[1]J. R. Platt, "Wavelength formulas and configuration interaction in brooker dyes and chain molecules," The Journal of Chemical Physics, vol. 25, pp. 80-105, 1956.
[2]S. K. Deb, "A novel electrophotographic system," Appl. Opt., vol. 8, pp. 192-195, 1969.
[3]F. T. Bauer and J. H. Bechtel, "Automatic rearview mirror for automotive vehicles," US Patent 4,443,057, 1984.
[4] H. J. Byker, "Single-compartment, self-erasing, solution-phase electrochromic devices, solutions for use therein and uses thereof," US Patent 4,902,108, 1990.
[5]J. H. Brechtel and H. J. Byker, "Automatic rearview mirror system for automotive vehicles," US Patent 4,917,477, 1990.
[6]E. S. Lee and D. L. DiBartolomeo, "Application issues for large-area electrochromic windows in commercial buildings," Solar Energy Materials and Solar Cells, vol. 71, pp. 465-491, 2002.
[7]T. Kubo, T. Shinada, Y. Kobayashi, H. Imafuku, T. Toya, S. Akita, Y. Nishikitani, and H. Watanabe, "Current state of the art for NOC-AGC electrochromic windows for architectural and automotive applications," Solid State Ionics, vol. 165, pp. 209-216, 2003.
[8]T. Kubo, J. Tanimoto, M. Minami, T. Toya, Y. Nishikitani, and H. Watanabe, "Performance and durability of electrochromic windows with carbon-based counter electrode and their application in the architectural and automotive fields," Solid State Ionics, vol. 165, pp. 97-104, 2003.
[9]A. Azens, E. Avendano, J. Backholm, L. Berggren, G. Gustavsson, R. Karmhag, G. A. Niklasson, A. Roos, and C. G. Granqvist, "Flexible foils with electrochromic coatings: science, technology and applications," Materials Science and Engineering B, vol. 119, pp. 214-223, 2005.
[10]M. Gratzel, "Materials science: Ultrafast colour displays," Nature, vol. 409, pp. 575-576, 2001.
[11]U. Bach, D. Corr, D. Lupo, F. Pichot, and M. Ryan, "Nanomaterials-based electrochromics for paper-quality displays," Advanced Materials, vol. 14, pp. 845-848, 2002.
[12]D. Corr, U. Bach, D. Fay, M. Kinsella, C. McAtamney, F. O''Reilly, S. N. Rao, and N. Stobie, "Coloured electrochromic "paper-quality" displays based on modified mesoporous electrodes," Solid State Ionics, vol. 165, pp. 315-321, 2003.
[13]P. R. Somani and S. Radhakrishnan, "Electrochromic materials and devices: present and future," Materials Chemistry and Physics, vol. 77, pp. 117-133, 2003.
[14]P. M. S. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism and electrochromic devices. New York: Cambridge University Press, 2007.
[15]P. M. S. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism : fundamentals and applications. New York: VCH, 1995.
[16]B. W. Faughnan, R. S. Crandall, and P. M. Heyman, "Electrochromism in WO3 Amorphoous films," R.C.A. Review, vol. 36, pp. 177-197, 1975.
[17]S. F. Cogan, N. M. Nguyen, S. J. Perrotti, and R. D. Rauh, "Optical properties of electrochromic vanadium pentoxide," Journal of Applied Physics, vol. 66, pp. 1333-1337, 1989.
[18]X. H. Xia, J. P. Tu, J. Zhang, X. L. Wang, W. K. Zhang, and H. Huang, "Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition," Solar Energy Materials and Solar Cells, vol. 92, pp. 628-633, 2008.
[19]C.-S. Hsu, C.-C. Chan, H.-T. Huang, C.-H. Peng, and W.-C. Hsu, "Electrochromic properties of nanocrystalline MoO3 thin films," Thin Solid Films, vol. 516, pp. 4839-4844, 2008.
[20]C. K. Dyer and J. S. L. Leach, "Reversible optical changes within anodic oxide films on titanium and niobium," Journal of the Electrochemical Society, vol. 125, pp. 23-29, 1978.
