|
1.經濟部能源局, 中華民國99年能源統計手冊. 2.Blom, P.W.M., V.D. Mihailetchi, L.J.A. Koster, and D.E. Markov, Device physics of polymer : fullerene bulk heterojunction solar cells. Advanced Materials, 2007. 19(12): p. 1551-1566. 3.ghsolar. http://www.ghsolar.be/EN/types-of-pv-cells.htm. 4.PVsolarchina. http://www.pvsolarchina.com/difference-between-monocrystalline-polycrystalline-and-amorphous-thin-film-solar-cell.html. 5.Gratzel, M., Photoelectrochemical cells. Nature, 2001. 414(6861): p. 338-344. 6.Tang, C.W. and A.C. Albrecht, Photovoltaic Effects of Metal-Chlorophyll-A-Metal Sandwich Cells. Journal of Chemical Physics, 1975. 62(6): p. 2139-2149. 7.Tang, C.W., 2-Layer Organic Photovoltaic Cell. Applied Physics Letters, 1986. 48(2): p. 183-185. 8.NREL, Best research-Cell efficienies. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, 2011. 9.Kietzke, T., Recent Advances in Organic Solar Cells. Advances in OptoElectronics, 2007. 2007. 10.Chidichimo, G. and L. Filippelli, Organic Solar Cells: Problems and Perspectives. International Journal of Photoenergy, 2010. 11.Sirringhaus, H., Device physics of Solution-processed organic field-effect transistors. Advanced Materials, 2005. 17(20): p. 2411-2425. 12.Marks, R.N., J.J.M. Halls, D.D.C. Bradley, R.H. Friend, and A.B. Holmes, The Hotovoltaic Response in Poly(p-Phenylene Vinylene) Thin-Film Devices. Journal of Physics-Condensed Matter, 1994. 6(7): p. 1379-1394. 13.Huynh, W.U., J.J. Dittmer, and A.P. Alivisatos, Hybrid nanorod-polymer solar cells. Science, 2002. 295(5564): p. 2425-2427. 14.Sun, S.Q., P. Mendes, K. Critchley, S. Diegoli, M. Hanwell, S.D. Evans, G.J. Leggett, J.A. Preece, and T.H. Richardson, Fabrication of gold micro- and nanostructures by photolithographic exposure of thiol-stabilized gold nanoparticles. Nano Letters, 2006. 6(3): p. 345-350. 15.Kwong, C.Y., W.C.H. Choy, A.B. Djurisic, P.C. Chui, K.W. Cheng, and W.K. Chan, Poly(3-hexylthiophene): TiO2 nanocomposites for solar cell applications. Nanotechnology, 2004. 15(9): p. 1156-1161. 16.Beek, W.J.E., M.M. Wienk, and R.A.J. Janssen, Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Advanced Materials, 2004. 16(12): p. 1009-+. 17.McDonald, S.A., G. Konstantatos, S.G. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, and E.H. Sargent, Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Materials, 2005. 4(2): p. 138-U14. 18.Choudhury, K.R., Y. Sahoo, T.Y. Ohulchanskyy, and P.N. Prasad, Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites. Applied Physics Letters, 2005. 87(7). 19.Arici, E., N.S. Sariciftci, and D. Meissner, Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices. Advanced Functional Materials, 2003. 13(2): p. 165-171. 20.Arici, E., H. Hoppe, F. Schaffler, D. Meissner, M.A. Malik, and N.S. Sariciftci, Morphology effects in nanocrystalline CuInSe2-conjugated polymer hybrid systems. Applied Physics a-Materials Science & Processing, 2004. 79(1): p. 59-64. 21.Xu, T.T. and Q.Q. Qiao, Conjugated polymer-inorganic semiconductor hybrid solar cells. Energy & Environmental Science, 2011. 4(8): p. 2700-2720. 22.Lin, Y.Y., T.H. Chu, S.S. Li, C.H. Chuang, C.H. Chang, W.F. Su, C.P. Chang, M.W. Chu, and C.W. Chen, Interfacial Nanostructuring on the Performance of Polymer/TiO(2) Nanorod Bulk Heterojunction Solar Cells. Journal of the American Chemical Society, 2009. 131(10): p. 3644-3649. 23.Ma, W.L., C.Y. Yang, X. Gong, K. Lee, and A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials, 2005. 15(10): p. 1617-1622. 