跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 15:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳暐翰
研究生(外文):Wei-Han Chen
論文名稱:含亞銅金屬超分子高分子電解質之光電性質及其電致色變應用之研究
論文名稱(外文):On the Electro-optical Properties of Metallo-supramolecular Polyelectrolytes (MEPEs) Containing Copper(I) and Their Electrochromic Applications
指導教授:何國川
指導教授(外文):Ko-Chuan Ho
口試委員:顏溪成戴子安陳林祈
口試日期:2012-07-03
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:167
中文關鍵詞:金屬超分子材料MEPE-Cu(I)金屬至配位基的電子轉移循環伏安法預處理超快速響應時間
外文關鍵詞:metallo-supramolecular materialsMEPE-Cu(I)metal-to-ligand charge transfer (MLCT)cyclic-voltammetry (CV) pretreatmentultra-fast response time
相關次數:
  • 被引用被引用:1
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In this thesis, a new field in electrochromic materials combining inorganic metal ions with organic ligands, which is called metallo-supramolecular materials, is introduced and discussed. The metallo-supramolecular polyelectrolytes (MEPEs) containing copper(I) metal ion, MEPE-Cu(I), is first synthesized and applied in electrochromism. To investigate different roles in electrochromic device, polyaniline-carbon nanotube (PANI-CNT) and poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]dioxepine) (PProDOT-Et2) are chosen with MEPE-Cu(I) for device fabrications.

We choose 4’-4’’’’-(1,4-phenylene) bis (2,2’:6’,2’’-terpyridine) as the ligand and copper(I) acetate as metal ion center to synthesize the MEPE-Cu(I). Due to metal-to-ligand charge transfer (MLCT) and redox reaction of Cu(I)/Cu(II), the color could be change by applying potential to influence the interaction between Cu(I) and terpyridine ligands and becomes as a new cathodic coloration material. All the MEPE-Cu(I) thin films are prepared by drop-coating with a concentration of 1 mg/mL. By varying the volume per drop, four different thicknesses of MEPE-Cu(I) films (MEPE-Cu(I) 100 μL to 400 μL) are prepared and compared. And the limitation of thickness for MEPE-Cu(I) have been found. The cyclic-voltammetry (CV) pretreatment between 0.0 V and 1.5 V (vs. Ag/Ag+) for 100 cycles is applied for preparation of MEPE-Cu(I) thin film, which enhance the optical performance and reduce resistance of thin film in electrochemical reaction to reach stability of the film. It is also proved by SEM image for surface morphology and EQCM for mass change. MEPE-Cu(I) has transmittance change of above 20%, less 1s of response time and the coloration efficiency of around 260 cm2/C. With ultra-fast response time and higher coloration efficiency, MEPE-Cu(I) could be chosen to apply for electrochromic applications.

Two electrochromic devices based on MEPE-Cu(I) with TBAP/ACN as electrolyte have been fabricated. In MEPE-Cu(I)/PANI-CNT ECD system, PANI-CNT as an anodic coloration material is selected as an ionic storage layer with higher charge capacity, which provide better ability of electron transfer for MEPE-Cu(I) and enhance the electrochromic properties. The transmittance change at 580 nm is similar to MEPE-Cu(I) thin film. However, the response time could be shortened to less than 0.5 s. In the long-term stability experiment, the device could be operated for 1500 cycles and maintains above 99% of original performance.

Besides, in MEPE-Cu(I)/PProDOT-Et2 ECD, PProDOT-Et2 is selected as the main electrochromic layer to fabricated with MEPE-Cu(I) because of relatively smaller transmittance change. MEPE-Cu(I) could also act as an ionic storage layer and assist the electron transfer of PProDOT-Et2, which provides higher transmittance above 35%, fast response time of less than 1 s. In spite of larger operating potential window of 3.5 V, the device could be operated for 1000 cycles with only 6.3% of decay. Both these two devices prove that MEPE-Cu(I) could be a stable electrochromic material and worth applying for other applications.