[21]黃玉仙, "含普魯士藍與六氰鐵化銦電致色變元件之性能與最適化研究," 碩士, 化學工程研究所, 國立台灣大學, 台北, 2002.[22]林巧芬, "以紫精搭配普魯士藍電致色變元件之研究," 碩士, 化學工程研究所, 國立台灣大學, 台北, 2003.[23]柯惠琪, "含聚苯胺之電致色變元件性質研究," 碩士, 化學工程研究所, 國立台灣大學, 台北, 2000.[24]R. D. Rauh, F. Wang, J. R. Reynolds, and D. L. Meeker, "High coloration efficiency electrochromics and their application to multi-color devices," Electrochimica Acta, vol. 46, pp. 2023-2029, 2001.
[25]M. Mastragostino, C. Arbizzani, P. Ferloni, and A. Marinangeli, "Polymer-based electrochromic devices," Solid State Ionics, vol. 53-56, pp. 471-478.
[26]C. L. Gaupp, D. M. Welsh, R. D. Rauh, and J. R. Reynolds, "Composite coloration efficiency measurements of electrochromic polymers based on 3,4 Alkylenedioxythiophenes," Chemistry of Materials, vol. 14, pp. 3964-3970, 2002.
[27] R. D. Rauh, "Electrochromic windows: an overview," Electrochimica Acta, vol. 44, pp. 3165-3176, 1999.
[28]N. Leventis, M. Chen, A. I. Liapis, J. W. Johnson, and A. Jain, "Characterization of 3 x 3 matrix arrays of solution-phase electrochromic cells," Journal of the Electrochemical Society, vol. 145, pp. L55-L58, 1998.
[29]C. J. Schoot, J. J. Ponjee, H. T. van Dam, R. A. van Doorn, and P. T. Bolwijn, "New electrochromic memory display," Applied Physics Letters, vol. 23, pp. 64-65, 1973.
[30]R. J. Mortimer, "Organic electrochromic materials," Electrochimica Acta, vol. 44, pp. 2971-2981, 1999.
[31] G.R. Whittell, M.D. Hager, U.S. Schubert, I. Manners, “Functional soft materials from metallopolymers and metallosupramolecular polymers,” Nature Materials, vol. 10, pp. 176-188, 2011.
[32]Flory, P. J. Principles of Polymer Chemistry, Cornell Univ. Press, chap. 2, 1953.
[33]T.F.A. De Greef, M.M.J. Smulders, M. Wolffs, A.P.H.J. Schenning, R.P. Sijbesma, E.W. Meijer, “Supramolecular polymerization,” Chemical Reviews, vol. 109, pp. 5687-5754, 2009.
[34] W.R. Caseri, H.D. Chanzy, K. Feldman, M. Fontana, P. Smith, T.A. Tervoort, J.G.P. Goossens, E.W. Meijer, A. Schenning, I.R. Dolbnya, M.G. Debije, M.P. de Haas, J.M. Warman, A.M. van de Craats, R.H. Friend, H. Sirringhaus, N. Stutzmann, "(Hot-)Water-Proof", semiconducting, platinum-based chain structures: processing, products, and properties,” Advanced Materials, vol. 15, pp. 125-129, 2003.
[35]R. Dobrawa, F. Wurthner, “Metallosupramolecular approach toward functional coordination polymers,” Journal of Polymer Science Part a-Polymer Chemistry, vol. 43, pp. 4981-4995, 2005.
[36]D.G. Kurth, M. Higuchi, “Transition metal ions: weak links for strong polymers,” Soft Matter, vol. 2, pp. 915-927, 2006.
[37]D. Knapton, S.J. Rowan, C. Weder, “Synthesis and properties of metallo-supramolecular poly(p-phenylene ethynylene)s,” Macromolecules, vol. 39, pp. 651-657, 2006.
[38]C.A. Wheaton, R.J. Puddephatt, “A coordination polymer of gold(I) with heterotactic architecture and a comparison of the structures of isotactic, syndiotactic, and heterotactic isomers,” Angewandte Chemie-International Edition, vol. 46, pp. 4461-4463, 2007.
