跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/20 06:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林育威
研究生(外文):Yu-Wei Lin
論文名稱:高分子場效電晶體型記憶體之微結構及表面改質對元件特性之影響
論文名稱(外文):Effects of Microstructures and Surface Modifications onthe Characteristics of Polymer Field Effect TransistorType Memory Devices
指導教授:陳文章陳文章引用關係
指導教授(外文):Wen-Chang Chen
口試委員:吳文中劉振良郭霽慶
口試日期:2012-06-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:100
中文關鍵詞:共軛高分子靜電紡絲纖維場效電晶體記憶體
外文關鍵詞:electrospun nanofiberstransistor-type memory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高分子電晶體型記憶體元件由於可以溶液製程製備,並具有良好的撓曲性質,因此在近年來相當受到矚目。電晶體型記憶體中主要的機制乃是於高分子介電質、界面缺陷或是奈米晶體浮動閘極中的穩定電荷滯留。然而以高分子奈米纖維為基礎的非揮發性記憶體元件為主題的探討還不多,因此此碩士論文探討了不同型態導電層對記憶體性質的影響。此外也將高極性的聚啞胺介電質應用於可撓曲的非揮發性電晶體型記憶體。

1. 以靜電紡絲纖維為基礎之非揮發場效電晶體型記憶體(第二章)
此部分研究以F8T2高分子為基礎之靜電紡絲纖維場效電晶體型記憶體之非揮發性記憶體性質。其中我們探討了導電層型態以及纖維直徑對電荷流動以及電荷滯留的影響。較細小的靜電紡絲所測得的載子遷移率較高,乃是由於纖維中的較高結晶度以及堆積方向的集中程度。 較粗的靜電紡絲則因為纖維中晶相-非晶相界面較多而具有較大的記憶體操作範圍。最高的載子遷移率可達 9.8x10-3 cm2V-1s-1並且於0 Vg具有3.6x103的高低電流比。在寫入-讀取-擦拭-讀取 (WRER)測試中,電紡絲元件可以承受100次以上的反覆操作。此部份研究發現靜電紡絲中的微結構對於電荷滯留的能力以及因此產生的記憶體特性有很顯著的影響。


2. 以聚啞胺介電質為基礎之可撓曲場效電晶體型非揮發記憶元件(第三章)
此部分為使用2,5-Bis (4-aminophenylenesulfanyl) selenophene-4,4’- (hexafluoroisopropylidene) diphthalic anhydride (APSP-6FDA)以及2,5-Bis (4-aminophenylenesulfanyl) thiophene-4,4’- (hexafluoroisopropylidene) diphthalic anhydride (APST-6FDA)作為介電質、可交聯Polydimethylsiloxane (PDMS)作為阻漏層和Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2)為導電層之可撓曲電晶體型記憶體元件性質探討。由於selenophene中比起thiophene有較高的電子雲密度,以APSP-6FDA為基礎的元件在寫入(writing)以及擦拭(erasing)操作之後,有高達83V之記憶體操作空間同時也有1.29x10-3cm2V-1s-1的載子遷移率,並無降低太多電荷傳輸性質。在長期穩定性測試中,高低訊號比可達105以上,並可來回寫入-讀取-擦拭-讀取超過100次,可維持10000s以上的穩定訊號。在撓曲程度上,可撓曲曲率半徑可達3mm以下仍無明顯元件電性破壞,若以曲率半徑13mm進行多次撓曲,可承受3000次以上的撓曲,同樣地無明顯電性崩潰,展現了未來應用於可攜式記憶體元件的濳力。


Polymer transistor type memory devices have recently attracted significant scientific interest for flexible electronic applications due to the advantages such as low cost, solution process and flexibility. The dominant mechanism in transistor type memory is the charges trapping due to polymer electrets, interfacial defects or nano-crystal floating gate. However, the nanofibers based nonvolatile memory devices or flexible memory devices have not been fully explored yet. In this thesis, we explored the following two subjects to address the above issues: (1) nonvolatile field-effect transistor memory based on ES nanofibers. (2) flexible nonvolatile transistor memory devices based on polyimides (PIs) Electrets.

