跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/06 13:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳旻宏
研究生(外文):Ming-Hong Chen
論文名稱:製備碳矽複合材料應用於鋰離子電池負極之研究
論文名稱(外文):Preparation of Si/C Composite as Anode Materials for Lithium-Ion Batteries
指導教授:顏溪成顏溪成引用關係
指導教授(外文):Shi-Chern Yen
口試委員:高振宏黃炳照
口試日期:2011-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:89
中文關鍵詞:鋰離離子電池電紡絲法負極材料料碳矽複合材料料
外文關鍵詞:Lithium-ion batterySiliconElectrospinningNegative electrodeC/Si composite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論論文主要目的是研究以矽為主體的鋰離離子二次電池負極材料料。由於矽本身 擁有較高的比電容量量(~3500 mAh/g),有相當大的潛力力能夠取代目前常用的石墨 (372 mAh/g)負極材料料。但由於矽在充放電的過程中會伴隨著劇烈烈的體積變化(400 %)與本身的低導電度度,使得其在鋰離離子電池中的應用性受到了了侷限。為了了解決上 述所存在的問題,在本研究中使用了了兩兩種不不同的方法試圖解決其體積變化的問題, 第一種方種是碳披覆在矽表面上,第二種是利利用碳纖維將矽粒粒子完整的包覆。
首先是以空氣氣氛下熱處理理使得矽粒粒子上形成碳的披覆,之後再利利用惰性氣 體在高溫下反應使披覆在矽粒粒子表面上的碳能完全碳化形成良良好的披覆,這對於 電極材料料的循環次數數有明顯的增加。經過充放電測試之後,可發現在高溫下燒結 而得的碳矽複合材料料的電極所製成之電池,於 800 mAh/g 的設定電容量量下有約 70 次的循環壽命,除此之外還降降低了了在充放電過程中所發生的不不可逆(irreversibility) 電容量量及極化(polarization)現象,也因此而提升了了其庫侖效率率率(coulombic efficiency)。
另外,本研究也利利用了了電紡絲方法來來製備具有高比面積的碳矽奈奈米纖維結構 的電極材料料。而所製備出的奈奈米纖維結構直徑約為 200 nm。但此一碳矽奈奈米纖維 結構經由充放電的測試,結果顯示出電化學性能並未能符合預期,原因可能是纖 維間彼此堆疊狀狀況不不加及經煅燒後其活性物質的裸裸露露,使得在充放電過程中矽粒粒 子的體積膨脹及收縮使其無法與外層所包覆的碳有良良好的接觸,造成電容量量的急 劇下降降。

The main purpose of this research is to explore new anode materials based on silicon for lithium-ion battery. Due to the high theoretical capacity of silicon (~3500 mAh/g), it has the potential to replace graphite (372 mAh/g) as anode materials. However, Si has the dramatic volumetric variation (400%) problem during cycling and its low conductivity. This limits the application in commercial. Si/C composite materials are prepared by two different methods to overcome the problems just mentioned. One is carbon coating on Si particle, and the other one is Electrospinning method to produce Si@C nanofiber structure.
Carbon-coated Si materials have been prepared by thermal treatment in air atmosphere, and then put the composite to the quartz tube through calcination in inert gas at high temperature to form the homogeneous carbon layer onto the surface of Si particle. Research shows that the calcination process contributes to the significantly proved cycling performance.
Si@C nanofiber with high specific surface area and its average diameter after calcination is about 200 nm have been prepared by Electrospinning process. During the cycling tests, it seems the Si@C nanofiber structure electrode is not stable while charging/discharging because of the bad connection of fibers and the severe exposedness of Si particle after calcination.

摘要 .................................................... I ABSTRACT.................................................II
目錄 .................................................. III 表目錄 .................................................. V 圖目錄 ..................................................VI 第一章 緒論...............................................1
1.1 前言..................................................1 1.2 鋰離離子二次電池的介紹................................1 1.3 研究目的及架構........................................6
第二章 文獻回顧...........................................7
2.1 碳作為負極材料料......................................7 2.2 矽作為負極材料料.....................................10 碳矽複合材料料電極 ......................................16 2.3 靜電紡絲的介紹.......................................23
第三章 實驗方法 .........................................25
3.1 實驗儀器設備.........................................25 3.2 實驗藥品及器材.......................................25 3.3 材料料合成方法.......................................26
3.3.1 熱處理.............................................26
3.3.2 靜電紡絲法.........................................28 3.4 材料料分析...........................................30 3.4.1 X光繞射分析........................................30 3.4.2 SEM 表面形態分析 ..................................31 3.4.3 拉拉曼光譜分析.....................................31 3.4.4 熱重分析儀.........................................31
3.5 陽極極片製備.........................................32 3.6 硬幣型電池組裝.......................................33 3.7 電池性能測試方法.....................................35
第四章 結果與討論論......................................36
4.1 矽電極材料料.........................................36 物理理性質及結構分析 ....................................36 電化學性質分析 ..........................................37
4.2 熱處理理法製備碳矽複合材料料.........................41
(1) 熱處理理時間的影響 ..................................47 物理理性質及結構分析 ....................................47 電化學性能分析 ..........................................51
(2) 固相煆燒溫度度的效應 ................................57 物理理性質及結構分析 ....................................57 電化學性能分析 ..........................................64
4.3 以電紡絲法製備碳矽複合材料料.........................71物理理性質及結構分析 ....................................71 電化學性能分析 ..........................................79
第五章 結論..............................................86 參考文獻 ................................................87