誌謝 i
中文摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF FIGURES xi
LIST OF TABLES xxiii
NOMENCLATURE xxiv
ABBREVIATIONS xxvii
Chapter 1 Introduction 1
1-1 Introduction to electrochromism 1
1-2 Electrochromic materials 6
1-3 Electrochromic devices 8
1-3-1 Solution-type 10
1-3-2 Hybrid-type 10
1-3-3 Thin-film type 11
Chapter 2 Review and Research Motivation 13
2-1 Introduction to Metallo-supramolecular system 13
2-1-1 The category of metallo-supramolecular materials 14
2-1-2 The ligands 15
2-1-3 Conjugated conducting polymer with terpyridine side chain 16
2-1-4 Coordination polymer systems 20
2-2 Metallo-supramolecular polyelectrolytes (MEPEs) 23
2-3 Introduction to PANI-CNT 26
2-3-1 Polyaniline (PANI) 26
2-3-2 Polyaniline-carbon nanotube (PANI-CNT) 30
2-4 Introduction to PProDOT-Et2 31
2-5 Motivation and research objectives 35
Chapter 3 Experimental 37
3-1 Instruments 37
3-2 Materials and reagents 38
3-3 Experimental methods 39
3-3-1 Synthesis of MEPE-Cu(I) 39
3-3-2 Preparation of conducting glasses 40
3-3-3 Preparations of electrochromic films 40
3-3-4 Fabrication of ECD 41
3-4 Measurements and analysis 42
3-4-1 Electrochemical analysis 42
3-4-2 Optical properties analysis 44
3-4-3 Electronic quartz crysital microbalance (EQCM) analysis 47
Chapter 4 Characterization of Materials 49
4-1 MEPE-Cu(I) analysis 49
4-1-1 Synthesis of MEPE-Cu(I) 49
4-1-2 Electrochemical properties 53
4-1-3 Surface morphology 60
4-1-4 EQCM analysis 66
4-1-5 Step response 76
4-1-6 Coloration efficiency 78
4-1-7 Operation of different potential windows 81
4-2 PANI-CNT analysis 85
4-2-1 Electrochemical properties 85
4-2-2 Optical properties 89
4-3 PProDOT-Et2 analysis 92
4-3-1 Electrochemical analysis 92
4-3-2 Optical analysis 97
Chapter 5 Characterization of Electrochromic Devices 101
5-1 MEPE-Cu(I)/PANI-CNT ECDs 101
5-1-1 Selection of suitable operation window 101
5-1-2 The electrochemical behavior of MEPE-Cu(I)/PANI-CNT ECD 110
5-1-3 Step Response 113
5-1-4 Effect of charge capacity ratio 116
5-1-5 Design equation for complementary device 121
5-1-6 Performances on long-term stability 124
5-2 MEPE-Cu(I)/PProDOT-Et2 ECD 126
5-2-1 Cyclic Voltammetry 126
5-2-2 UV-Visible spectroscopy 131
5-2-3 Step Response 133
5-2-4 Effect of charge capacity ratio 138
5-2-5 Performances on long-term stability 142
Chapter 6 Conclusions and Suggestions 144
6-1 Conclusions 144
6-1-1 The performances of MEPE-Cu(I) 144
6-1-2 The performances of the MEPE-Cu(I)/PANI-CNT ECD 145
6-1-3 The performances of the MEPE-Cu(I)/PProDOT-Et2 ECD 145
6-2 Suggestions 147
Chapter 7 References 148
Appendix A 159
A-1 Reaction charge capacity 159
A-2 XPS data 165
Appendix B Profile of Author 167


[1]J. R. Platt, "Wavelength formulas and configuration interaction in brooker dyes and chain molecules," The Journal of Chemical Physics, vol. 25, pp. 80-105, 1956.
[2]S. K. Deb, "A novel electrophotographic system," Appl. Opt., vol. 8, pp. 192-195, 1969.
[3]F. T. Bauer and J. H. Bechtel, "Automatic rearview mirror for automotive vehicles," US Patent 4,443,057, 1984.
[4] H. J. Byker, "Single-compartment, self-erasing, solution-phase electrochromic devices, solutions for use therein and uses thereof," US Patent 4,902,108, 1990.
[5]J. H. Brechtel and H. J. Byker, "Automatic rearview mirror system for automotive vehicles," US Patent 4,917,477, 1990.
[6]E. S. Lee and D. L. DiBartolomeo, "Application issues for large-area electrochromic windows in commercial buildings," Solar Energy Materials and Solar Cells, vol. 71, pp. 465-491, 2002.
[7]T. Kubo, T. Shinada, Y. Kobayashi, H. Imafuku, T. Toya, S. Akita, Y. Nishikitani, and H. Watanabe, "Current state of the art for NOC-AGC electrochromic windows for architectural and automotive applications," Solid State Ionics, vol. 165, pp. 209-216, 2003.
[8]T. Kubo, J. Tanimoto, M. Minami, T. Toya, Y. Nishikitani, and H. Watanabe, "Performance and durability of electrochromic windows with carbon-based counter electrode and their application in the architectural and automotive fields," Solid State Ionics, vol. 165, pp. 97-104, 2003.