Nonnvolatile Field-Effect Transistor Memory Based on Electrospun Nanofibers (chapter 2) : We have demonstrated the memory characteristics of ES nanofibers based on F8T2. The effects of the geometry and diameter of the ES nanofibers on charge transport and charge storage ability were explored. The narrow ES nanofibers showed higher mobility than those with a large diameter, because the improved orientation and crystallinity. The large ES nanofiber exhibited a larger memory window, attributed to the heterogeneities in the amorphous-crystalline interfaces in the F8T2 ES nanofibers. The devices of the ES nanofibers with the smallest diameter showed the highest charge carrier mobility of 9.8×10-3 and on-off ratio of 3.6×103 at Vg = 0 V. From the stability testing of the WRER cycles, the good on/off ratios could be maintained for at least 100 cycles, showing good stability. This study demonstrated that the morphology of ES nanofibers have a significant influence on electrical charge storage ability and their resulted memory characteristics.

Flexible Nonvolatile Transistor Memory Devices Based on PIs Electrets (chapter 3) : OFET memory devices were fabricated with 2,5-Bis (4-aminophenylenesulfanyl) selenophene-4,4’- (hexafluoroisopropylidene) diphthalic anhydride (APSP-6FDA) and 2,5-Bis (4-aminophenylenesulfanyl) thiophene-4,4’- (hexafluoroisopropylidene) diphthalic anhydride (APST-6FDA) as the electrets, c-PDMS as the blocking layer and F8T2 as the conducting layer. The wider memory operation window (83V) and higher hole mobility (1.29x10-3 cm2V-1s-1) were observed in APSP-6FDA based devices than those of APST-6FDA based devices attributed to the higher electron density in selenophene than thiophene. Moreover, retention test and WRER test showed a long term stability at least 10000s and durability for repeated operation more than 100 cycles. During the bending test of various curvature radius and repeated bending, the hole mobility could be kept in the same level as that in flat state until r = 3 mm and can maintain at least 3000 bending cycles under the curvature r =13 mm. The threshold voltage shift was also kept in a similar level after 3000 bending cycles and increased considerably when curvature radius was smaller than 3 mm, due to more interface defects after the hard bending. The above results demonstrated the potential applications of the materials for flexible nonvolatile memory devices.


口試委員審定書 i
誌謝 ii
Abstract iv
中文摘要 vii
Table of contents ix
Figure Captions xii
Table Captions xix
Chapter 1 Introduction 1
1.1 Introduction of Polymer Transistor-Type Memory 1
1.1.1 Introduction of Polymer Memory 1
1.1.2 Operating Principle 6
1.1.3 Charge-Storage in OFET Memory Devices 7
1.1.4 Surface modification using organosilane SAMs 8
1.1.5 Polyimides as the electrets in transistor type memory 9
1.2 Introduction to Electrospinning 11
1.2.1 The Effect of Solution Parameters and Fiber Morphology 13
1.2.2 Process Design for Coaxial Fibers 14
1.2.3 OFET devices based on ES fibers 16
1.2.4 Poly [9, 9''-dioctyl-fluorene-co-bithiophene] (F8T2) 18
1.3 Research Objective 20
Chapter 2 Nonvolatile Field-Effect Transistor Memory devices Based on Electrospun Fiber of poly(9,9-dioctyl-fluorene-co-bithiophene) 27
2.1 Introduction 27
2.2 Experimental 30
2.2.1 Materials 30
2.2.2 Electrospinning Process 30
2.2.3 Device Fabrication 31
2.3 Characterization 33
2.4 Results and Discussion 34
2.4.1 Morphology and GIXD Characterizations 34
2.4.2 FET Memory Characterizations 37
2.5 Conclusion 44
Chapter 3 Flexible Nonvolatile Transistor Memory Devices with Thiophene and Selenophene based Polyimides electrets 59
3.1 Introduction 59
3.2 Experimental 60
3.2.1 Materials 60
3.2.2 Fabrication of Multilayer Thin Film Devices 61
3.3 Characterizations 62
3.4 Results and Discussion 63
3.4.1 Topography Characterizations 63
3.4.2 The Transistor Memory Performance 64
3.4.3 Effects of Strength of Bias Voltage 68
3.4.4 Bending Durability on Transistor Memory Properties 68
3.5 Conclusion 69
Chapter 4 81
Conclusion and future work 81
Reference 84
Autobiography 100


(1)Baeg, K. J.; Noh, Y. Y.; Ghim, J.; Kang, S. J.; Lee, H.; Kim, D. Y. Advanced Materials 2006, 18, 3179.
(2)Baeg, K.-J.; Noh, Y.-Y.; Ghim, J.; Lim, B.; Kim, D.-Y. Advanced Functional Materials 2008, 18, 3678.
(3)Hsu, J.-C.; Lee, W.-Y.; Wu, H.-C.; Sugiyama, K.; Hirao, A.; Chen, W.-C. Journal of Materials Chemistry 2012, 22, 5820.