[39]C.-F. Chow, S. Fujii, J.-M. Lehn, “Metallodynamers: Neutral dynamic metallosupramolecular polymers displaying transformation of mechanical and optical properties on constitutional exchange,” Angewandte Chemie-International Edition, vol. 46, pp. 5007-5010, 2007
[40] R. Shunmugam, G.J. Gabriel, K.A. Aamer, G.N. Tew, “ Metal-ligand-containing polymers: terpyridine as the supramolecular unit,” Macromolecular Rapid Communications, vol. 31, pp. 784-793, 2010.
[41]V.A. Friese, D.G. Kurth, “From coordination complexes to coordination polymers through self-assembly,” Current Opinion in Colloid & Interface Science, vol. 14, pp. 81-93, 2009.
[42]P.W. Kuchel, G.B. Ralston, K.E. Cullen (editor), “Schaum''s easy outline of biochemistry,” Mcgraw-Hill Professional, 2003.
[43]R.E. Gillard, F.M. Raymo, J.F. Stoddart, “Controlling self-assembly,” Chemistry-a European Journal, vol. 3, pp. 1933-1940, 1997.
[44]G.F. Swiegers, T.J. Malefetse, “Multiple-interaction self-assembly in coordination chemistry,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 40, pp. 253-264, 2001.
[45]S. Leininger, B. Olenyuk, P.J. Stang, “Self-assembly of discrete cyclic nanostructures mediated by transition metals,” Chemical Reviews, vol. 100, pp. 853-907, 2000.
[46]L.H. Gade. “Koordinationschemie,” Wiley-VCH, chap. 1, 2000.
[47] T. Vermonden, J. van der Gucht, P. de Waard, A.T.M. Marcelis, N.A.M. Besseling, E.J.R. Sudholter, G.J. Fleer, M.A.C. Stuart, “Water-soluble reversible coordination polymers: Chains and rings,” Macromolecules, vol. 36, pp. 7035-7044, 2003.
[48]F. Barigelletti, L. Flamigni, V. Balzani, J.P. Collin, J.P. Sauvage, A. Sour, E.C. Constable, A. Thompson, “Rigid rod-like dinuclear Ru(II) Os(II) terpyridine-type complexes - electrochemical-behavior, absorption -spectra, luminescence properties, and electronic-energy transfer through phenylene bridges,” Journal of the American Chemical Society, vol. 116, pp. 7692-7699, 1994.
[49]E.C. Constable, A. Thompson, P. Harveson, L. Macko, M. Zehnder, “Metal-mediated Synthesis of Multidomain Ligands – A new strategy for metallosupramolecular chemistr,” Chemistry-a European Journal, vol. 1, pp. 360-367, 1995.
[50] M. Chiper, M.A.R. Meier, D. Wouters, S. Hoeppener, C.A. Fustin, J.F. Gohy, U.S. Schubert, “Supramolecular self-assembled Ni(II), Fe(II), and Co(II) ABA triblock copolymers,” Macromolecules, vol. 41, pp. 2771-2777, 2008.
[51]T.K. Sievers, A. Vergin, H. Mohwald, D.G. Kurth, “Thin films of cross-linked metallo-supramolecular coordination polyelectrolytes,” Langmuir, vol. 23, pp. 12179-12184, 2007.
[52]Y. Yan, J. Huang, “Hierarchical assemblies of coordination supramolecules,” Coordination Chemistry Reviews, vol. 254, pp. 1072-1080, 2010.
[53]P.K. Iyer, J.B. Beck, C. Weder, S.J. Rowan, “Synthesis and optical properties of metallo-supramolecular polymers,” Chemical Communications, pp. 319-321, 2005.
[54]N. Chandrasekhar, R. Chandrasekar, "Click-fluors": synthesis of a family of pi-conjugated fluorescent back-to-back coupled 2,6-bis(triazol-1-yl)pyridines and their self-assembly Studies,” Journal of Organic Chemistry, vol. 75, pp. 4852-4855, 2010.
[55]I. Welterlich, B. Tieke, “Conjugated polymer with benzimidazolylpyridine ligands in the side chain: metal ion coordination and coordinative self-assembly into fluorescent ultrathin films,” Macromolecules, vol. 44, pp. 4194-4203, 2011.