[9]A. Azens, E. Avendano, J. Backholm, L. Berggren, G. Gustavsson, R. Karmhag, G. A. Niklasson, A. Roos, and C. G. Granqvist, "Flexible foils with electrochromic coatings: science, technology and applications," Materials Science and Engineering B, vol. 119, pp. 214-223, 2005.
[10]M. Gratzel, "Materials science: Ultrafast colour displays," Nature, vol. 409, pp. 575-576, 2001.
[11]U. Bach, D. Corr, D. Lupo, F. Pichot, and M. Ryan, "Nanomaterials-based electrochromics for paper-quality displays," Advanced Materials, vol. 14, pp. 845-848, 2002.
[12]D. Corr, U. Bach, D. Fay, M. Kinsella, C. McAtamney, F. O''Reilly, S. N. Rao, and N. Stobie, "Coloured electrochromic "paper-quality" displays based on modified mesoporous electrodes," Solid State Ionics, vol. 165, pp. 315-321, 2003.
[13]P. R. Somani and S. Radhakrishnan, "Electrochromic materials and devices: present and future," Materials Chemistry and Physics, vol. 77, pp. 117-133, 2003.
[14]P. M. S. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism and electrochromic devices. New York: Cambridge University Press, 2007.
[15]P. M. S. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism : fundamentals and applications. New York: VCH, 1995.
[16]B. W. Faughnan, R. S. Crandall, and P. M. Heyman, "Electrochromism in WO3 Amorphoous films," R.C.A. Review, vol. 36, pp. 177-197, 1975.
[17]S. F. Cogan, N. M. Nguyen, S. J. Perrotti, and R. D. Rauh, "Optical properties of electrochromic vanadium pentoxide," Journal of Applied Physics, vol. 66, pp. 1333-1337, 1989.
[18]X. H. Xia, J. P. Tu, J. Zhang, X. L. Wang, W. K. Zhang, and H. Huang, "Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition," Solar Energy Materials and Solar Cells, vol. 92, pp. 628-633, 2008.
[19]C.-S. Hsu, C.-C. Chan, H.-T. Huang, C.-H. Peng, and W.-C. Hsu, "Electrochromic properties of nanocrystalline MoO3 thin films," Thin Solid Films, vol. 516, pp. 4839-4844, 2008.
[20]C. K. Dyer and J. S. L. Leach, "Reversible optical changes within anodic oxide films on titanium and niobium," Journal of the Electrochemical Society, vol. 125, pp. 23-29, 1978.
[21]黃玉仙, "含普魯士藍與六氰鐵化銦電致色變元件之性能與最適化研究," 碩士, 化學工程研究所, 國立台灣大學, 台北, 2002.
[22]林巧芬, "以紫精搭配普魯士藍電致色變元件之研究," 碩士, 化學工程研究所, 國立台灣大學, 台北, 2003.
[23]柯惠琪, "含聚苯胺之電致色變元件性質研究," 碩士, 化學工程研究所, 國立台灣大學, 台北, 2000.
[24]R. D. Rauh, F. Wang, J. R. Reynolds, and D. L. Meeker, "High coloration efficiency electrochromics and their application to multi-color devices," Electrochimica Acta, vol. 46, pp. 2023-2029, 2001.
[25]M. Mastragostino, C. Arbizzani, P. Ferloni, and A. Marinangeli, "Polymer-based electrochromic devices," Solid State Ionics, vol. 53-56, pp. 471-478.
[26]C. L. Gaupp, D. M. Welsh, R. D. Rauh, and J. R. Reynolds, "Composite coloration efficiency measurements of electrochromic polymers based on 3,4 Alkylenedioxythiophenes," Chemistry of Materials, vol. 14, pp. 3964-3970, 2002.
[27] R. D. Rauh, "Electrochromic windows: an overview," Electrochimica Acta, vol. 44, pp. 3165-3176, 1999.
[28]N. Leventis, M. Chen, A. I. Liapis, J. W. Johnson, and A. Jain, "Characterization of 3 x 3 matrix arrays of solution-phase electrochromic cells," Journal of the Electrochemical Society, vol. 145, pp. L55-L58, 1998.
[29]C. J. Schoot, J. J. Ponjee, H. T. van Dam, R. A. van Doorn, and P. T. Bolwijn, "New electrochromic memory display," Applied Physics Letters, vol. 23, pp. 64-65, 1973.
[30]R. J. Mortimer, "Organic electrochromic materials," Electrochimica Acta, vol. 44, pp. 2971-2981, 1999.