(4)Sessler, G. M.; Breazeale, M. A. The Journal of the Acoustical Society of America 1988, 84, 2298.
(5)Debucquoy, M.; Rockele, M.; Genoe, J.; Gelinck, G. H.; Heremans, P. Organic Electronics 2009, 10, 1252.
(6)Debucquoy, M.; Bode, D.; Genoe, J.; Gelinck, G. H.; Heremans, P. Applied Physics Letters 2009, 95, 103311.
(7)Katz, H. E. Chemistry of Materials 2004, 16, 4748.
(8)Ling, Q.-D.; Liaw, D.-J.; Zhu, C.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G. Progress in Polymer Science 2008, 33, 917.
(9)Heremans, P.; Gelinck, G. H.; Muller, R.; Baeg, K.-J.; Kim, D.-Y.; Noh, Y.-Y. Chemistry of Materials 2010, 23, 341.
(10)Kumaki, D.; Ando, S.; Shimono, S.; Yamashita, Y.; Umeda, T.; Tokito, S. Applied Physics Letters 2007, 90, 053506.
(11)Tomatsu, K.; Hamada, T.; Nagase, T.; Yamazaki, S.; Kobayashi, T.; Murakami, S.; Matsukawa, K.; Naito, H. Japanese Journal of Applied Physics 2008, 47, 3196.
(12)Grecu, S.; Roggenbuck, M.; Opitz, A.; Brutting, W. Organic Electronics 2006, 7, 276.
(13)Kobayashi, S.; Nishikawa, T.; Takenobu, T.; Mori, S.; Shimoda, T.; Mitani, T.; Shimotani, H.; Yoshimoto, N.; Ogawa, S.; Iwasa, Y. Nat Mater 2004, 3, 317.
(14)Karakawa, M.; Chikamatsu, M.; Yoshida, Y.; Oishi, M.; Azumi, R.; Yase, K. Applied Physics Express 2008, 1.
(15)Pernstich, K. P.; Haas, S.; Oberhoff, D.; Goldmann, C.; Gundlach, D. J.; Batlogg, B.; Rashid, A. N.; Schitter, G. Journal of Applied Physics 2004, 96, 6431.
(16)Naber, R. C. G.; Tanase, C.; Blom, P. W. M.; Gelinck, G. H.; Marsman, A. W.; Touwslager, F. J.; Setayesh, S.; de Leeuw, D. M. Nat Mater 2005, 4, 243.
(17)Mal''tsev, E. I.; Brusentseva, M. A.; Lypenko, D. A.; Berendyaev, V. I.; Kolesnikov, V. A.; Kotov, B. V.; Vannikov, A. V. Polymers for Advanced Technologies 2000, 11, 325.
(18)Muhlbacher, D.; Brabec, C. J.; Sariciftci, N. S.; Kotov, B. V.; Berendyaev, V. I.; Rumyantsev, B. M.; Hummelen, J. C. Synthetic Metals 2001, 121, 1609.
(19)Wang, Z. Y.; Qi, Y.; Gao, J. P.; Sacripante, G. G.; Sundararajan, P. R.; Duff, J. D. Macromolecules 1998, 31, 2075.
(20)Ling, Q.-D.; Chang, F.-C.; Song, Y.; Zhu, C.-X.; Liaw, D.-J.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G. J. Am. Chem. Soc. 2006, 128, 8732.
(21)Tian, G.; Wu, D.; Qi, S.; Wu, Z.; Wang, X. Macromolecular Rapid Communications 2011, 32, 384.
(22)Liu, Y.-L.; Wang, K.-L.; Huang, G.-S.; Zhu, C.-X.; Tok, E.-S.; Neoh, K.-G.; Kang, E.-T. Chemistry of Materials 2009, 21, 3391.
(23)Kuorosawa, T.; Chueh, C.-C.; Liu, C.-L.; Higashihara, T.; Ueda, M.; Chen, W.-C. Macromolecules 2010, 43, 1236.
(24)Wang, K.-L.; Liu, Y.-L.; Shih, I. H.; Neoh, K.-G.; Kang, E.-T. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, 5790.
(25)Liu, C.-L.; Kurosawa, T.; Yu, A.-D.; Higashihara, T.; Ueda, M.; Chen, W.-C. The Journal of Physical Chemistry C 2011, 115, 5930.
(26)Lee, W.-Y.; Kurosawa, T.; Lin, S.-T.; Higashihara, T.; Ueda, M.; Chen, W.-C. Chemistry of Materials 2011, 23, 4487.