[56]F. Blau, Ber. Dtsch. Chem. Ges. vol. 21, pp. 1077-1078, 1888.
[57]A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. Vonzelewsky, “Ru(II) polypyridine complexes – photophysics, photochemistry, electrochemistry, and chemi-luminescence,” Coordination Chemistry Reviews, vol. 84, pp. 85-277, 1988.
[58]H.D. Abruna, P. Denisevich, M. Umana, T.J. Meyer, R.W. Murray, “Rectifying interfaces using 2-layer films of electrochemically polymerized vinylpyridine and vinylbypyridine complexes of ruthenium and iron on electrodes,” Journal of the American Chemical Society, vol. 103, pp. 1-5, 1981.
[59]L. Motiei, M. Lahav, D. Freeman, M.E. van der Boom, “Electrochromic behavior of a self-propagating molecular-based assembly,” Journal of the American Chemical Society, vol. 131, pp. 3468-3469, 2009.
[60]P.R. Andres, U.S. Schubert, “New functional polymers and materials based on 2,2 '': 6 '',2 ''-terpyridine metal complexes,” Advanced Materials, vol. 16, pp. 1043-1068, 2004.
[61]J.-M Lehn, “Supramolecular chemistry: an introduction,” (Ed: F. Vogtle), John Wiley and Sons, New York, 1995.
[62]E.C. Constable, ” The coordination chemistry of 2,2’-6’,2’’-terpyridine and higher oligopyridines,” Advances in Inorganic Chemistry, vol. 30, pp. 69-121,1986.
[63]J.-H. Li, M. Higuchi, “Substituent effects on metallo-Supramolecular coordination polymers,” Journal of Inorganic and Organometallic Polymers and Materials, vol. 20, pp. 10-18, 2010.
[64]A. Maier, A.R. Rabindranath, B. Tieke, “Fast-switching electrochromic films of zinc polyiminofluorene-terpyridine prepared upon coordinative supramolecular assembly,” Advanced Materials, vol. 21, pp. 959-963, 2009.
[65]A.R. Rabindranath, A. Maier, M. Schaefer, B. Tieke, “Luminescent and ionochromic polyiminofluorene with conjugated terpyridine substituent groups,” Macromolecular Chemistry and Physics, vol. 210, pp. 659-668, 2009.
[66]B. Tieke, ”Coordinative supramolecular assembly of electrochromic thin films,” Current Opinion in Colloid & Interface Science, vol. 16, pp. 499-507, 2011.
[67]A. Maier, R. Rabindranath, B. Tieke, “Coordinative supramolecular assembly of electrochromic films based on metal ion complexes of polyiminofluorene with terpyridine substituent groups,” Chemistry of Materials, vol. 21, pp. 3668-3676, 2009.
[68]A. Maier, H. Fakhrnabavi, A.R. Rabindranath, B. Tieke, “Supramolecular assembly of electrochromic films of terpyridine-functionalized polyiminocarbazolylene metal complexes,” Journal of Materials Chemistry, vol. 21, pp. 5795-5804, 2011.
[69]A. Maier, K. Cheng, J. Savych, B. Tieke, “Double-electrochromic coordination polymer network films,” Acs Applied Materials & Interfaces, vol. 3, pp. 2710-2718, 2011.
[70]A. Maier, B. Tieke, “Coordinative layer-by-layer assembly of electrochromic thin films based on metal ion complexes of terpyridine-substituted polyaniline Derivatives,” Journal of Physical Chemistry B, vol. 116, pp. 925-934, 2012.
[71] D. M. Roundhill, Photochemistry and Photophysics of Metal Complexes,
Plenum, New York, chap. 5, 1994.
[72]M. Higuchi, “Electrochromic organic-metallic hybrid polymers: fundamentals and device applications,” Polymer Journal, vol. 41, pp. 511-520, 2009.
[73]F.S. Han, M. Higuchi, T. Ikeda, Y. Negishi, T. Tsukuda, D.G. Kurth, “Luminescence properties of metallo-supramolecular coordination polymers assembled from pyridine ring functionalized ditopic bis-terpyridines and Ru(II) ion,” Journal of Materials Chemistry, vol. 18, pp. 4555-4560, 2008.