[31] G.R. Whittell, M.D. Hager, U.S. Schubert, I. Manners, “Functional soft materials from metallopolymers and metallosupramolecular polymers,” Nature Materials, vol. 10, pp. 176-188, 2011.
[32]Flory, P. J. Principles of Polymer Chemistry, Cornell Univ. Press, chap. 2, 1953.
[33]T.F.A. De Greef, M.M.J. Smulders, M. Wolffs, A.P.H.J. Schenning, R.P. Sijbesma, E.W. Meijer, “Supramolecular polymerization,” Chemical Reviews, vol. 109, pp. 5687-5754, 2009.
[34] W.R. Caseri, H.D. Chanzy, K. Feldman, M. Fontana, P. Smith, T.A. Tervoort, J.G.P. Goossens, E.W. Meijer, A. Schenning, I.R. Dolbnya, M.G. Debije, M.P. de Haas, J.M. Warman, A.M. van de Craats, R.H. Friend, H. Sirringhaus, N. Stutzmann, "(Hot-)Water-Proof", semiconducting, platinum-based chain structures: processing, products, and properties,” Advanced Materials, vol. 15, pp. 125-129, 2003.
[35]R. Dobrawa, F. Wurthner, “Metallosupramolecular approach toward functional coordination polymers,” Journal of Polymer Science Part a-Polymer Chemistry, vol. 43, pp. 4981-4995, 2005.
[36]D.G. Kurth, M. Higuchi, “Transition metal ions: weak links for strong polymers,” Soft Matter, vol. 2, pp. 915-927, 2006.
[37]D. Knapton, S.J. Rowan, C. Weder, “Synthesis and properties of metallo-supramolecular poly(p-phenylene ethynylene)s,” Macromolecules, vol. 39, pp. 651-657, 2006.
[38]C.A. Wheaton, R.J. Puddephatt, “A coordination polymer of gold(I) with heterotactic architecture and a comparison of the structures of isotactic, syndiotactic, and heterotactic isomers,” Angewandte Chemie-International Edition, vol. 46, pp. 4461-4463, 2007.
[39]C.-F. Chow, S. Fujii, J.-M. Lehn, “Metallodynamers: Neutral dynamic metallosupramolecular polymers displaying transformation of mechanical and optical properties on constitutional exchange,” Angewandte Chemie-International Edition, vol. 46, pp. 5007-5010, 2007
[40] R. Shunmugam, G.J. Gabriel, K.A. Aamer, G.N. Tew, “ Metal-ligand-containing polymers: terpyridine as the supramolecular unit,” Macromolecular Rapid Communications, vol. 31, pp. 784-793, 2010.
[41]V.A. Friese, D.G. Kurth, “From coordination complexes to coordination polymers through self-assembly,” Current Opinion in Colloid & Interface Science, vol. 14, pp. 81-93, 2009.
[42]P.W. Kuchel, G.B. Ralston, K.E. Cullen (editor), “Schaum''s easy outline of biochemistry,” Mcgraw-Hill Professional, 2003.
[43]R.E. Gillard, F.M. Raymo, J.F. Stoddart, “Controlling self-assembly,” Chemistry-a European Journal, vol. 3, pp. 1933-1940, 1997.
[44]G.F. Swiegers, T.J. Malefetse, “Multiple-interaction self-assembly in coordination chemistry,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 40, pp. 253-264, 2001.
[45]S. Leininger, B. Olenyuk, P.J. Stang, “Self-assembly of discrete cyclic nanostructures mediated by transition metals,” Chemical Reviews, vol. 100, pp. 853-907, 2000.
[46]L.H. Gade. “Koordinationschemie,” Wiley-VCH, chap. 1, 2000.
[47] T. Vermonden, J. van der Gucht, P. de Waard, A.T.M. Marcelis, N.A.M. Besseling, E.J.R. Sudholter, G.J. Fleer, M.A.C. Stuart, “Water-soluble reversible coordination polymers: Chains and rings,” Macromolecules, vol. 36, pp. 7035-7044, 2003.
[48]F. Barigelletti, L. Flamigni, V. Balzani, J.P. Collin, J.P. Sauvage, A. Sour, E.C. Constable, A. Thompson, “Rigid rod-like dinuclear Ru(II) Os(II) terpyridine-type complexes - electrochemical-behavior, absorption -spectra, luminescence properties, and electronic-energy transfer through phenylene bridges,” Journal of the American Chemical Society, vol. 116, pp. 7692-7699, 1994.