(27)You, N.-H.; Chueh, C.-C.; Liu, C.-L.; Ueda, M.; Chen, W.-C. Macromolecules 2009, 42, 4456.
(28)Liu, Y.-L.; Ling, Q.-D.; Kang, E.-T.; Neoh, K.-G.; Liaw, D.-J.; Wang, K.-L.; Liou, W.-T.; Zhu, C.-X.; Chan, D. S.-H. Journal of Applied Physics 2009, 105, 044501.
(29)Hahm, S. G.; Choi, S.; Hong, S.-H.; Lee, T. J.; Park, S.; Kim, D. M.; Kwon, W.-S.; Kim, K.; Kim, O.; Ree, M. Advanced Functional Materials 2008, 18, 3276.
(30)Hahm, S. G.; Choi, S.; Hong, S.-H.; Lee, T. J.; Park, S.; Kim, D. M.; Kim, J. C.; Kwon, W.; Kim, K.; Kim, M.-J.; Kim, O.; Ree, M. Journal of Materials Chemistry 2009, 19, 2207.
(31)Kim, K.; Park, S.; Hahm, S. G.; Lee, T. J.; Kim, D. M.; Kim, J. C.; Kwon, W.; Ko, Y.-G.; Ree, M. The Journal of Physical Chemistry B 2009, 113, 9143.
(32)Jin, H.-J.; Fridrikh, S. V.; Rutledge, G. C.; Kaplan, D. L. Biomacromolecules 2002, 3, 1233.
(33)Kim, K.; Yu, M.; Zong, X.; Chiu, J.; Fang, D.; Seo, Y.-S.; Hsiao, B. S.; Chu, B.; Hadjiargyrou, M. Biomaterials 2003, 24, 4977.
(34)Kahol, P. K.; Pinto, N. J. Synthetic Metals 2004, 140, 269.
(35)Li, D.; Xia, Y. Advanced Materials 2004, 16, 1151.
(36)Dror, Y.; Salalha, W.; Khalfin, R. L.; Cohen, Y.; Yarin, A. L.; Zussman, E. Langmuir 2003, 19, 7012.
(37)Sun, Z.; Zussman, E.; Yarin, A. L.; Wendorff, J. H.; Greiner, A. Advanced Materials 2003, 15, 1929.
(38)Yu, J. H.; Fridrikh, S. V.; Rutledge, G. C. Advanced Materials 2004, 16, 1562.
(39)McCann, J. T.; Marquez, M.; Xia, Y. Nano Letters 2006, 6, 2868.
(40)Wang, M.; Jing, N.; Su, C. B.; Kameoka, J.; Chou, C.-K.; Hung, M.-C.; Chang, K.-A. Applied Physics Letters 2006, 88, 033106.
(41)Moghe, A. K.; Gupta, B. S. Polymer Reviews 2008, 48, 353.
(42)Greiner, A.; Wendorff, J.; Yarin, A.; Zussman, E. Applied Microbiology and Biotechnology 2006, 71, 387.
(43)Li, D.; Xia, Y. Nano Letters 2004, 4, 933.
(44)Someya, T.; Pal, B.; Huang, J.; Katz, H. E. Mrs Bulletin 2008, 33, 690.
(45)Jimison, L. H.; Toney, M. F.; McCulloch, I.; Heeney, M.; Salleo, A. Advanced Materials 2009, 21, 1568.
(46)Liu, H.; Reccius, C. H.; Craighead, H. G. Applied Physics Letters 2005, 87, 253106.
(47)Becerril, H. A.; Roberts, M. E.; Liu, Z.; Locklin, J.; Bao, Z. Advanced Materials 2008, 20, 2588.
(48)Oosterbaan, W. D.; Bolsee, J.-C.; Gadisa, A.; Vrindts, V.; Bertho, S.; D''Haen, J.; Cleij, T. J.; Lutsen, L.; McNeill, C. R.; Thomsen, L.; Manca, J. V.; Vanderzande, D. Advanced Functional Materials 2010, 20, 792.
(49)Park, Y. D.; Lee, S. G.; Lee, H. S.; Kwak, D.; Lee, D. H.; Cho, K. Journal of Materials Chemistry 2011, 21, 2338.
(50)Babel, A.; Li, D.; Xia, Y.; Jenekhe, S. A. Macromolecules 2005, 38, 4705.
(51)Li, D.; Babel, A.; Jenekhe, S. A.; Xia, Y. Advanced Materials 2004, 16, 2062.