[74]R.R. Pal, M. Higuchi, Y. Negishi, T. Tsukuda, D.G. Kurth, “Fluorescent Fe(II) metallo-supramolecular polymers: metal-ion-directed self-assembly of new bisterpyridines containing triethylene glycol chains,” Polymer Journal, vol. 42, pp. 336-341, 2010.
[75]Y. Bodenthin, G. Schwarz, Z. Tomkowicz, M. Lommel, T. Geue, W. Haase, H. Moehwald, U. Pietsch, D.G. Kurth, “Spin-crossover phenomena in extended multi-component metallo-supramolecular assemblies,” Coordination Chemistry Reviews, vol. 253, pp. 2414-2422, 2009.
[76]J. Li, Z. Futera, H. Li, Y. Tateyama, M. Higuchi, “Conjugation of organic-metallic hybrid polymers and calf-thymus DNA,” Physical Chemistry Chemical Physics, vol. 13, pp. 4839-4841, 2011.
[77]S. Bernhard, J.I. Goldsmith, K. Takada, H.D. Abruna, “Iron(II) and copper(I) coordination polymers: electrochromic materials with and without chiroptical properties,” Inorganic Chemistry, vol. 42, pp. 4389-4393, 2003.
[78]D.G. Kurth, M. Schutte, J. Wen, “Metallo-supramolecular polyelectrolyte multilayers with cobalt(II): preparation and properties,” Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 198, pp. 633-643, 2002.
[79]D.G. Kurth, J.P. Lopez, W.F. Dong, “A new Co(II)-metalloviologen-based electrochromic material integrated in thin multilayer films,” Chemical Communications, pp. 2119-2121, 2005.
[80]C.-F. Zhang, A. Liu, M. Chen, C. Nakamura, J. Miyake, D.-J. Qian, “Interfacial self-assembly of metal-mediated viologen-Like coordination polyelectrolyte hybrids of the bisterpyridine ligand and their optical, electrochemical, and electrochromic properties,” Acs Applied Materials & Interfaces, vol. 1, pp. 1250-1258, 2009
[81]F.S. Han, M. Higuchi, D.G. Kurth, “Metallo-supramolecular polymers based on functionalized bis-terpyridines as novel electrochromic materials,” Advanced Materials, vol. 19, 3928-3931, 2007.
[82]F.S. Han, M. Higuchi, D.G. Kurth, “Metallosupramolecular polyelectrolytes self-assembled from various pyridine ring-substituted bisterpyridines and metal ions: Photophysical, electrochemical, and electrochromic properties,” Journal of the American Chemical Society, vol. 130, pp. 2073-2081, 2008.
[83]F.S. Han, M. Higuchi, Y. Akasaka, Y. Otsuka, D.G. Kurth, “Preparation, characterization, and electrochromic properties of novel Co(II)-bis-2,2 '': 6 '',2 ''-terpyridine metallo-supramolecular polymers,” Thin Solid Films, vol. 516, pp. 2469-2473, 2008.
[84]M. Higuchi, D.G. Kurth, “Electrochemical functions of metallosupramolecular nanomaterials,” Chemical Record, vol. 7, pp. 203-209, 2007.
[85]M. Higuchi, “Electrochromic functions of organic-metallic hybrid polymers,” Journal of Nanoscience and Nanotechnology, vol. 9, pp. 51-58, 2009.
[86]M. Higuchi, Y. Akasaka, T. Ikeda, A. Hayashi, D.G. Kurth, “Electrochromic solid-state devices using organic-metallic hybrid polymers,” Journal of Inorganic and Organometallic Polymers and Materials, vol. 19, pp. 74-78, 2009.
[87]E.M. Genies, A. Boyle, M. Lapkowski, C. Tsintavis, ” Polyaniline – a history survey,” Synthetic Metals, vol. 36, pp. 139-182, 1990.
[88]E.T. Kang, K.G. Neoh, K.L. Tan, “Polyaniline: A polymer with many interesting intrinsic redox states,” Progress in Polymer Science, vol. 23, pp. 277-324, 1998.