[49]E.C. Constable, A. Thompson, P. Harveson, L. Macko, M. Zehnder, “Metal-mediated Synthesis of Multidomain Ligands – A new strategy for metallosupramolecular chemistr,” Chemistry-a European Journal, vol. 1, pp. 360-367, 1995.
[50] M. Chiper, M.A.R. Meier, D. Wouters, S. Hoeppener, C.A. Fustin, J.F. Gohy, U.S. Schubert, “Supramolecular self-assembled Ni(II), Fe(II), and Co(II) ABA triblock copolymers,” Macromolecules, vol. 41, pp. 2771-2777, 2008.
[51]T.K. Sievers, A. Vergin, H. Mohwald, D.G. Kurth, “Thin films of cross-linked metallo-supramolecular coordination polyelectrolytes,” Langmuir, vol. 23, pp. 12179-12184, 2007.
[52]Y. Yan, J. Huang, “Hierarchical assemblies of coordination supramolecules,” Coordination Chemistry Reviews, vol. 254, pp. 1072-1080, 2010.
[53]P.K. Iyer, J.B. Beck, C. Weder, S.J. Rowan, “Synthesis and optical properties of metallo-supramolecular polymers,” Chemical Communications, pp. 319-321, 2005.
[54]N. Chandrasekhar, R. Chandrasekar, "Click-fluors": synthesis of a family of pi-conjugated fluorescent back-to-back coupled 2,6-bis(triazol-1-yl)pyridines and their self-assembly Studies,” Journal of Organic Chemistry, vol. 75, pp. 4852-4855, 2010.
[55]I. Welterlich, B. Tieke, “Conjugated polymer with benzimidazolylpyridine ligands in the side chain: metal ion coordination and coordinative self-assembly into fluorescent ultrathin films,” Macromolecules, vol. 44, pp. 4194-4203, 2011.
[56]F. Blau, Ber. Dtsch. Chem. Ges. vol. 21, pp. 1077-1078, 1888.
[57]A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. Vonzelewsky, “Ru(II) polypyridine complexes – photophysics, photochemistry, electrochemistry, and chemi-luminescence,” Coordination Chemistry Reviews, vol. 84, pp. 85-277, 1988.
[58]H.D. Abruna, P. Denisevich, M. Umana, T.J. Meyer, R.W. Murray, “Rectifying interfaces using 2-layer films of electrochemically polymerized vinylpyridine and vinylbypyridine complexes of ruthenium and iron on electrodes,” Journal of the American Chemical Society, vol. 103, pp. 1-5, 1981.
[59]L. Motiei, M. Lahav, D. Freeman, M.E. van der Boom, “Electrochromic behavior of a self-propagating molecular-based assembly,” Journal of the American Chemical Society, vol. 131, pp. 3468-3469, 2009.
[60]P.R. Andres, U.S. Schubert, “New functional polymers and materials based on 2,2 '': 6 '',2 ''-terpyridine metal complexes,” Advanced Materials, vol. 16, pp. 1043-1068, 2004.
[61]J.-M Lehn, “Supramolecular chemistry: an introduction,” (Ed: F. Vogtle), John Wiley and Sons, New York, 1995.
[62]E.C. Constable, ” The coordination chemistry of 2,2’-6’,2’’-terpyridine and higher oligopyridines,” Advances in Inorganic Chemistry, vol. 30, pp. 69-121,1986.
[63]J.-H. Li, M. Higuchi, “Substituent effects on metallo-Supramolecular coordination polymers,” Journal of Inorganic and Organometallic Polymers and Materials, vol. 20, pp. 10-18, 2010.
[64]A. Maier, A.R. Rabindranath, B. Tieke, “Fast-switching electrochromic films of zinc polyiminofluorene-terpyridine prepared upon coordinative supramolecular assembly,” Advanced Materials, vol. 21, pp. 959-963, 2009.
[65]A.R. Rabindranath, A. Maier, M. Schaefer, B. Tieke, “Luminescent and ionochromic polyiminofluorene with conjugated terpyridine substituent groups,” Macromolecular Chemistry and Physics, vol. 210, pp. 659-668, 2009.
[66]B. Tieke, ”Coordinative supramolecular assembly of electrochromic thin films,” Current Opinion in Colloid & Interface Science, vol. 16, pp. 499-507, 2011.
[67]A. Maier, R. Rabindranath, B. Tieke, “Coordinative supramolecular assembly of electrochromic films based on metal ion complexes of polyiminofluorene with terpyridine substituent groups,” Chemistry of Materials, vol. 21, pp. 3668-3676, 2009.