(52)Chen, J.-Y.; Kuo, C.-C.; Lai, C.-S.; Chen, W.-C.; Chen, H.-L. Macromolecules 2011, 44, 2883.
(53)Park, J. W.; Lee, D. H.; Chung, D. S.; Kang, D.-M.; Kim, Y.-H.; Park, C. E.; Kwon, S.-K. Macromolecules 2010, 43, 2118.
(54)Kinder, L.; Kanicki, J.; Petroff, P. Synthetic Metals 2004, 146, 181.
(55)Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. Science 2000, 290, 2123.
(56)Sirringhaus, H.; Kawase, T.; Friend, R. H. Mrs Bulletin 2001, 26, 539.
(57)Li, S. P.; Newsome, C. J.; Russell, D. M.; Kugler, T.; Ishida, M.; Shimoda, T. Applied Physics Letters 2005, 87, 062101.
(58)Laquindanum, J. G.; Katz, H. E.; Lovinger, A. J. J. Am. Chem. Soc. 1998, 120, 664.
(59)Lai, Y.-C.; Ohshimizu, K.; Takahashi, A.; Hsu, J.-C.; Higashihara, T.; Ueda, M.; Chen, W.-C. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 2577.
(60)Lee, W. Y.; Cheng, K. F.; Liu, C. L.; Lin, S. T.; Chueh, C. C.; Tsai, F. Y.; Chen, W. C. Journal of Polymer Research 2009, 16, 239.
(61)Lee, W. Y.; Cheng, K. F.; Wang, T. F.; Chen, W. C.; Tsai, F. Y. Thin Solid Films 2010, 518, 2119.
(62)Lee, W.-Y.; Cheng, K.-F.; Wang, T.-F.; Chueh, C.-C.; Chen, W.-C.; Tuan, C.-S.; Lin, J.-L. Macromolecular Chemistry and Physics 2007, 208, 1919.
(63)Tsai, J.-H.; Chueh, C.-C.; Lai, M.-H.; Wang, C.-F.; Chen, W.-C.; Ko, B.-T.; Ting, C. Macromolecules 2009, 42, 1897.
(64)Tsai, J.-H.; Lee, W.-Y.; Chen, W.-C.; Yu, C.-Y.; Hwang, G.-W.; Ting, C. Chem. Mater. 2010, 22, 3290.
(65)Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280, 1741.
(66)Chua, L.-L.; Zaumseil, J.; Chang, J.-F.; Ou, E. C. W.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. Nature 2005, 434, 194.
(67)Gadisa, A.; Perzon, E.; Andersson, M. R.; Inganas, O. Applied Physics Letters 2007, 90.
(68)Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. Nature 2009, 457, 679.
(69)Cheng, K.-F.; Liu, C.-L.; Chen, W.-C. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45, 5872.
(70)Liu, C.-L.; Tsai, J.-H.; Lee, W.-Y.; Chen, W.-C.; Jenekhe, S. A. Macromolecules 2008, 41, 6952.
(71)Yamamoto, T.; Kokubo, H.; Kobashi, M.; Sakai, Y. Chemistry of Materials 2004, 16, 4616.
(72)Champion, R. D.; Cheng, K.-F.; Pai, C.-L.; Chen, W.-C.; Jenekhe, S. A. Macromolecular Rapid Communications 2005, 26, 1835.
(73)Babel, A.; Zhu, Y.; Cheng, K. F.; Chen, W. C.; Jenekhe, S. A. Advanced Functional Materials 2007, 17, 2542.
(74)Zhu, Y.; Champion, R. D.; Jenekhe, S. A. Macromolecules 2006, 39, 8712.
(75)Becerril, H. A.; Miyaki, N.; Tang, M. L.; Mondal, R.; Sun, Y.-S.; Mayer, A. C.; Parmer, J. E.; McGehee, M. D.; Bao, Z. Journal of Materials Chemistry 2009, 19, 591.
(76)Zaumseil, J.; Sirringhaus, H. Chemical Reviews 2007, 107, 1296.
(77)Bao, Z.; Locklin, J. J. Organic field-effect transistors; CRC Press, 2007.
(78)Morana, M.; Koers, P.; Waldauf, C.; Koppe, M.; Muehlbacher, D.; Denk, P.; Scharber, M.; Waller, D.; Brabec, C. Advanced Functional Materials 2007, 17, 3274.
(79)Morana, M.; Wegscheider, M.; Bonanni, A.; Kopidakis, N.; Shaheen, S.; Scharber, M.; Zhu, Z.; Waller, D.; Gaudiana, R.; Brabec, C. Advanced Functional Materials 2008, 18, 1757.
