(3.238.240.197) 您好!臺灣時間:2021/04/13 00:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴宏賓
研究生(外文):Hung-Pin Lai
論文名稱:傳輸速率使用模糊邏輯控制於無線多媒體感測器網路之應用
論文名稱(外文):Applications of Transmission Rate Using Fuzzy Logical Control in Wireless Multimedia Sensor Networks
指導教授:陳永隆陳永隆引用關係
指導教授(外文):Young-Long Chen
學位類別:碩士
校院名稱:國立臺中科技大學
系所名稱:資訊工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:36
中文關鍵詞:無線多媒體感測器網路服務品質指數權重模糊邏輯控制器
外文關鍵詞:WMSNsQoSEWFLC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
無線多媒體感測器網路(Wireless multimedia sensor network, WMSN)是無線感測器網路(Wireless sensor networks, WSNs)的延伸應用並且在取得與處理多媒體訊號有良好的效能。WMSNs由於封包傳輸量較大而導致網路擁塞(congestion)的現象不止會造成讓資料封包(packet)遺失也會導致過多的電量消耗。因此,為了改善WMSNs傳輸效能與減少延遲時間(delay)需要調整傳輸速率控制網路擁塞。WMSNs有不同類型的感測器節點去收集不同種類的資料,在WMSNs的應用中需要提供可靠與公平的傳輸協定以符合不同型態資料之服務品質(quality of service ,QoS)的要求。在先前的研究中,在WMSNs下以傳輸優先權為基礎速率控制演算法(priority-based rate control, PBRC),利用指數加權(exponential weighted, EW)演算法在不同資料型態調整傳輸速率達成擁塞控制的目的,但EW演算法權重參數是固定的,當傳輸資料變化量大時會使實際之傳輸速率與估測傳輸速率誤差大。在本文中我們提出兩種演算法以模糊邏輯控制器(fuzzy logical controller, FLC)估測sink節點傳輸速率,第一種方法我們使用FLC結合EW演算法選擇適當的權重參數得到最佳傳輸速率,接著依照每個子節點的優先權分配其傳輸速率。進一步,我們使用增量型FLC估測下一個時間的sink節點傳輸速率。模擬結果顯示我們提出的兩種演算法比PBRC有較佳的傳輸速率,達到降低傳輸延遲和封包遺失率,此外我們提出演算法對於不同的傳輸資料類型也能有效控制,來達成系統QoS的要求與網路資源的控制。

A wireless multimedia sensor network (WMSN) is an extensional application based on wireless sensor network (WSN), which has outstanding performance in multimedia signal acquisition and processing. WMSNs are usually troubled by network congestion due to massive packet transmission amounts, and such congestion will not only lose data packets but also lead to too much power consumption. Hence, in order to improve the transmission performance of WMSNs and reduce the delay time, it is necessary to control network congestion and adjust the transmission rate. WMSNs use different kinds of sensor nodes to collect different kinds of data. In WMSNs applications, it is necessary to provide a reliable and fair protocol so as to meet the requirements of quality of service (QoS) of different formats of data. In past research, for WMSNs, priority-based rate control (PBRC) algorithm and exponential weight (EW) algorithm were used to control congestion through the adjusting of the transmission rate among different data formats. However, the weight parameter of the EW algorithm is fixed; when the change in data transmission amount is large, the difference between input transmission rate and estimated output transmission rate for the sink node will be large. In this paper, we have proposed two schemes, which a fuzzy logical controller (FLC) is used to estimate the output transmission rate. The FLC is associated with the EW algorithm to select appropriate weight parameter, and then, appropriate transmission rate is assigned by the priority of each child node. Furthemoer, we use the incremental FLC to estimate the transmission rate of sink node in the next control period. Simulation results show that the transmission rate of our proposed scheme is better than that of PBRC. Our proposed scheme reduces transmission delay and loss probability. The proposed scheme can also effectively control different transmission data types to achieve the required QoS and network resource control.