[89]N. Gospodinova, L. Terlemezyan, “Conducting polymers prepared by oxidative polymerization: Polyaniline,” Progress in Polymer Science, vol. 23, pp. 1443-1484, 1998.
[90]J. Fritsche, “Ueber das anilin, ein neues zersetzungsproduct des indigo,” Journal fur Praktische Chemie, vol. 20, pp. 453-459, 1840.
[91]H. Letheby, “On the production of a blue substance by the electrolpsis,” Journal of the Chemical Society, vol. 15, pp. 161-163, 1862.
[92]T. H. Lin and K. C. Ho, “A complementary electrochromic device based on polyaniline and poly(3,4-ethylenedioxythiophene),” Solar Energy Materials & Solar Cells, vol. 90, pp. 506-520, 2006.
[93]J. Y. Wang, C. M. Yu, S. C. Hwang, K. C. Ho and L. C. Chen, “Influence of coloring voltage on the optical performance and cycling stability of a polyaniline-indium hexacyanoferrate electrochromic system,” Solar Energy Materials & Solar Cells, vol. 92,pp. 112-119, 2008.
[94]J. Desilvestro, W. Scheifele and O. Hass, “In situ determination of gravimetric and volumetric charge densities of battery electrodes,” J. Electrochem. Soc., vol. 139, pp.2727-2736, 1992.
[95]K. Kanamura, Y. Kawai, S. Yonezawa and Z. I. Takehara, “Effect of morphology of polyaniline on its discharge characteristics in nonaqueous electrolyte,” J. Electrochem. Soc., vol. 142,pp. 2894-2899, 1995.
[96]Z. Cai, M. Geng and Z. Tang, ”Novel battery using conducting polymers: polyindole and polyaniline as active materials,” J. Mater. Sci., vol. 39, pp. 4001-4003, 2004.
[97]Mu, ” Rechargeable batteries based on poly(aniline-co-o-aminophenol) and the protonation of the copolymer,” Synth. Met., vol. 143 , pp. 269-275, 2004.
[98]Y. G. Wang and X. G. Zhang, “All solid-state supercapacitor with phosphotungstic acid as the proton-conducting electrolyte,” Solid State Ion., vol. 166, pp. 61-67, 2004.
[99]Y. K. Zhou, B. L. He, W. J. Zhou, J. Huang, X. H. Li, B. Wu and H. L. Li, ”Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites,” Electrochim. Acta, vol. 49, pp. 257-262, 2004.
[100]K. S. Ryu, K. M. Kim, Y. J. Park, N. G. Park, M. G. Kang and S. H. Chang, ”Redox supercapacitor using polyaniline doped with Li salt as electrode,” Solid State Ion., vol. 152 , pp. 861-866, 2002.
[101]T. Tatsuma, T. Ogawa, R. Sato and N. Oyama, “Peroxidase-incorporated sulfonated polyaniline-polycation complexes for electrochemical sensing of H2O2,” J. Electroanal. Chem., vol. 501, pp. 180-185, 2001.
[102]S. Koul and R. Chandra, ”Mixed dopant conducting polyaniline reusable blend for the detection of aqueous ammonia,” Sens. Actuator B-Chem., vol. 104 pp. 57-67, 2005.
[103]S. Takeda, ”New type of CO2 sensor built up with plasma polymerized polyaniline thin film,” Thin Solid Films, vol. 344 ,pp. 313-316, 1999.
[104]W. Takashima, M. Kaneko, K. Kaneto and A. G. MacDiarmid, “Electrochemical actuator using electrochemically-deposited poly-aniline film,” Synth. Met., vol. 71 pp. 2265-2266, 1995.
[105]B. Qi, W. Lu and B. R. Mattes, “Strain and energy efficiency of polyaniline fiber electrochemical actuators in aqueous electrolytes,” J. Phys. Chem. B, vol. 108, pp. 6222-6227, 2004.
[106]F. Rourke and J. A. Crayston, “Cyclic voltammetry and morphology of polyaniline-coated electrodes containing [Fe(CN)6]3-/4- ions,” J. Chem. Soc., Faraday Trans., vol. 89,pp. 295-302, 1993.