(80)Chen, J.-C.; Liu, C.-L.; Sun, Y.-S.; Tung, S.-H.; Chen, W.-C. Soft Matter 2011, in press.
(81)Hsu, J.-C.; Chen, Y.; Kakuchi, T.; Chen, W.-C. Macromolecules 2011, 44, 5168.
(82)Hsu, J.-C.; Li, C.; Sugiyama, K.; Mezzenga, R.; Hirao, A.; Chen, W.-C. Soft Matter 2011, 7, 8440.
(83)Hsu, J.-C.; Liu, C.-L.; Chen, W.-C.; Sugiyama, K.; Hirao, A. Macromol. Rapid Commun. 2011, 32, 528.
(84)Liu, C.-L.; Hsu, J.-C.; Chen, W.-C.; Sugiyama, K.; Hirao, A. ACS Appl. Mat. Interfaces 2009, 1, 1974.
(85)You, N. H.; Chueh, C. C.; Liu, C. L.; Ueda, M.; Chen, W. C. Macromolecules 2009, 42, 4456.
(86)Kotecki, D. E.; Baniecki, J. D.; Shen, H.; Laibowitz, R. B.; Saenger, K. L.; Lian, J. J.; Shaw, T. M.; Athavale, S. D.; Cabral, C.; Duncombe, P. R.; Gutsche, M.; Kunkel, G.; Park, Y. J.; Wang, Y. Y.; Wise, R. IBM J. Res. Dev. 1999, 43, 367.
(87)Basceri, C.; Streiffer, S. K.; Kingon, A. I.; Waser, R. Journal of Applied Physics 1997, 82, 2497.
(88)Alshareef, H. N.; Kingon, A. I.; Chen, X.; Bellur, K. R.; Auciello, O. J. Mater. Res. 1994, 9, 2968.
(89)Lee, W. Y.; Kurosawa, T.; Lin, S. T.; Higashihara, T.; Ueda, M.; Chen, W. C. Chemistry of Materials 2011, 23, 4487.
(90)Kim, T. W.; Choi, H.; Oh, S. H.; Wang, G.; Kim, D. Y.; Hwang, H.; Lee, T. Advanced Materials 2009, 21, 2497.
(91)Mushrush, M.; Facchetti, A.; Lefenfeld, M.; Katz, H. E.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 9414.
(92)Yoon, M. H.; Yan, H.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 10388.
(93)Facchetti, A.; Letizia, J.; Yoon, M. H.; Mushrush, M.; Katz, H. E.; Marks, T. J. Chemistry of Materials 2004, 16, 4715.
(94)Liu, Z. C.; Xue, F. L.; Su, Y.; Lvov, Y. M.; Varahramyan, K. IEEE Trans. Nanotechnol. 2006, 5, 379.
(95)Stadler, P.; Oppelt, K.; Singh, T. B.; Grote, J. G.; Schwodiauer, R.; Bauer, S.; Piglmayer-Brezina, H.; Bauerle, D.; Sariciftci, N. S. Organic Electronics 2007, 8, 648.
(96)Dhar, B. M.; Oezguen, R.; Dawidczyk, T.; Andreou, A.; Katz, H. E. Materials Science & Engineering R-Reports 2011, 72, 49.
(97)Kim, S.-J.; Lee, J.-S. Nano Letters 2010, 10, 2884.
(98)Kim, Y.-M.; Kim, S.-J.; Lee, J.-S. Ieee Electron Device Letters 2010, 31, 503.
(99)Lee, J.-S. Electronic Materials Letters 2011, 7, 175.
(100)Wang, H.; Ji, Z.; Shang, L.; Chen, Y.; Han, M.; Liu, X.; Peng, Y.; Liu, M. Organic Electronics 2011, 12, 1236.
(101)Wang, H.; Peng, Y.; Ji, Z.; Liu, M.; Shang, L.; Liu, X. Chinese Science Bulletin 2011, 56, 1325.
(102)Wang, W.; Ma, D. Applied Physics Letters 2010, 96.
(103)Wang, W.; Ma, D.; Gao, Q. Microelectronic Engineering 2012, 91, 9.
(104)Baeg, K.-J.; Noh, Y.-Y.; Kim, D.-Y. Solid-State Electronics 2009, 53, 1165.
(105)Bauer-Gogonea, S.; Schwodiauer, R.; Bauer, S.; Stadlober, B.; Zirkl, M.; Beutl, M.; Leising, G. High dielectric constant fluorinated polymer film gate electrets for organic field effect transistors, 2005.