24.Li, G., V. Shrotriya, J.S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005. 4(11): p. 864-868. 25.Friend, R.H., G.J. Denton, J.J.M. Halls, N.T. Harrison, A.B. Holmes, A. Kohler, A. Lux, S.C. Moratti, K. Pichler, N. Tessler, K. Towns, and H.F. Wittmann, Electronic excitations in luminescent conjugated polymers. Solid State Communications, 1997. 102(2-3): p. 249-258. 26.Greenham, N.C., X.G. Peng, and A.P. Alivisatos, Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Physical Review B, 1996. 54(24): p. 17628-17637. 27.Zeng, T.W., Y.Y. Lin, H.H. Lo, C.W. Chen, C.H. Chen, S.C. Liou, H.Y. Huang, and W.F. Su, A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices. Nanotechnology, 2006. 17(21): p. 5387-5392. 28.Coakley, K.M. and M.D. McGehee, Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania. Applied Physics Letters, 2003. 83(16): p. 3380-3382. 29.Ravirajan, P., S.A. Haque, J.R. Durrant, D.D.C. Bradley, and J. Nelson, The effect of polymer optoelectronic properties on the performance of multilayer hybrid polymer/TiO2 solar cells. Advanced Functional Materials, 2005. 15(4): p. 609-618. 30.Goh, C., S.R. Scully, and M.D. McGehee, Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells. Journal of Applied Physics, 2007. 101(11). 31.Kwong, C.Y., A.B. Djurisic, P.C. Chui, K.W. Cheng, and W.K. Chan, Influence of solvent on film morphology and device performance of poly(3-hexylthiophene): TiO2 nanocomposite solar cells. Chemical Physics Letters, 2004. 384(4-6): p. 372-375. 32.Boucle, J., S. Chyla, M.S.P. Shaffer, J.R. Durrant, D.D.C. Bradley, and J. Nelson, Hybrid solar cells from a blend of poly(3-hexylthiophene) and ligand-capped TiO2 nanorods. Advanced Functional Materials, 2008. 18(4): p. 622-633. 33.Lin, Y.Y., T.H. Chu, C.W. Chen, and W.F. Su, Improved performance of polymer/TiO(2) nanorod bulk heterojunction photovoltaic devices by interface modification. Applied Physics Letters, 2008. 92(5). 34.Huang, Y.C., J.H. Hsu, Y.C. Liao, W.C. Yen, S.S. Li, S.T. Lin, C.W. Chen, and W.F. Su, Employing an amphiphilic interfacial modifier to enhance the performance of a poly(3-hexyl thiophene)/TiO(2) hybrid solar cell. Journal of Materials Chemistry, 2011. 21(12): p. 4450-4456. 35.Zeng, T.W., C.C. Ho, Y.C. Tu, G.Y. Tu, L.Y. Wang, and W.F. Su, Correlating Interface Heterostructure, Charge Recombination, and Device Efficiency of Poly(3-hexyl thiophene)/TiO(2) Nanorod Solar Cell. Langmuir, 2011. 27(24): p. 15255-15260. 36.Grebenkin, K.F. and A.L. Kutepov, Band gap estimation for a triaminotrinitrobenzene molecular crystal by the density-functional method. Semiconductors, 2000. 34(10): p. 1161-1162. 37.Harrison, M.G., J. Gruner, and G.C.W. Spencer, Analysis of the photocurrent action spectra of MEH-PPV polymer photodiodes. Physical Review B, 1997. 55(12): p. 7831-7849. 38.Desormeaux, A., J.J. Max, and R.M. Leblanc, Photovoltaic and Electrical-Properties of Al/Langmuir-Blodgett Films/Ag Sandwich Cells Incorporating Either Chlorophyll-A, Chlorophyll-B, or Zinc Porphyrin Derivative. Journal of Physical Chemistry, 1993. 97(25): p. 6670-6678. 39.Pettersson, L.A.A., L.S. Roman, and O. Inganas, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. Journal of Applied Physics, 1999. 86(1): p. 487-496. 40.Sievers, D.W., V. Shrotriya, and Y. Yang, Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells. JOURNAL OF APPLIED PHYSICS, 2006. 100(11). 