摘要 i
Abstract ii
ACKNOWLEDGEMENT iv
Chapter 1. Introduction 1
Chapter 2. Related Works 5
Chapter 3. Proposed Schemes 8
3.1 A traffic class model 8
3.2 Service differentiation 9
3.3 Exponential weight of priority-based rate control 10
3.4 Our proposed FLC model 10
3.4.1 Fuzzification Interface 10
3.4.2 Fuzzy Rule Base 11
3.4.3 Inference Engine 11
3.4.4 Defuzzification Interface 12
3.5 FLC with Exponential Weight of Priority-based Rate Control (FEWPBRC) 12
3.6 FLC with Priority-based Rate Control (FPBRC) 16
Chapter 4. Simulation results 19
4.1 Simulation Result of FEWPBRC 19
4.2 Simulation Result of FPBRC 21
Chapter 5. Conclusions 23


[1]J. Ben-Othman, B. Yahya, Energy efficient and QoS based routing protocol for wireless sensor network, Journal of Parallel and Distributed Computing 70 (2010) 849-857.
[2]I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: A survey, Computer Networks 38 (4) (2002) 393-422.
[3]I.F. Akyildiz, T. Melodia, T.R. Chowdhury, A survey on wireless multimedia sensor networks, Computer Networks 51 (2007) 921-960.
[4]B. Yahya, J. Ben-Othman, Towards a classification of energy aware MAC protocols for wireless sensor networks, Journal of Wireless Communications and Mobile Computing 9 (12) (2009) 1572-1607.
[5]S. Floyd, V. Jacobson, Random early detection gateways for congestion avoidance, IEEE/ACM Transactions on Networking 1 (4) (1993) 397-413.
[6]C.T. Ee, R. Bajcsy, Congestion control and fairness for many-to one routing in sensor networks, in: Proc. of ACM SenSys, Baltimore, MD, 2004.
[7]C. Wang, Member, K. Sohraby, M. Daneshmand, Y. Hu, Upstream congestion control in wireless sensor networks through cross-layer optimization, IEEE Journal on Selected Areas in Communications 25 (4) (2007) 786-795.
[8]K. Nichols, V. Jacobson, L. Zhang, A two-bit differentiated services architecture for the internet, IETF RFC 2638 (1999).
[9]T. Li, Y. Rekhter, A provider architecture for differentiated services and traffic engineering (PASTE), IETF RFC 2430 (1998).
[10]Y.L. Chen, Y.S. Lin, J.W. Wang, J.H. Wen, Adaptive fuzzy rate management and power control for in multimedia CDMA cellular systems, Computer Communication 31 (2008) 1901-1910.
[11]Y.L. Chen, Y.S. Lin, J.W. Wang, J.H. Wen, Combined fuzzy-based power control with window-based transmission rate management in multimedia CDMA cellular systems, International Journal of Electronics and Communications 65 (2011) 377-383.
[12]P.R. Chang, B.C. Wang, Adaptive fuzzy power control for CDMA mobile radio system, IEEE Transaction on Vehicular Technology 45 (2) (1996) 225-236.
[13]P.R. Chang, B.C. Wang, Adaptive fuzzy proportional integral power control for a cellular CDMA system with time delay, IEEE Journal on Selected Areas in Communications 14 (9) (1996) 1818-1829.
[14]X. Wu, L. Ge, G. Liang, Adaptive power control on the reverse link for CDMA cellular system, in: Proc. of IEEE 5th APCC/OECC 99, Beijing, China, 1999, pp. 608-611.
[15]M.H. Yaghmaee, D.A. Adjeroh, Priority-based rate control for service differentiation and congestion control in wireless multimedia sensor networks, Computer Networks 53 (2009) 1798-1811.
[16]N.C. Wang, Y.F. Huang, W.L. Liu, An improved transport protocol for mobile Ad Hoc networks with fuzzy logic control, Journal of Internet Technology 10 (3) (2009) 229-236.
[17]B. Hull, K. Jamieson, H. Balakrishnan, Mitigating congestion in wireless sensor networks, in: Proc. of ACM SenSys, Baltimore, MD, 2004, pp. 3-5.
[18]C.Y. Wan et al., Siphon: Overload traffic management using multi-radio virtual sinks in sensor networks, in: Proc. of ACM SenSys, San Diego, CA, 2005, pp. 2-4.
[19]I. S. Shaw, Fuzzy Control of Industrial System, first ed., Springer, Assinippi, 1998.
[20]H.X. Li, H.B. Gatland, A new methodology for designing a fuzzy logic controller, IEEE Transactions on Systems, Man, and Cybernetics 25 (1995) 505-512.
[21]P.R. Chang, B.C. Wang, Adaptive fuzzy proportional integral power control for a cellular CDMA system with time delay, IEEE Journal of Selected Areas in Communications 14 (1996) 1818-1829.
[22]H.X. Li, E.S. Lee, Interpolation representations of fuzzy logic systems, Computers and Mathematics with Applications 45 (2003) 1683-1693.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