(106)Yeh, B.-L.; Chen, Y.-H.; Chiu, L.-Y.; Lin, J.-W.; Chen, W.-Y.; Chen, J.-S.; Chou, T.-H.; Chou, W.-Y.; Tang, F.-C.; Cheng, H.-L. Journal of the Electrochemical Society 2011, 158, H277.
(107)Chang, J.; Shin, C. H.; Park, Y. J.; Kang, S. J.; Jeong, H. J.; Kim, K. J.; Hawker, C. J.; Russell, T. P.; Ryu, D. Y.; Park, C. Organic Electronics 2009, 10, 849.
(108)Das, S.; Appenzeller, J. Nano Letters 2011, 11, 4003.
(109)Kang, S. J.; Bae, I.; Shin, Y. J.; Park, Y. J.; Huh, J.; Park, S.-M.; Kim, H.-C.; Park, C. Nano Letters 2011, 11, 138.
(110)Kang, S. J.; Park, Y. J.; Bae, I.; Kim, K. J.; Kim, H.-C.; Bauer, S.; Thomas, E. L.; Park, C. Advanced Functional Materials 2009, 19, 2812.
(111)Shin, Y. J.; Kang, S. J.; Jung, H. J.; Park, Y. J.; Bae, I.; Choi, D. H.; Park, C. Acs Applied Materials & Interfaces 2011, 3, 582.
(112)Chou, Y.-H.; Lee, W.-Y.; Chen, W.-C. Advanced Functional Materials 2012, n/a.
(113)Kameoka, J.; Orth, R.; Yang, Y. N.; Czaplewski, D.; Mathers, R.; Coates, G. W.; Craighead, H. G. Nanotechnology 2003, 14, 1124.
(114)Theron, A.; Zussman, E.; Yarin, A. L. Nanotechnology 2001, 12, 384.
(115)Doshi, J.; Reneker, D. H. Journal of Electrostatics 1995, 35, 151.
(116)Li, D.; Wang, Y.; Xia, Y. Nano Letters 2003, 3, 1167.
(117)Kuo, C.-C.; Wang, C.-T.; Chen, W.-C. Macromolecular Materials and Engineering 2008, 293, 999.
(118)Liu, Y.; Zhang, X.; Xia, Y.; Yang, H. Advanced Materials 2010, 22, 2454.
(119)Lee, S. W.; Lee, H. J.; Choi, J. H.; Koh, W. G.; Myoung, J. M.; Hur, J. H.; Park, J. J.; Cho, J. H.; Jeong, U. Nano Letters 2009, 10, 347.
(120)Kakade, M. V.; Givens, S.; Gardner, K.; Lee, K. H.; Chase, D. B.; Rabolt, J. F. J. Am. Chem. Soc. 2007, 129, 2777.
(121)Kim, D. H.; Han, J. T.; Park, Y. D.; Jang, Y.; Cho, J. H.; Hwang, M.; Cho, K. Advanced Materials 2006, 18, 719.
(122)Merlo, J. A.; Frisbie, C. D. The Journal of Physical Chemistry B 2004, 108, 19169.
(123)Samitsu, S.; Shimomura, T.; Heike, S.; Hashizume, T.; Ito, K. Macromolecules 2010, 43, 7891.
(124)Lee, S.; Moon, G. D.; Jeong, U. Journal of Materials Chemistry 2009, 19, 743.
(125)Canesi, E. V.; Luzio, A.; Saglio, B.; Bianco, A.; Caironi, M.; Bertarelli, C. Acs Macro Letters 2012, 1, 366.
(126)Lin, C. J.; Hsu, J. C.; Tsai, J. H.; Kuo, C. C.; Lee, W. Y.; Chen, W. C. Macromolecular Chemistry and Physics 2011, 212, 2452.
(127)Chen, D.; Lei, S.; Chen, Y. Sensors 2011, 11, 6509.
(128)Ishii, Y.; Sakai, H.; Murata, H. Nanotechnology 2011, 22.
(129)Kuo, C.-C.; Wang, C.-T.; Chen, W.-C. Macromolecular Symposia 2009, 279, 41.
(130)Wang, C. T.; Kuo, C. C.; Chen, H. C.; Chen, W. C. Nanotechnology 2009, 20.
(131)Katz, H. E.; Hong, X. M.; Dodabalapur, A.; Sarpeshkar, R. Journal of Applied Physics 2002, 91, 1572.
(132)Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y.; Dai, H. Nano Letters 2003, 3, 193.