[68]A. Maier, H. Fakhrnabavi, A.R. Rabindranath, B. Tieke, “Supramolecular assembly of electrochromic films of terpyridine-functionalized polyiminocarbazolylene metal complexes,” Journal of Materials Chemistry, vol. 21, pp. 5795-5804, 2011.
[69]A. Maier, K. Cheng, J. Savych, B. Tieke, “Double-electrochromic coordination polymer network films,” Acs Applied Materials & Interfaces, vol. 3, pp. 2710-2718, 2011.
[70]A. Maier, B. Tieke, “Coordinative layer-by-layer assembly of electrochromic thin films based on metal ion complexes of terpyridine-substituted polyaniline Derivatives,” Journal of Physical Chemistry B, vol. 116, pp. 925-934, 2012.
[71] D. M. Roundhill, Photochemistry and Photophysics of Metal Complexes,
Plenum, New York, chap. 5, 1994.
[72]M. Higuchi, “Electrochromic organic-metallic hybrid polymers: fundamentals and device applications,” Polymer Journal, vol. 41, pp. 511-520, 2009.
[73]F.S. Han, M. Higuchi, T. Ikeda, Y. Negishi, T. Tsukuda, D.G. Kurth, “Luminescence properties of metallo-supramolecular coordination polymers assembled from pyridine ring functionalized ditopic bis-terpyridines and Ru(II) ion,” Journal of Materials Chemistry, vol. 18, pp. 4555-4560, 2008.
[74]R.R. Pal, M. Higuchi, Y. Negishi, T. Tsukuda, D.G. Kurth, “Fluorescent Fe(II) metallo-supramolecular polymers: metal-ion-directed self-assembly of new bisterpyridines containing triethylene glycol chains,” Polymer Journal, vol. 42, pp. 336-341, 2010.
[75]Y. Bodenthin, G. Schwarz, Z. Tomkowicz, M. Lommel, T. Geue, W. Haase, H. Moehwald, U. Pietsch, D.G. Kurth, “Spin-crossover phenomena in extended multi-component metallo-supramolecular assemblies,” Coordination Chemistry Reviews, vol. 253, pp. 2414-2422, 2009.
[76]J. Li, Z. Futera, H. Li, Y. Tateyama, M. Higuchi, “Conjugation of organic-metallic hybrid polymers and calf-thymus DNA,” Physical Chemistry Chemical Physics, vol. 13, pp. 4839-4841, 2011.
[77]S. Bernhard, J.I. Goldsmith, K. Takada, H.D. Abruna, “Iron(II) and copper(I) coordination polymers: electrochromic materials with and without chiroptical properties,” Inorganic Chemistry, vol. 42, pp. 4389-4393, 2003.
[78]D.G. Kurth, M. Schutte, J. Wen, “Metallo-supramolecular polyelectrolyte multilayers with cobalt(II): preparation and properties,” Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 198, pp. 633-643, 2002.
[79]D.G. Kurth, J.P. Lopez, W.F. Dong, “A new Co(II)-metalloviologen-based electrochromic material integrated in thin multilayer films,” Chemical Communications, pp. 2119-2121, 2005.
[80]C.-F. Zhang, A. Liu, M. Chen, C. Nakamura, J. Miyake, D.-J. Qian, “Interfacial self-assembly of metal-mediated viologen-Like coordination polyelectrolyte hybrids of the bisterpyridine ligand and their optical, electrochemical, and electrochromic properties,” Acs Applied Materials & Interfaces, vol. 1, pp. 1250-1258, 2009
[81]F.S. Han, M. Higuchi, D.G. Kurth, “Metallo-supramolecular polymers based on functionalized bis-terpyridines as novel electrochromic materials,” Advanced Materials, vol. 19, 3928-3931, 2007.
[82]F.S. Han, M. Higuchi, D.G. Kurth, “Metallosupramolecular polyelectrolytes self-assembled from various pyridine ring-substituted bisterpyridines and metal ions: Photophysical, electrochemical, and electrochromic properties,” Journal of the American Chemical Society, vol. 130, pp. 2073-2081, 2008.
[83]F.S. Han, M. Higuchi, Y. Akasaka, Y. Otsuka, D.G. Kurth, “Preparation, characterization, and electrochromic properties of novel Co(II)-bis-2,2 '': 6 '',2 ''-terpyridine metallo-supramolecular polymers,” Thin Solid Films, vol. 516, pp. 2469-2473, 2008.
[84]M. Higuchi, D.G. Kurth, “Electrochemical functions of metallosupramolecular nanomaterials,” Chemical Record, vol. 7, pp. 203-209, 2007.