41.Haarer, D., Zero-Phonon Lines in Singlet Spectrum of Charge-Transfer Crystal Anthracene-PMDA - Experimental-Evidence and Model Calculations. Journal of Chemical Physics, 1977. 67(9): p. 4076-4085. 42.Onsager, L., Initial recombination of ions. Physical Review, 1938. 54(8): p. 554-557. 43.Braun, C.L., Electric-Field Assisted Dissociation of Charge-Transfer States as a Mechanism of Photocarrier Production. Journal of Chemical Physics, 1984. 80(9): p. 4157-4161. 44.Koster, L.J.A., V.D. Mihailetchi, and P.W.M. Blom, Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells. Applied Physics Letters, 2006. 88(5). 45.Accascina, M.F.a.F., Eleltrolytic Conductance. p. p213. 46.Langevin, P., The recombination and mobilities of ions in gases. Annales De Chimie Et De Physique, 1903. 28: p. 433-530. 47.Phillips, J.C., Stretched exponential relaxation in molecular and electronic glasses. Reports on Progress in Physics, 1996. 59(9): p. 1133-1207. 48.Chen, R., Apparent stretched-exponential luminescence decay in crystalline solids. Journal of Luminescence, 2003. 102: p. 510-518. 49.Apitz, D. and P.M. Johansen, Limitations of the stretched exponential function for describing dynamics in disordered solid materials. Journal of Applied Physics, 2005. 97(6). 50.Zatryb, G., A. Podhorodecki, J. Misiewicz, J. Cardin, and F. Gourbilleau, On the nature of the stretched exponential photoluminescence decay for silicon nanocrystals. Nanoscale Research Letters, 2011. 6. 51.Goliber, T.E. and J.H. Perlstein, Aanlysis of Photogeneration in a Doped Polymer System in Terms of a Kinetic-Model for Electric-Field-Assisted Dissociation of Charge-Transfer States. Journal of Chemical Physics, 1984. 80(9): p. 4162-4167. 52.Padovani, F.A. and R. Stratton, Field and thermionic-field emission in Schottky barriers. Solid-State Electronics, 1966. 9(7): p. 695-707. 53.Scott, J.C. and G.G. Malliaras, Charge injection and recombination at the metal-organic interface. Chemical Physics Letters, 1999. 299(2): p. 115-119. 54.S. M. Sze, K.K.N., ed. Physics of Semiconductor Device, 3rd Edition. 2007. 154. 55.Lacic, S. and O. Inganas, Modeling electrical transport in blend heterojunction organic solar cells. Journal of Applied Physics, 2005. 97(12). 56.Scharfet.Dl and H.K. Gummel, Large-Signal Analtsis of a Silicon Read Diode Oscillator. Ieee Transactions on Electron Devices, 1969. ED16(1): p. 64-&. 57.Koster, L.J.A., E.C.P. Smits, V.D. Mihailetchi, and P.W.M. Blom, Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Physical Review B, 2005. 72(8). 58.Chang, C.H., T.K. Huang, Y.T. Lin, Y.Y. Lin, C.W. Chen, T.H. Chu, and W.F. Su, Improved charge separation and transport efficiency in poly(3-hexylthiophene)-TiO2 nanorod bulk heterojunction solar cells. Journal of Materials Chemistry, 2008. 18(19): p. 2201-2207. 59.Mihailetchi, V.D., H.X. Xie, B. de Boer, L.J.A. Koster, and P.W.M. Blom, Charge transport and photocurrent generation in poly (3-hexylthiophene): Methanofullerene bulk-heterojunction solar cells. Advanced Functional Materials, 2006. 16(5): p. 699-708. 60.Kim, H., W.W. So, and S.J. Moon, Effect of thermal annealing on the performance of P3HT/PCBM polymer photovoltaic cells. Journal of the Korean Physical Society, 2006. 48(3): p. 441-445. 61.Al-Ibrahim, M., H.K. Roth, U. Zhokhavets, G. Gobsch, and S. Sensfuss, Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene. Solar Energy Materials and Solar Cells, 2005. 85(1): p. 13-20. 62.Skompska, M., Hybrid conjugated polymer/semiconductor photovoltaic cells. Synthetic Metals, 2010. 160(1-2): p. 1-15.
|