to achieve the optimal solution in the effective time. Therefore, this study use genetic algorithm and simulated annealing to solve The Best Mobile Phone Account Billing Problem. In this study, we refer to mobile phone call rates and ancillary programs of every Taiwan’s telecommunication company to construct The Best Mobile Phone Account Billing System. We consider several complex restrictive conditions accordance with the user’s habit of calling behaviors, the belonging of telecommunication companies, the air time talking on intra-network and extra-network, dial-up time, and single-pass talk time, etc. and add all of these in algorithms to get a solution. We respectively calculate the best rates of belonging telecommunication companies, all telecommunication companies’ best rates that suit the users the most, and two to five types of rates combination to offer the users a conference to choose the most suitable rate promotional plan. In the experiment, we use the best call rate combination proposed by the spreadsheet system and the original bills of the users to make a comparison. By the experimental evidence, if we use the call rate combination which is suggested by the system, the calling fee is considerably lower than the original one.

目 錄
摘 要 i
ABSTRACT ii
目 錄 iii
圖 目 錄 v
表 目 錄 vii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 研究範圍與限制 4
1.4 研究流程 6
1.5 論文架構 8
第二章 文獻探討 9
2.1 手機費率組合求解方法 9
2.1.1美國手機電信產業現況 9
2.1.2中國手機電信產業現況 11
2.1.3台灣手機電信產業現況 12
2.1.4手機費率組合求解問題複雜度 13
2.2 啟發式演算法 16
2.2.1 軌道式方法 17
2.2.2 族群式方法 19
2.3 基因演算法 22
2.4 模擬退火演算法 27
2.5 手機平台應用範圍 29
2.5.1 三大手機平台系統差異性 29
2.5.2 手機通話費率最適組合試算系統應用範圍 30
第三章 研究方法 31
3.1 系統概念與建置 31
3.1.1 用戶上傳 32
3.1.2 系統分析 33
3.1.3 回饋 35
3.2 基因演算法應用於手機費率組合最佳化問題 38
3.2.1 染色體編碼 (Encoding) 39
3.2.2 適應函數 (Fitness Function) 40
3.2.2.1電信業者排列組合 40
3.2.2.2 費率參數 42
3.2.2.2 電信業者排列組合計算與選擇 43
3.2.3 菁英政策 (Elitism) 45
3.2.4 染色體選擇(Select Chromosomes) 46
3.2.5 染色體交配(Crossover Chromosomes) 47
3.2.6 染色體突變(Mutation Operator) 48
3.3 模擬退火演算法應用於手機費率組合最佳化問題 49
3.3.1 產生初始解 50
3.3.2 評估新解 51
3.3.3 擾動階段與修正階段 51
3.3.4 降溫階段 53
第四章 實驗結果及分析 54
4.1 動態規劃求解 55
4.2 基因演算法實驗結果 58
4.3 模擬退火演算法實驗結果 65
4.3 演算法效能比較與分析 66
第五章 結論與未來研究方向 69
5.1 結論 69
5.2 未來研究方向 70
參考文獻 71


[1]B. Christian, and R. Andrea, “Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison,” ACM Computing Surveys, Vol. 35, pp. 268–308, 2003.
[2]J.H. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor, The University of Michigan Press, 1975.
[3]R. Rubén, and M. Concepción, “A Comprehensive Review and Evaluation of Permutation Flowshop Heuristics,” European Journal of Operational Research, Vol. 165, pp. 479–494, 2005.
[4]L. Chih-Chin, and C. Chuan-Yu, "A hierarchical evolutionary algorithm for automatic medical image segmentation," Expert Systems with Applications, Vol. 36, pp. 248-259, 2009.
[5]D.E. Goldberg, and J.H. Holland, "Genetic algorithms and machine learning," Machine Learning, vol. 3, pp. 95-99, 1988.
[6]D. Edwin, and R.A. Watson, "Hierarchical genetic algorithms," Computer Science, Vol. 3242 of LNCS, pp. 232-241, 2004.
[7]F. Glover, “Future Paths for Integer Programming and Links to Artificial Intelligence,” Computers &; Operations Research, Vol. 13, pp. 533–549, 1986.
[8]F. Glover, “Tabu Search–Part I,” ORSA Journal on Computing, Vol. 1, pp. 190–206, 1989.
[9]F. Glover, “Tabu Search–Part II,” ORSA Jourmd on Computing, Vol. 2, pp. 4–32, 1990.
[10]I. Elsen, F. Hartung, U. Horn, M. Kampmann and L. Peters, "Streaming technology in 3G mobile communication systems," Computer, Vol. 34, pp. 46-52, 2002.
[11]P. Hansen, and N. Mladenović, “Variable Neighborhood Search: Principles and Applications,” European Journal of Operational Research, Vol. 130, pp. 449–467, 2001.
[12]C. Shyi-Ming, and C. Chih-Yao, “Solving the traveling salesman problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniques,” Expert Systems with Applications, Vol. 38, pp. 14439-14450, 2011.
[13]G. Xiutang, C. Zhihua, Y. Wei, S. Deqian, Z. Zhao “Solving the traveling salesman problem based on an adaptive simulated annealing algorithm with greedy search,” Applied Soft Computing, Vol. 11, pp. 3680-3689, 2011.
[14]M. Dorigo, V. Maniezzo and A. Colorni, “The ant system: optimization by a colony of cooperating agents,” IEEE Transactions on Systems, Vol. 26, pp. 29-41, 1996.
[15]R. Eberhart, and J. Kennedy, “A new optimizer using particle swarm theory,” Sixth International Symposium on Micro Machine and Human Science, 39-43, 1995.
[16]S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, “Optimization by Simulated Annealing,” Science, Vol. 220, pp. 671–680, 1983.
[17]M. Dorigo, and L.M. Gambardella, “Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem,” IEEE Transactions on Evolutionary Computation, Vol.1, pp. 53-66, 1997.
[18]N. Metropolis, W.R. Arianna, N.R. Marshall, H.T. Augusta, and Teller, E. Edward , “Equation of State Calculation by Fast Computing Machines,” Journal of Chemical Physics, Vol. 21, pp. 1087–1092, 1953.
[19]National Communications Commission, [Online]. Available: www.ncc.gov.tw. [Accessed: Aug. 17, 2010].
[20]emome, [Online]. Available: http://www.emome.net/. [Accessed: Oct. 13, 2010].
[21]Taiwan Mobile, [Online]. Available: http://www.taiwanmobile.com. [Accessed: Oct. 13, 2011].
[22]Vibo, [Online]. Available: http://www.vibo.com.tw. [Accessed: Oct. 13, 2011].
[23]Far Eastone Telecommunications, [Online]. Available: http://www.seed.net.tw. [Accessed: Oct. 13, 2011].
[24]Asia Pacific Telecom, [Online]. Available: http://www.apbw.com. [Accessed: Oct. 13, 2011].


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