[107]S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science, vol. 283, pp. 512-514, 1999.
[108]M. Ginic-Markovic, J.G. Matisons, R. Cervini, G.P. Simon, P.M. Fredericks, “Synthesis of new polyaniline/nanotube composites using ultrasonically initiated emulsion polymerization,” Chemistry of Materials, vol. 18, pp. 6258-6265, 2006.
[109]S. Bhandari, M. Deepa, A.K. Srivastava, C. Lal, R. Kant, “Poly(3,4-ethylenedioxythiophene) (PEDOT)-coated MWCNTs tethered to conducting substrates: facile electrochemistry and enhanced coloring efficiency,” Macromolecular Rapid Communications, vol. 29, pp. 1959-1964, 2008.
[110]Guo, D. J. & H. L. Li, “Well-dispersed multi-walled carbon nanotube/polyaniline composite films,” Journal of Solid State Electrochemistry, vol. 9, pp. 445-449, 2005.
[111]J.N. Coleman, S. Curran, A.B. Dalton, A.P. Davey, B. Mc Carthy, W. Blau, R.C. Barklie, “Physical doping of a conjugated polymer with carbon nanotubes,” Synthetic Metals, vol. 102, pp. 1174-1175, 1999.
[112]G.Z. Chen, M.S.P. Shaffer, D. Coleby, G. Dixon, W.Z. Zhou, D.J. Fray, A.H. Windle, “Carbon nanotube and polypyrrole composites: Coating and doping,” Advanced Materials, vol. 12, pp. 522-526, 2000.
[113]K.-Y. Shen, C.-W. Hu, L.-C. Chang, K.-C. Ho, “A complementary electrochromic device based on carbon nanotubes/conducting polymers,” Solar Energy Materials and Solar Cells, vol. 98, pp. 294-299, 2012.
[114]G. G. Wallace, G.M. Spinks, L.A.P. Kane-Maguire and P.R. Teasdale, “Conductive electroactive polymers, “ 2nd Ed., CRC Press, New York, 2003.
[115]E. Poverenov, M. Li, A. Bitler, M. Bendikov, “Major effect of electropolymerization solvent on morphology and electrochromic properties of PEDOT films,” Chemistry of Materials, vol. 22, pp. 4019-4025, 2010.
[116]D.M. Welsh, A. Kumar, E.W. Meijer, J.R. Reynolds, “Enhanced contrast ratios and rapid switching in electrochromics based on poly(3,4-propylenedioxythiophene) derivatives,” Advanced Materials, vol. 11, pp. 1379-1382, 1999.
[117]C.L. Gaupp, D.M. Welsh, J.R. Reynolds, “Poly(ProDOT-Et2): A high-contrast, high-coloration efficiency electrochromic polymer,” Macromolecular Rapid Communications, vol. 23, pp. 885-889, 2002.
[118]林正嵐, “普魯士藍薄膜電極電化學析鍍與氧化還原行為之研究,” 國立台灣大學化學工程研究所博士論文, 台北, 台灣, 2002.[119]黃詩雯, “以PEDOT及PMeT構成之全塞吩電致色變元件之光電性質及最適化,” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣, 2005.[120]L. C. Chen and K. C. Ho, “Design Equations for Complementary Electrochromic Devices: Application to the Tungsten Oxide-prussian blue System,” Electrochimi. Acta, vol. 46, pp. 2151-2158 , 2001.
[121]L.-M. Huang, C.-H. Chen, T.-C. Wen, "Development and characterization of flexible electrochromic devices based on polyaniline and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid)," Electrochimi. Acta, vol. 26, pp. 5858-5863, 2006.
[122]K.-C. Chen, C.-Y. Hsu, C.-W. Hu, K.-C. Ho, "A complementary electrochromic device based on Prussian blue and poly(ProDOT-Et2) with high contrast and high coloration efficiency," Solar Energy Materials and Solar Cells, vol. 95, pp. 2238-2245, 2011.
[123] 陳威凱, “PANI或PANI/SiO2與PMeT或PProDOT-Et2搭配之互補式電致色變元件:最適化與穩定性,” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣, 2009.