[85]M. Higuchi, “Electrochromic functions of organic-metallic hybrid polymers,” Journal of Nanoscience and Nanotechnology, vol. 9, pp. 51-58, 2009.
[86]M. Higuchi, Y. Akasaka, T. Ikeda, A. Hayashi, D.G. Kurth, “Electrochromic solid-state devices using organic-metallic hybrid polymers,” Journal of Inorganic and Organometallic Polymers and Materials, vol. 19, pp. 74-78, 2009.
[87]E.M. Genies, A. Boyle, M. Lapkowski, C. Tsintavis, ” Polyaniline – a history survey,” Synthetic Metals, vol. 36, pp. 139-182, 1990.
[88]E.T. Kang, K.G. Neoh, K.L. Tan, “Polyaniline: A polymer with many interesting intrinsic redox states,” Progress in Polymer Science, vol. 23, pp. 277-324, 1998.
[89]N. Gospodinova, L. Terlemezyan, “Conducting polymers prepared by oxidative polymerization: Polyaniline,” Progress in Polymer Science, vol. 23, pp. 1443-1484, 1998.
[90]J. Fritsche, “Ueber das anilin, ein neues zersetzungsproduct des indigo,” Journal fur Praktische Chemie, vol. 20, pp. 453-459, 1840.
[91]H. Letheby, “On the production of a blue substance by the electrolpsis,” Journal of the Chemical Society, vol. 15, pp. 161-163, 1862.
[92]T. H. Lin and K. C. Ho, “A complementary electrochromic device based on polyaniline and poly(3,4-ethylenedioxythiophene),” Solar Energy Materials & Solar Cells, vol. 90, pp. 506-520, 2006.
[93]J. Y. Wang, C. M. Yu, S. C. Hwang, K. C. Ho and L. C. Chen, “Influence of coloring voltage on the optical performance and cycling stability of a polyaniline-indium hexacyanoferrate electrochromic system,” Solar Energy Materials & Solar Cells, vol. 92,pp. 112-119, 2008.
[94]J. Desilvestro, W. Scheifele and O. Hass, “In situ determination of gravimetric and volumetric charge densities of battery electrodes,” J. Electrochem. Soc., vol. 139, pp.2727-2736, 1992.
[95]K. Kanamura, Y. Kawai, S. Yonezawa and Z. I. Takehara, “Effect of morphology of polyaniline on its discharge characteristics in nonaqueous electrolyte,” J. Electrochem. Soc., vol. 142,pp. 2894-2899, 1995.
[96]Z. Cai, M. Geng and Z. Tang, ”Novel battery using conducting polymers: polyindole and polyaniline as active materials,” J. Mater. Sci., vol. 39, pp. 4001-4003, 2004.
[97]Mu, ” Rechargeable batteries based on poly(aniline-co-o-aminophenol) and the protonation of the copolymer,” Synth. Met., vol. 143 , pp. 269-275, 2004.
[98]Y. G. Wang and X. G. Zhang, “All solid-state supercapacitor with phosphotungstic acid as the proton-conducting electrolyte,” Solid State Ion., vol. 166, pp. 61-67, 2004.
[99]Y. K. Zhou, B. L. He, W. J. Zhou, J. Huang, X. H. Li, B. Wu and H. L. Li, ”Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites,” Electrochim. Acta, vol. 49, pp. 257-262, 2004.
[100]K. S. Ryu, K. M. Kim, Y. J. Park, N. G. Park, M. G. Kang and S. H. Chang, ”Redox supercapacitor using polyaniline doped with Li salt as electrode,” Solid State Ion., vol. 152 , pp. 861-866, 2002.
[101]T. Tatsuma, T. Ogawa, R. Sato and N. Oyama, “Peroxidase-incorporated sulfonated polyaniline-polycation complexes for electrochemical sensing of H2O2,” J. Electroanal. Chem., vol. 501, pp. 180-185, 2001.
[102]S. Koul and R. Chandra, ”Mixed dopant conducting polyaniline reusable blend for the detection of aqueous ammonia,” Sens. Actuator B-Chem., vol. 104 pp. 57-67, 2005.
[103]S. Takeda, ”New type of CO2 sensor built up with plasma polymerized polyaniline thin film,” Thin Solid Films, vol. 344 ,pp. 313-316, 1999.
[104]W. Takashima, M. Kaneko, K. Kaneto and A. G. MacDiarmid, “Electrochemical actuator using electrochemically-deposited poly-aniline film,” Synth. Met., vol. 71 pp. 2265-2266, 1995.