[1] M. Armand, P. Touzain, Graphite Intercalation Compounds as Cathode Materials, Mater Sci Eng, 31 (1977) 319-329.
[2] M. Armand, D.W. Murphy, J. Broadhead, B.C.H. Steele, Materials for advanced batteries, New York, Plenum Press (NATO Conference Series, Series VI: Materials Science. Volume 2), (1980) 145-161.
[3] C.Y. Lin, S.C. Yen, The Macroscopic and Microscopic Simulation of Lithium-ion Batteries - Coupled Porous Electrode/Intercalation Model, Doctorial Thesis, National Taiwan University, (2010).
[4] J.D. Bernal, The Structure of Graphite, Proc. Roy. Soc., A 106 (1924) p. 749.
[5] A. Mabuchi, K. Tokumitsu, H. Fujimoto, T. Kasuh, Charge-Discharge Characteristics of the Mesocarbon Miocrobeads Heat-Treated at Different Temperatures, J. Electrochem. Soc., 142 (1995) 1041-1046.
[6] C. Lampe-Onnerud, P.O. J. Shi, R. Chamberlain, B. Barnett, Benchmark study on high performing carbon anode materials, Journal of Power Sources, 97-98 (2001) 133- 136.
[7] C.J. Wen, R.A. Huggins, Chemical Diffusion in Intermediate Phase in the lithium- silicon system, Journal of Solid State Chem., 37 (1981) 271-278.
[8] T.B. Massalski, H. Okamoto, Binary Alloy Phase Diagrams, 2nd ed., Plus Updates, Windows version, ASM International, Materials Park, OH, , 1990.
[9] M.N. Obrovac, L. Christensen, Structural Changes in Silicon Anodes during Lithium Insertion/Extraction, Electrochemical and Solid-State Letters, 7 (2004) A93. [10] T. Takamura, A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life, Journal of Power Sources, 129 (2004) 96-100.
[11] S. Ohara, A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life, Journal of Power Sources, 136 (2004) 303-306.
[12] T. Takamura, M. Uehara, J. Suzuki, K. Sekine, K. Tamura, High capacity and long cycle life silicon anode for Li-ion battery, Journal of Power Sources, 158 (2006) 1401- 1404.
[13] U. Kasavajjula, C.S. Wang, A.J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, Journal of Power Sources, 163 (2007) 1003- 1039.
[14] W.-R. Liu, M.-H. Yang, H.-C. Wu, S.M. Chiao, N.-L. Wu, Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder, Electrochemical and Solid-State Letters, 8 (2005) A100-A103.
[15] P. Zuo, W. Yang, X. Cheng, G. Yin, Enhancement of the electrochemical performance of silicon/carbon composite material for lithium ion batteries, (2010) 1-4. [16] W.-J. Zhang, Lithium insertion/extraction mechanism in alloy anodes for lithium- ion batteries, Journal of Power Sources, 196 (2011) 877-885.
[17] A.M. Wilson, J.N. Reimers, E.W. Fuller, J.R. Dahn, Lithium Insertion in Pyrolyzed Siloxane Polymers, Solid State Ionics, 74 (1994) 249-254.
[18] A.M. Wilson, B.M. Way, J.R. Dahn, T. Vanbuuren, Nanodispersed Silicon in Pregraphitic Carbons, J Appl Phys, 77 (1995) 2363-2369.
[19] J. Xie, G. Cao, X. Zhao, Electrochemical performances of Si-coated MCMB as anode material in lithium-ion cells, Materials Chemistry and Physics, 88 (2004) 295- 299.
[20] M. Holzapfel, H. Buqa, W. Scheifele, P. Novak, F.M. Petrat, A new type of nano- sized silicon/carbon composite electrode for reversible lithium insertion, Chemical Communications, (2005) 1566-1568.
[21]   M.   Holzapfel,   H.   Buqa,   F.   Krumeich,   P.   Novák,   F.M.   Petrat,   C.   Veit,   Chemical   Vapor   Deposited   Silicon⁄∕Graphite   Compound   Material   as Negative Electrode for Lithium-Ion Batteries, Electrochemical and Solid-State Letters, 8 (2005) A516.
[22] S.-H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z.-P. Guo, H.-K. Liu, Highly Reversible Lithium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium-Ion Batteries, Angewandte Chemie International Edition, 45 (2006) 6896-6899.
[23] S.H. Ng, J. Wang, D. Wexler, S.Y. Chew, H.K. Liu, Amorphous carbon-coated silicon nanocomposites: A low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries, Journal of Physical Chemistry C, 111 (2007) 11131-11138.
[24] J. Fan, P.S. Fedkiw, Electrochemical impedance spectra of full cells: Relation to capacity and capacity-rate of rechargeable Li cells using LiCoO2, LiMn2O4, and LiNiO2 cathodes, Journal of Power Sources, 72 (1998) 165-173.
[25] N. Dimov, Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations, Electrochimica Acta, 48 (2003) 1579-1587.
[26] K.J. Kim, Y.R. Park, Large and abrupt optical band gap variation in In-doped ZnO, Applied Physics Letters, 78 (2001) 475.
[27] D.H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology, 7 (1996) 216-223.
[28] M.N. Obrovac, L.J. Krause, Reversible Cycling of Crystalline Silicon Powder, Journal of the Electrochemical Society, 154 (2007) A103.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top