(133)Baeg, K.-J.; Noh, Y.-Y.; Sirringhaus, H.; Kim, D.-Y. Advanced Functional Materials 2010, 20, 224.
(134)Scheinert, S.; Pernstich, K. P.; Batlogg, B.; Paasch, G. Journal of Applied Physics 2007, 102, 104503.
(135)Fuhrer, M. S.; Kim, B. M.; Durkop, T.; Brintlinger, T. Nano Letters 2002, 2, 755.
(136)Dimitrakopoulos, C. D.; Malenfant, P. R. L. Advanced Materials 2002, 14, 99.
(137)Sokolov, A. N.; Cao, Y.; Johnson, O. B.; Bao, Z. Advanced Functional Materials 2012, 22, 175.
(138)Koster, L. J. A.; Mihailetchi, V. D.; Blom, P. W. M. Applied Physics Letters 2006, 88, 093511.
(139)Peumans, P.; Uchida, S.; Forrest, S. R. Nature 2003, 425, 158.
(140)Sekitani, T.; Yokota, T.; Zschieschang, U.; Klauk, H.; Bauer, S.; Takeuchi, K.; Takamiya, M.; Sakurai, T.; Someya, T. Science 2009, 326, 1516.
(141)Crone, B.; Dodabalapur, A.; Gelperin, A.; Torsi, L.; Katz, H. E.; Lovinger, A. J.; Bao, Z. Applied Physics Letters 2001, 78, 2229.
(142)Torsi, L.; Dodabalapur, A. Analytical Chemistry 2005, 77, 380 A.
(143)Roberts, M. E.; Mannsfeld, S. C. B.; Stoltenberg, R. M.; Bao, Z. Organic Electronics 2009, 10, 377.
(144)Roberts, M. E.; Mannsfeld, S. C. B.; Queralto, N.; Reese, C.; Locklin, J.; Knoll, W.; Bao, Z. Proceedings of the National Academy of Sciences 2008, 105, 12134.
(145)Zampetti, E.; Pantalei, S.; Pecora, A.; Valletta, A.; Maiolo, L.; Minotti, A.; Macagnano, A.; Fortunato, G.; Bearzotti, A. Sensors and Actuators B: Chemical 2009, 143, 302.
(146)Someya, T.; Dodabalapur, A.; Huang, J.; See, K. C.; Katz, H. E. Advanced Materials 2010, 22, 3799.
(147)Briseno, A. L.; Tseng, R. J.; Ling, M. M.; Falcao, E. H. L.; Yang, Y.; Wudl, F.; Bao, Z. Advanced Materials 2006, 18, 2320.
(148)Briseno, A. L.; Mannsfeld, S. C. B.; Ling, M. M.; Liu, S.; Tseng, R. J.; Reese, C.; Roberts, M. E.; Yang, Y.; Wudl, F.; Bao, Z. Nature 2006, 444, 913.
(149)Grimsdale, A. C.; Leok Chan, K.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Chemical Reviews 2009, 109, 897.
(150)Walzer, K.; Maennig, B.; Pfeiffer, M.; Leo, K. Chemical Reviews 2007, 107, 1233.
(151)Schroeder, R.; Majewski, L. A.; Grell, M. Advanced Materials 2004, 16, 633.
(152)Yoon, S.-M.; Jung, S.-W.; Yang, S.-H.; Byun, C.-W.; Hwang, C.-S.; Ko Park, S.-H.; Ishiwara, H. Organic Electronics 2010, 11, 1746.
(153)Wei, Q.; Lin, Y.; Anderson, E. R.; Briseno, A. L.; Gido, S. P.; Watkins, J. J. ACS Nano 2012, 6, 1188.
(154)Leong, W. L.; Mathews, N.; Mhaisalkar, S.; Lam, Y. M.; Chen, T.; Lee, P. S. Journal of Materials Chemistry 2009, 19, 7354.
(155)Reese, C.; Chung, W.-J.; Ling, M.-m.; Roberts, M.; Bao, Z. Applied Physics Letters 2006, 89, 202108.
(156)Stutzmann, N.; Friend, R. H.; Sirringhaus, H. Science 2003, 299, 1881.
(157)Lim, E.; Kim, Y. M.; Lee, J.-I.; Jung, B.-J.; Cho, N. S.; Lee, J.; Do, L.-M.; Shim, H.-K. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44, 4709.
(158)Veres, J.; Ogier, S. D.; Leeming, S. W.; Cupertino, D. C.; Mohialdin Khaffaf, S. Advanced Functional Materials 2003, 13, 199.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