[105]B. Qi, W. Lu and B. R. Mattes, “Strain and energy efficiency of polyaniline fiber electrochemical actuators in aqueous electrolytes,” J. Phys. Chem. B, vol. 108, pp. 6222-6227, 2004.
[106]F. Rourke and J. A. Crayston, “Cyclic voltammetry and morphology of polyaniline-coated electrodes containing [Fe(CN)6]3-/4- ions,” J. Chem. Soc., Faraday Trans., vol. 89,pp. 295-302, 1993.
[107]S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science, vol. 283, pp. 512-514, 1999.
[108]M. Ginic-Markovic, J.G. Matisons, R. Cervini, G.P. Simon, P.M. Fredericks, “Synthesis of new polyaniline/nanotube composites using ultrasonically initiated emulsion polymerization,” Chemistry of Materials, vol. 18, pp. 6258-6265, 2006.
[109]S. Bhandari, M. Deepa, A.K. Srivastava, C. Lal, R. Kant, “Poly(3,4-ethylenedioxythiophene) (PEDOT)-coated MWCNTs tethered to conducting substrates: facile electrochemistry and enhanced coloring efficiency,” Macromolecular Rapid Communications, vol. 29, pp. 1959-1964, 2008.
[110]Guo, D. J. & H. L. Li, “Well-dispersed multi-walled carbon nanotube/polyaniline composite films,” Journal of Solid State Electrochemistry, vol. 9, pp. 445-449, 2005.
[111]J.N. Coleman, S. Curran, A.B. Dalton, A.P. Davey, B. Mc Carthy, W. Blau, R.C. Barklie, “Physical doping of a conjugated polymer with carbon nanotubes,” Synthetic Metals, vol. 102, pp. 1174-1175, 1999.
[112]G.Z. Chen, M.S.P. Shaffer, D. Coleby, G. Dixon, W.Z. Zhou, D.J. Fray, A.H. Windle, “Carbon nanotube and polypyrrole composites: Coating and doping,” Advanced Materials, vol. 12, pp. 522-526, 2000.
[113]K.-Y. Shen, C.-W. Hu, L.-C. Chang, K.-C. Ho, “A complementary electrochromic device based on carbon nanotubes/conducting polymers,” Solar Energy Materials and Solar Cells, vol. 98, pp. 294-299, 2012.
[114]G. G. Wallace, G.M. Spinks, L.A.P. Kane-Maguire and P.R. Teasdale, “Conductive electroactive polymers, “ 2nd Ed., CRC Press, New York, 2003.
[115]E. Poverenov, M. Li, A. Bitler, M. Bendikov, “Major effect of electropolymerization solvent on morphology and electrochromic properties of PEDOT films,” Chemistry of Materials, vol. 22, pp. 4019-4025, 2010.
[116]D.M. Welsh, A. Kumar, E.W. Meijer, J.R. Reynolds, “Enhanced contrast ratios and rapid switching in electrochromics based on poly(3,4-propylenedioxythiophene) derivatives,” Advanced Materials, vol. 11, pp. 1379-1382, 1999.
[117]C.L. Gaupp, D.M. Welsh, J.R. Reynolds, “Poly(ProDOT-Et2): A high-contrast, high-coloration efficiency electrochromic polymer,” Macromolecular Rapid Communications, vol. 23, pp. 885-889, 2002.
[118]林正嵐, “普魯士藍薄膜電極電化學析鍍與氧化還原行為之研究,” 國立台灣大學化學工程研究所博士論文, 台北, 台灣, 2002.
[119]黃詩雯, “以PEDOT及PMeT構成之全塞吩電致色變元件之光電性質及最適化,” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣, 2005.
[120]L. C. Chen and K. C. Ho, “Design Equations for Complementary Electrochromic Devices: Application to the Tungsten Oxide-prussian blue System,” Electrochimi. Acta, vol. 46, pp. 2151-2158 , 2001.
[121]L.-M. Huang, C.-H. Chen, T.-C. Wen, "Development and characterization of flexible electrochromic devices based on polyaniline and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid)," Electrochimi. Acta, vol. 26, pp. 5858-5863, 2006.
[122]K.-C. Chen, C.-Y. Hsu, C.-W. Hu, K.-C. Ho, "A complementary electrochromic device based on Prussian blue and poly(ProDOT-Et2) with high contrast and high coloration efficiency," Solar Energy Materials and Solar Cells, vol. 95, pp. 2238-2245, 2011.
[123] 陳威凱, “PANI或PANI/SiO2與PMeT或PProDOT-Et2搭配之互補式電致色變元件:最適化與穩定性,” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣, 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